I'm the main programmer for the PyQuante package, a quantum chemistry package in Python. I'm trying to speed up one of my rate determining steps. Essentially, I have to decide between two algorithms:
1. Packed means that I compute N**4/8 integrals, and then do a bunch of indexing operations to unpack; 2. Unpacked means that I compute all N**4 integrals, but don't have to do any indexing. Raw timing the two options show that packed is clearly faster (12.5 sec vs 20.6 sec). However, the profilings show very different results. I have the results below. Clearly I'm going to use the packed scheme. My question to the mailing list is what am I doing wrong with my profiling that it shows such poor predictions? I rely on profiling a great deal to tune my algorithms, and I'm used to seeing differences, but nothing close to this magnitude. Here is packed: ncalls tottime percall cumtime percall filename:lineno(function) 11021725 84.493 0.000 84.493 0.000 :0(ijkl2intindex) 18 62.064 3.448 119.865 6.659 Ints.py:150(getK) 18 32.063 1.781 61.186 3.399 Ints.py:131(getJ) 52975 9.404 0.000 19.658 0.000 CGBF.py:189(coulomb) 313643 2.542 0.000 2.542 0.000 :0(range) 52975 2.260 0.000 2.260 0.000 :0(contr_coulomb) 218200 1.377 0.000 1.377 0.000 CGBF.py:51(norm) 211900 1.337 0.000 1.337 0.000 CGBF.py:53(powers) 211900 1.336 0.000 1.336 0.000 CGBF.py:56(exps) 211900 1.329 0.000 1.329 0.000 CGBF.py:58(pnorms) 211900 1.328 0.000 1.328 0.000 CGBF.py:52(origin) 211900 1.328 0.000 1.328 0.000 CGBF.py:57(coefs) 1 0.979 0.979 21.108 21.108 Ints.py:112(get2ints) 11790 0.197 0.000 0.197 0.000 :0(dot) 11828 0.166 0.000 0.166 0.000 :0(zeros) Here is unpacked: ncalls tottime percall cumtime percall filename:lineno(function) 18 16.158 0.898 17.544 0.975 Ints.py:167(getK) 52975 9.301 0.000 19.515 0.000 CGBF.py:189(coulomb) 18 4.584 0.255 5.904 0.328 Ints.py:146(getJ) 313643 2.630 0.000 2.630 0.000 :0(range) 52975 2.254 0.000 2.254 0.000 :0(contr_coulomb) 218200 1.375 0.000 1.375 0.000 CGBF.py:51(norm) 211900 1.330 0.000 1.330 0.000 CGBF.py:58(pnorms) 211900 1.325 0.000 1.325 0.000 CGBF.py:53(powers) 211900 1.325 0.000 1.325 0.000 CGBF.py:57(coefs) 211900 1.323 0.000 1.323 0.000 CGBF.py:56(exps) 211900 1.321 0.000 1.321 0.000 CGBF.py:52(origin) 1 0.782 0.782 20.373 20.373 Ints.py:114(get2ints) 1875 0.156 0.000 0.384 0.000 CGBF.py:106(nuclear) 11790 0.147 0.000 0.147 0.000 :0(dot) 17856 0.112 0.000 0.112 0.000 PGBF.py:63(coef) -- http://mail.python.org/mailman/listinfo/python-list