Hi, Python newbie here. I need help with the following two tasks I need to accomplish using Python:
------------------------ Creating a matrix of rolling variances I have a pandas data frame of six columns, I would like to iteratively compute the variance along each column. Since I am a newbie, I don't really understand the niceties of the language and common usage patterns. What is the common Python idiom for achieving the following? vars = [] for i in range(1, 100000): v = (data.iloc[range(0, i+1)].var()).values if len(vars) == 0: vars = v else: vars = np.vstack((vars, v)) Also, when I run this code, it takes a long time to execute. Can anyone suggest how to improve the running time? ------------------------ Pandas dataframe: sum of exponentially weighted correlation matrices per row Consider the following dataframe: df = pd.DataFrame(np.random.random((200,3))) df['date'] = pd.date_range('2000-1-1', periods=200, freq='D') df = df.set_index(['date']) date 0 1 2 3 4 5 2000-01-01 0.101782 0.111237 0.177719 0.229994 0.298786 0.747169 2000-01-02 0.348568 0.916997 0.527036 0.998144 0.544261 0.824907 2000-01-03 0.095015 0.480519 0.493345 0.632072 0.965326 0.244732 2000-01-04 0.502706 0.014287 0.045354 0.461621 0.359125 0.489150 2000-01-05 0.559364 0.337121 0.763715 0.460163 0.515309 0.732979 2000-01-06 0.488153 0.149655 0.015616 0.658693 0.864032 0.425497 2000-01-07 0.266161 0.392923 0.606358 0.286874 0.160191 0.573436 2000-01-08 0.786785 0.770826 0.202838 0.259263 0.732071 0.546918 2000-01-09 0.739847 0.886894 0.094900 0.257210 0.264688 0.005631 2000-01-10 0.615846 0.347249 0.516575 0.886096 0.347741 0.259998 Now, I want to treat each row as a vector and perform a multiplication like this: [[0.101782]] [[0.101782 0.111237 0.177719 0.229994 0.298786 0.747169]] [[0.111237]] [[0.177719]] [[0.229994]] [[0.298786]] [[0.747169]] For the i-th row, let's call this X_i. Now I have a parameter alpha and I want to multiply X_i with alpha^i and sum across all the i's. In the real world, I can have thousands of rows so I need to do this with reasonably good performance. ------------------------ Many thanks in advance! -- https://mail.python.org/mailman/listinfo/python-list