On 05/10/2014 08:24 AM, Albert van der Horst wrote:
I have the following code for calculating the determinant of
a matrix. It works inasfar that it gives the same result as an
octave program on a same matrix.
/ ----------------------------------------------------------------
def determinant( mat ):
''' Return the determinant of the n by n matrix mat
i row j column
Destroys mat ! '''
#print "getting determinat of", mat
n=len(mat)
nom = 1.
if n == 1: return mat[0][0]
lastr = mat.pop()
jx=-1
for j in xrange(n):
if lastr[j]:
jx=j
break
if jx==-1: return 0.
result = lastr[jx]
assert(result<>0.)
# Make column jx zero by subtracting a multiple of the last row.
for i in xrange(n-1):
pivot = mat[i][jx]
if 0. == pivot: continue
assert(result<>0.)
nom *= result # Compenstate for multiplying a row.
for j in xrange(n):
mat[i][j] *= result
for j in xrange(n):
mat[i][j] -= pivot*lastr[j]
# Remove colunm jx
for i in xrange(n-1):
x= mat[i].pop(jx)
assert( x==0 )
if (n-1+jx)%2<>0: result = -result
det = determinant( mat )
assert(nom<>0.)
return result*det/nom
/-----------------------------------------
Now on some matrices the assert triggers, meaning that nom is zero.
How can that ever happen? mon start out as 1. and gets multiplied
with a number that is asserted to be not zero.
Easily due to *underflow* precision trouble. Your "result" may never be
zero, but it can be very small. Take the product of many of such tiny
values, and the result can be less then the smallest value representable
by a float, at which point it becomes zero.
To see this clearly, try this Python code:
>>> a = 1.0
>>> while a > 0:
... a = a*1.0e-50
... print(a)
...
1e-50
1e-100
1e-150
1e-200
1e-250
1e-300
0.0
Gary Herron
Any hints appreciated.
Groetjes Albert
--
https://mail.python.org/mailman/listinfo/python-list