I wanted to have a heap of custom objects, and in different heaps I wanted to have the weights for my elements differently. So, I modified the heapq module to accept key arguments also.
The untested code is here. Please let me know if you find any bug or if there is an easy way to do this. - Suresh --------------------------------------------------------------------------------------------------------------------------------------------- __all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'nlargest', 'nsmallest'] from itertools import islice, repeat, count, imap, izip, tee from operator import itemgetter import bisect pass_it = lambda x: x def heappush(heap, item, key=pass_it): """Push item onto heap, maintaining the heap invariant.""" heap.append(item) _siftdown(heap, 0, len(heap)-1, key=key) def heappop(heap, key=pass_it): """Pop the smallest item off the heap, maintaining the heap invariant.""" lastelt = heap.pop() # raises appropriate IndexError if heap is empty if heap: returnitem = heap[0] heap[0] = lastelt _siftup(heap, 0, key) else: returnitem = lastelt return returnitem def heapreplace(heap, item, key=pass_it): """Pop and return the current smallest value, and add the new item. This is more efficient than heappop() followed by heappush(), and can be more appropriate when using a fixed-size heap. Note that the value returned may be larger than item! That constrains reasonable uses of this routine unless written as part of a conditional replacement: if item > heap[0]: item = heapreplace(heap, item) """ returnitem = heap[0] # raises appropriate IndexError if heap is empty heap[0] = item _siftup(heap, 0, key) return returnitem def heapify(x, key=pass_it): """Transform list into a heap, in-place, in O(len(heap)) time.""" n = len(x) # Transform bottom-up. The largest index there's any point to looking at # is the largest with a child index in-range, so must have 2*i + 1 < n, # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1. for i in reversed(xrange(n//2)): _siftup(x, i, key) # 'heap' is a heap at all indices >= startpos, except possibly for pos. pos # is the index of a leaf with a possibly out-of-order value. Restore the # heap invariant. def _siftdown(heap, startpos, pos, key): newitem = heap[pos] # Follow the path to the root, moving parents down until finding a place # newitem fits. while pos > startpos: parentpos = (pos - 1) >> 1 parent = heap[parentpos] if key(parent) <= key(newitem): break heap[pos] = parent pos = parentpos heap[pos] = newitem def _siftup(heap, pos, key): endpos = len(heap) startpos = pos newitem = heap[pos] # Bubble up the smaller child until hitting a leaf. childpos = 2*pos + 1 # leftmost child position while childpos < endpos: # Set childpos to index of smaller child. rightpos = childpos + 1 if rightpos < endpos and key(heap[rightpos]) <= key(heap[childpos]): # **CHANGED** childpos = rightpos # Move the smaller child up. heap[pos] = heap[childpos] pos = childpos childpos = 2*pos + 1 # The leaf at pos is empty now. Put newitem there, and bubble it up # to its final resting place (by sifting its parents down). heap[pos] = newitem _siftdown(heap, startpos, pos, key) -- http://mail.python.org/mailman/listinfo/python-list