n00m wrote: > > I uploaded a new version of the subject with a > VERY MINOR correction in it. Namely, in line #55: > > print '%12s %7.2f' % (db[k][1], db[k][0] / 3600.0,) > > instead of > > print '%12s %7.2f' % (db[k][1], db[k][0] * 0.001,) > > I.e. I normalized it to base = 100. > Now the values of similarity can't be greater than 100 > and can be treated as some "regular" percents (%%). > > Also, due to this change, the *empirical* threshold of > "system alarmity" moved down from "number 70" to "20%". > > bears2.jpg > -------------------- > bears2.jpg 0.00 > bears3.jpg 15.37 > bears1.jpg 19.13 > sky1.jpg 23.29 > sky2.jpg 23.45 > ff1.jpg 25.37 > lake1.jpg 26.43 > water1.jpg 26.93 > ff2.jpg 28.43 > roses1.jpg 31.95 > roses2.jpg 36.12
I'd like to see a *lot* more structure in there, with modularization, so the internal functions could be used from another program. Once I'd figured out what it was doing, I had this: from PIL import Image from PIL import ImageStat def row_column_histograms (file_name): '''Reduce the image to a 5x5 square of b/w brightness levels 0..3 Return two brightness histograms across Y and X packed into a 10-item list of 4-item histograms.''' im = Image.open (file_name) im = im.convert ('L') # convert to 8-bit b/w w, h = 300, 300 im = im.resize ((w, h)) imst = ImageStat.Stat (im) sr = imst.mean[0] # average pixel level in layer 0 sr_low, sr_mid, sr_high = (sr*2)/3, sr, (sr*4)/3 def foo (t): if t < sr_low: return 0 if t < sr_mid: return 1 if t < sr_high: return 2 return 3 im = im.point (foo) # reduce to brightness levels 0..3 yhist = [[0]*4 for i in xrange(5)] xhist = [[0]*4 for i in xrange(5)] for y in xrange (h): for x in xrange (w): k = im.getpixel ((x, y)) yhist[y / 60][k] += 1 xhist[x / 60][k] += 1 return yhist + xhist def difference_ranks (test_histogram, sample_histograms): '''Return a list of difference ranks between the test histograms and each of the samples.''' result = [0]*len (sample_histograms) for k, s in enumerate (sample_histograms): # for each image for i in xrange(10): # for each histogram slot for j in xrange(4): # for each brightness level result[k] += abs (s[i][j] - test_histogram[i][j]) return result if __name__ == '__main__': import getopt, sys opts, args = getopt.getopt (sys.argv[1:], '', []) if not args: args = [ 'bears1.jpg', 'bears2.jpg', 'bears3.jpg', 'roses1.jpg', 'roses2.jpg', 'ff1.jpg', 'ff2.jpg', 'sky1.jpg', 'sky2.jpg', 'water1.jpg', 'lake1.jpg', ] test_pic = 'bears2.jpg' else: test_pic, args = args[0], args[1:] z = [row_column_histograms (a) for a in args] test_z = row_column_histograms (test_pic) file_ranks = zip (difference_ranks (test_z, z), args) file_ranks.sort() print '%12s' % (test_pic,) print '--------------------' for r in file_ranks: print '%12s %7.2f' % (r[1], r[0] / 3600.0,) (omitting a few comments that wrapped around.) The test-case still agrees with your archived version: mwilson@tecumseth:~/sandbox/im_sim$ python image_rank.py bears2.jpg *.jpg bears2.jpg -------------------- bears2.jpg 0.00 bears3.jpg 15.37 bears1.jpg 19.20 sky1.jpg 23.20 sky2.jpg 23.37 ff1.jpg 25.30 lake1.jpg 26.38 water1.jpg 26.98 ff2.jpg 28.43 roses1.jpg 32.01 I'd vaguely wanted to do something like this for a while, but I never dug far enough into PIL to even get started. An additional kind of ranking that takes colour into account would also be good -- that's the first one I never did. Cheers, Mel. -- http://mail.python.org/mailman/listinfo/python-list