Here below is the matrix KK I used: [[ 1939.33617572 -146.94170404 0. 0. 0. 0. 0. 0. 0. -1172.61032101 0. 0. -193.69962687 -426.08452381 0. 0. 0. 0. 1792.39447168] [ -146.94170404 5175.33392519 -442.430839 0. 0. 0. 0. 0. 0. 0. -3409.58801135 0. 0. 0. -767.46969697 -408.90367384 0. 0. 4585.96138215] [ 0. -442.430839 4373.33685159 0. 0. 0. 0. 0. 0. 0. 0. -2354.70959362 0. 0. 0. 0. -855.36922061 -720.82719836 3930.90601259] [ 0. 0. 0. 17064.73017917 -949.49987581 0. 0. 0. 0. 0. 0. 0. -16115.23030336 0. 0. 0. 0. 0. 16115.23030336] [ 0. 0. 0. -949.49987581 11005.53604312 -1358.01000599 0. 0. 0. 0. 0. 0. 0. -8698.02616132 0. 0. 0. 0. 8698.02616132] [ 0. 0. 0. 0. -1358.01000599 18322.57142994 -1495.29428718 0. 0. 0. 0. 0. 0. 0. -15469.26713677 0. 0. 0. 15469.26713677] [ 0. 0. 0. 0. 0. -1495.29428718 12497.65812936 -1858.81899672 0. 0. 0. 0. 0. 0. 0. -9143.54484546 0. 0. 9143.54484546] [ 0. 0. 0. 0. 0. 0. -1858.81899672 20170.17739075 -1249.5298217 0. 0. 0. 0. 0. 0. 0. -17061.82857234 0. 17061.82857234] [ 0. 0. 0. 0. 0. 0. 0. -1249.5298217 9476.04289846 0. 0. 0. 0. 0. 0. 0. 0. -8226.51307677 8226.51307677] [ -1172.61032101 0. 0. 0. 0. 0. 0. 0. 0. 1500.8055591 -328.1952381 0. 0. 0. 0. 0. 0. 0. -1172.61032101] [ 0. -3409.58801135 0. 0. 0. 0. 0. 0. 0. -328.1952381 4112.15248021 -374.36923077 0. 0. 0. 0. 0. 0. -3409.58801135] [ 0. 0. -2354.70959362 0. 0. 0. 0. 0. 0. 0. -374.36923077 2729.07882439 0. 0. 0. 0. 0. 0. -2354.70959362] [ -193.69962687 0. 0. -16115.23030336 0. 0. 0. 0. 0. 0. 0. 0. 17726.91399397 -1417.98406375 0. 0. 0. 0. -16308.92993023] [ -426.08452381 0. 0. 0. -8698.02616132 0. 0. 0. 0. 0. 0. 0. -1417.98406375 12320.46305747 -1778.36830859 0. 0. 0. -9124.11068513] [ 0. -767.46969697 0. 0. 0. -15469.26713677 0. 0. 0. 0. 0. 0. 0. -1778.36830859 19552.18019195 -1537.07504962 0. 0. -16236.73683374] [ 0. -408.90367384 0. 0. 0. 0. -9143.54484546 0. 0. 0. 0. 0. 0. 0. -1537.07504962 12983.70625768 -1894.18268877 0. -9552.44851929] [ 0. 0. -855.36922061 0. 0. 0. 0. -17061.82857234 0. 0. 0. 0. 0. 0. 0. -1894.18268877 21039.17951514 -1227.79903343 -17917.19779295] [ 0. 0. -720.82719836 0. 0. 0. 0. 0. -8226.51307677 0. 0. 0. 0. 0. 0. 0. -1227.79903343 10175.13930856 -8947.34027513] [ 1792.39447168 4585.96138215 3930.90601259 16115.23030336 8698.02616132 15469.26713677 9143.54484546 17061.82857234 8226.51307677 -1172.61032101 -3409.58801135 -2354.70959362 -16308.92993023 -9124.11068513 -16236.73683374 -9552.44851929 -17917.19779295 -8947.34027513 85023.67196244]]
On 4/4/07, BJörn Lindqvist <[EMAIL PROTECTED]> wrote: > On 4 Apr 2007 06:15:18 -0700, lancered <[EMAIL PROTECTED]> wrote: > > During the calculation, I noticed an apparent error of > > inverion of a 19x19 matrix. Denote this matrix as KK, U=KK^ -1, I > > found the product of U and KK is not equivalent to unit matrix! This > > apparently violate the definition of inversion. The inversion is > > through the function linalg.inv(). > > Could it have something to do with floating point accuracy? > > >>> r = matrix([[random.random() * 9999 for x in range(19)] for y in > >>> range(19)]) > >>> allclose(linalg.inv(r) * r, identity(19)) > True > > > So, can you tell me what goes wrong? Is this a bug in > > Numpy.linalg? How to deal with this situation? If you need, I can > > post the matrix I used below, but it is so long,so not at the moment. > > Please post it. > > -- > mvh Björn > -- http://mail.python.org/mailman/listinfo/python-list