Sorry for the delayed response. I was trying to figure this problem out. The OS is Linux, BTW
Here is some code I have: import numpy as np from numpy import * import gzip import h5py import re import sys, string, time, getopt import os src=sys.argv[1] fs = gzip.open(src) x=src.split("/") filename=x[len(x)-1] #Get YYYY/MM/DD format YYYY=(filename.rsplit(".",2)[0])[0:4] MM=(filename.rsplit(".",2)[0])[4:6] DD=(filename.rsplit(".",2)[0])[6:8] f=h5py.File('/tmp/test_foo/FE.hdf5','w') grp="/"+YYYY try: f.create_group(grp) except ValueError: print "Year group already exists" grp=grp+"/"+MM try: f.create_group(grp) except ValueError: print "Month group already exists" grp=grp+"/"+DD try: group=f.create_group(grp) except ValueError: print "Day group already exists" str_type=h5py.new_vlen(str) mydescriptor = {'names': ('gender','age','weight'), 'formats': ('S1', 'f4', 'f4')} print "Filename is: ",src fs = gzip.open(src) dset = f.create_dataset ('Foo',data=arr,compression='gzip') s=0 #Takes the longest here for y in fs: continue a=y.split(',') s=s+1 dset.resize(s,axis=0) fs.close() f.close() This works but just takes a VERY long time. Any way to optimize this? TIA On Wed, Jun 24, 2009 at 12:13 AM, Chris Withers<ch...@simplistix.co.uk> wrote: > Terry Reedy wrote: >> >> Mag Gam wrote: >>> >>> Yes, the system has 64Gig of physical memory. >> >> drool ;-). > > Well, except that, dependent on what OS he's using, the size of one process > may well still be limited to 2GB... > > Chris > > -- > Simplistix - Content Management, Zope & Python Consulting > - http://www.simplistix.co.uk > -- > http://mail.python.org/mailman/listinfo/python-list > -- http://mail.python.org/mailman/listinfo/python-list