Tim Peters <t...@python.org> added the comment:
OK, here's the last version I had. Preconditions are that d > 0, n > 0, and n % d == 0. This version tries to use the narrowest possible integers on each step. The lowermost `good_bits` of dinv at the start of the loop are correct already. Taking out all the modular stuff, the body of the loop boils down to just dinv *= 2 - dinv * d For insight, if dinv * d = 1 + k*2**i for some k and i (IOW, if dinv * d = 1 modulo 2**i), then 2 - dinv * d = 1 - k*2**i and so dinv times that equals 1 - k**2 * 2**(2*i). Or, IOW, the next value of dinv is such that d * dinv = 1 modulo 2**(2*i) - it's good to twice as many bits. def ediv(n, d): assert d def makemask(n): return (1 << n) - 1 if d & 1 == 0: ntz = (d & -d).bit_length() - 1 n >>= ntz d >>= ntz bits_needed = n.bit_length() - d.bit_length() + 1 good_bits = 3 dinv = d & 7 while good_bits < bits_needed: twice = min(2 * good_bits, bits_needed) twomask = makemask(twice) fac2 = dinv * (d & twomask) fac2 &= twomask fac2 = (2 - fac2) & twomask dinv = (dinv * fac2) & twomask good_bits = twice goodmask = makemask(bits_needed) return ((dinv & goodmask) * (n & goodmask)) & goodmask ---------- _______________________________________ Python tracker <rep...@bugs.python.org> <https://bugs.python.org/issue37295> _______________________________________ _______________________________________________ Python-bugs-list mailing list Unsubscribe: https://mail.python.org/mailman/options/python-bugs-list/archive%40mail-archive.com