Hi, I do agree with Raymond H. about the relative merits of cmp= and key= in sort/sorted, but I decided to also not let natural uses of cmp= pass silently.
In answering this question, http://stackoverflow.com/a/26850434/10562 about ordering subject to inequalities it seemed natural to use the cmp= argument of sort rather than key=. The question is about merging given inequalities to make 1 inequality such that the inequalities also stays true. Here is a copy of my code: Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information. >>> ineq = """f4 > f2 > f3 f4 > f1 > f3 f4 > f2 > f1 f2 > f1 > f3""" >>> print(ineq) f4 > f2 > f3 f4 > f1 > f3 f4 > f2 > f1 f2 > f1 > f3 >>> greater_thans, all_f = set(), set() >>> for line in ineq.split('\n'): ....tokens = line.strip().split()[::2] ....for n, t1 in enumerate(tokens[:-1]): ........for t2 in tokens[n+1:]: ............greater_thans.add((t1, t2)) ............all_f.add(t1) ........all_f.add(t2) >>> sorted(all_f, cmp=lambda t1, t2: 0 if t1==t2 else ...........(1 if (t1, t2) not in greater_thans else -1)) ['f4', 'f2', 'f1', 'f3'] >>> -- https://mail.python.org/mailman/listinfo/python-list