On 31/07/2014 00:04, Vincent Davis wrote:
I know this is a general python list and I am asking about pandas but
this question is probably not great for asking on stackoverflow.
I have a list of files (~80 files, ~30,000 rows) I need to process with
my current code it is take minutes for each file. Any suggestions of a
fast way. I am try to stick with pandas for educational purposes. Any
suggestions would be great. If you are curious the can find the data
file I am using below here.
http://www.nber.org/nhamcs/data/nhamcsopd2010.csv

drugs_current = {'CITALOPRAM': 4332,
          'ESCITALOPRAM': 4812,
          'FLUOXETINE': 236,
          'FLUVOXAMINE': 3804,
          'PAROXETINE': 3157,
          'SERTRALINE': 880,
          'METHYLPHENIDATE': 900,
          'DEXMETHYLPHENIDATE': 4777,
          'AMPHETAMINE-DEXTROAMPHETAMINE': 4035,
          'DEXTROAMPHETAMINE': 804,
          'LISDEXAMFETAMINE': 6663,
          'METHAMPHETAMINE': 805,
          'ATOMOXETINE': 4827,
          'CLONIDINE': 44,
          'GUANFACINE': 717}

drugs_98_05 = { 'SERTRALINE': 56635,
                 'CITALOPRAM': 59829,
                 'FLUOXETINE': 80006,
                 'PAROXETINE_HCL': 57150,
                 'FLUVOXAMINE': 57064,
                 'ESCITALOPRAM': 70466,
                 'DEXMETHYLPHENIDATE': 70427,
                 'METHYLPHENIDATE': 70374,
                 'METHAMPHETAMINE': 53485,
                 'AMPHETAMINE1': 70257,
                 'AMPHETAMINE2': 70258,
                 'AMPHETAMINE3': 50265,
                 'DEXTROAMPHETAMINE1': 70259,
                 'DEXTROAMPHETAMINE2': 70260,
                 'DEXTROAMPHETAMINE3': 51665,
                 'COMBINATION_PRODUCT': 51380,
                 'FIXED_COMBINATION': 51381,
                 'ATOMOXETINE': 70687,
                 'CLONIDINE1': 51275,
                 'CLONIDINE2': 70357,
                 'GUANFACINE': 52498
                }

df = pd.read_csv('nhamcsopd2010.csv' , index_col='PATCODE',
low_memory=False)
col_init = list(df.columns.values)
keep_col = ['PATCODE', 'PATWT', 'VDAY', 'VMONTH', 'VYEAR', 'MED1',
'MED2', 'MED3', 'MED4', 'MED5']
for col in col_init:
     if col not in keep_col:
         del df[col]
if f[-3:] == 'csv' and f[-6:-4] in ('93', '94', '95', '96', '97', '98',
'99', '00', '91', '02', '03', '04', '05'):
     drugs = drugs_98_05
elif f[-3:]  == 'csv' and f[-6:-4] in ('06', '08', '09', '10'):
     drugs = drugs_current
for n in drugs:
     df[n] =
df[['MED1','MED2','MED3','MED4','MED5']].isin([drugs[n]]).any(1)


Vincent Davis
720-301-3003



I suggest you ask here https://mail.python.org/mailman/listinfo/pandas-dev which I believe is also gmane.comp.python.pydata.


--
My fellow Pythonistas, ask not what our language can do for you, ask
what you can do for our language.

Mark Lawrence

--
https://mail.python.org/mailman/listinfo/python-list

Reply via email to