Can please anyone explaine me what do each of these code lines and how k-means algorithm works?
from scipy.cluster.vq import * from scipy.misc import imresize from pylab import * from PIL import Image steps = 500 im = array(Image.open("empire.jpg")) dx = im.shape[0] / steps dy = im.shape[1] / steps # compute color features for each region features = [] for x in range(steps): for y in range(steps): R = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,0]) G = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,1]) B = mean(im[x*dx:(x+1)*dx,y*dy:(y+1)*dy,2]) features.append([R,G,B]) features = array(features,"f") # make into array # cluster centroids,variance = kmeans(features,3) code,distance = vq(features,centroids) # create image with cluster labels codeim = code.reshape(steps,steps) codeim = imresize(codeim,im.shape[:2],interp="nearest") figure() imshow(codeim) show() -- https://mail.python.org/mailman/listinfo/python-list