ast wrote: > Hi > > I needed a function f(x) which looks like sinus(2pi.x) but faster. > I wrote this one: > > -------------------------- > from math import floor > > def sinusLite(x): > x = x - floor(x) > return -16*(x-0.25)**2 + 1 if x < 0.5 else 16*(x-0.75)**2 - 1 > -------------------------- > > then i used module timeit to compare its execution time with math.sin() > I put the sinusLite() function in a module named test. > > then: > >>>> import timeit >>>> t1 = timeit.Timer("y=test.sinusLite(0.7)", "import test") >>>> t2 = timeit.Timer("y=math.sin(4.39)", "import math") ## 4.39 = >>>> 2*pi*0.7 > >>>> t1.repeat(3, 1000000) > [1.9994622221539373, 1.9020670224846867, 1.9191573230675942] > >>>> t2.repeat(3, 1000000) > [0.2913627989031511, 0.2755561810230347, 0.2755186762562971] > > so the genuine sinus is much faster than my so simple sinLite() ! > Amazing isnt it ? Do you have an explanation ?
You are applying your optimisation in an implementation where the function call overhead of a Python-implemented function is greater than the time to invoke the C-coded function, calculate the sin, and create the python float. $ python -m timeit -s 'from math import sin' 'sin(.7)' 1000000 loops, best of 3: 0.188 usec per loop $ python -m timeit -s 'from test import sinusLite as sin' 'sin(.7)' 1000000 loops, best of 3: 0.972 usec per loop $ python -m timeit -s 'sin = lambda x: None' 'sin(.7)' 1000000 loops, best of 3: 0.242 usec per loop For CPython to write fast lowlevel code you have to switch to C (or Cython). In PyPy the results get interesting: $ pypy -m timeit -s 'from test import sinusLite as sin' 'sin(.7)' 100000000 loops, best of 3: 0.00459 usec per loop $ pypy -m timeit -s 'from math import sin' 'sin(.7)' 10000000 loops, best of 3: 0.0476 usec per loop So yes, your approximation may speed up code in some parts of the Python universe (I don't know if pypy takes advantage of the constant argument). -- https://mail.python.org/mailman/listinfo/python-list