Adam Donahue a écrit : > As an exercise I'm attempting to write a metaclass that causes an > exception to be thrown whenever a user tries to access > 'attributes' (in the traditional sense) via a direct reference.
I guess you're new to Python, and coming from either C++ or Java. Am I wrong ?-) And without even reading further, I can tell you're doing something pretty complicated that just don't work. (Ok, I cheated - I did read further !-) > Consider: > > class X( object ): > y = 'private value' > def get_y( self ): return self.y > > Normally one can access y here via: > > X().y > > or > > X().get_y() > > I want the former case, however, to throw an exception. So called "private" or "protected" attributes (IOW, implementation stuff the client code should not mess with) are denoted by a single leading underscore. IOW, 'y' should be '_y'. It won't of course prevent anyone to access the attribute, but then it's not your responsability anymore. I know this sound surprising to C++/Java programmers, but experience prove that it just work. Now if all you want is to reproduce the Java systematic-getter-setter dance - that is, use getters/setters 'just in case' you'd want to refactor (which, FWIW, is the only rationale behind accessors), you just don't need this with Python. We do have computed attributes here, so the simplest thing is to start with a plain attribute, then refactor it into a computed one if and when the need arises. This is *totally* transparent to client code. > I figured the way to do this would be to introduce a metaclass that > overrides the default __getattrribute__ call and throws an exception. > So my first attempt was something like: > > class XType( type ): > def __my_getattribute__( self, name ): > raise AttributeError() > def __init__( klass, name, bases, dict ): > super( XType, klass ).__init__( name, bases, dict ) > setattr( klass, '__getattribute__', > klass.__my_getattribute__ ) > > But whereas the X().y attribute behaves as I intend, the X().get_y() > returns raises that exception as well: Indeed. __getattribute__ is invoked for *each and every* attribute lookup - including methods, since methods are attributes too. FWIW, __getattribute__ it's something you should not mess with unless you know what you're doing and why you're doing it. > > So it looks as if 'attribute' here means any key in self.__dict__, The '.' is the lookup operator. As soon as you have obj.anyname, you do an attribute lookup (wether it fails or succeeds is another question). And __getattribute__ is the implementation for this operator. So given how you wrote your custom __getattribute__, you just made attribute lookup impossible. And FWIW, attribute lookup is much more complex than just looking up the instance's __dict__ - it also looks up the class __dict__, then the parent's classes __dict__, then look for a custom __getattr__ method (which is used when the attribute has not been found so far). And if the attribute found is a class attribute that implements the descriptor protocol, then __getattribute__ is responsible for invoking this protocol. IOW, __getattribute__ is one of the most critical magic methods. > whether referenced via self.var, self.__dict__['var'] (because this > references __dict__), or getattr( self, 'var' ) (which is the same as > a direct self.var access, I believe). Practically, yes. > > So I tried: > > class XType( type ): > def __my_getattribute__( self, name ): > if name != '__dict__': > raise AttributeError() > return super( self.__class__, > self ).__getattribute__( name ) > def __init__( klass, name, bases, dict ): > super( XType, klass ).__init__( name, bases, dict ) > setattr( klass, '__getattribute__', > klass.__my_getattribute__ ) > > This allows me to access X().__dict__ directly (and then > X().__dict__['y']), but it still limits caller access to the get_y() > method. cf above. > It sounds then like the "solution" will be to check whether the name > referenced is called __dict__ or is a method or function type, > otherwise throw the exception, and to ensure all internal calls are > handled via self.__dict__[name] not self.name. My my my. Trouble ahead... > Something like: > > import types > class XType( type ): > def __my_getattribute__( self, name ): > if name != '__dict__' and not > isinstance( self.__dict__[name], types.FunctionType ): > raise AttributeError() > return super( self.__class__, *never* use self.__class__ (or type(self) etc) when calling super(). You *really* want to pass the exact class here - else you'll have *very* strange results. > self ).__getattribute__( name ) > def __init__( klass, name, bases, dict ): > super( XType, klass ).__init__( name, bases, dict ) > setattr( klass, '__getattribute__', > klass.__my_getattribute__ ) My my my... > Of course this is imperfect as a user can simply bypass the > __getattribute__ call too and access __dict__ directly, Indeed. The fact is that there's just no way to prevent client code to access your implementation. Period. So relax, stop fighting against the langage, and learn to use it how it is. > but it's > closer to what I was thinking. The problem is the return value for > functions is not bound - how do I bind these to the associated > instance? func.__get__(obj, obj.__class__) But that should not be done when the function is an instance attribute - only when it's a class one. And any class attribute implementing the descriptor protocol should be treated that way. > (Caveat - I am not sure whether using __get__ itself in lieu of > __getattribute__ would be a better solution; but I would like to see > how binding would be done here for general knowledge.) (simplified) In the normal case, when the attribute looked up happens to be a class attribute and implements the descriptor protocol, __getattribute__ returns attr.__get__(obj, type(obj). What attr.__get__ returns is up to whoever implemented type(attr). In the case of functions, anyway, __get__ returns a method object, which is a callable object wrapping the function, the target object and the class. When called, this method object insert the target object (or class if it's a classmethod) in front of the args list, and invoke the function with this new args list. Which is why you need to declare self (or cls) as first argument of a 'method' but not to explicitely pass it at call time. Anyway : forget about "real" privacy in Python (FWIW, neither Java nor C++ have "real" privacy - there are ways to bypass access restrictors in both languages), just use the single leading underscore convention and you'll be fine. And don't write explicit accessors - in fact, don't write accessors at all until you need them, and when you need them, use a property or a custom descriptor object, so it's transparant to client code. HTH -- http://mail.python.org/mailman/listinfo/python-list