Raymond Hettinger <raymond.hettin...@gmail.com> added the comment:
It's a little late, but I had a thought that code could be made more general, slightly faster, and much easier to understand if the popcount logic were to be replaced with a table that records how many bits of the factorial were shifted out to make it odd. from math import comb, perm, factorial as fact Modulus = 2 ** 64 Cmax = 67 Pmax = 25 Fmax = Pmax F = [] # odd factorial S = [] # shift back to factorial Finv = [] # multiplicative inverse of odd fact for n in range(Cmax+1): f = fact(n) s = (f & -f).bit_length() - 1 odd_f = (f >> s) % Modulus inv_f = pow(odd_f, -1, Modulus) assert odd_f * inv_f % Modulus == 1 assert (odd_f << s) % Modulus == f % Modulus F.append(odd_f) S.append(s) Finv.append(inv_f) def fact_small(n): return F[n] << S[n] def perm_small(n, k): return (F[n] * Finv[n-k] % Modulus) << (S[n] - S[n-k]) def comb_small(n, k): return (F[n] * Finv[k] * Finv[n-k] % Modulus) << (S[n] - S[k] - S[n-k]) assert all(fact_small(n) == fact(n) for n in range(Fmax+1)) assert all(perm_small(n, k) == perm(n, k) for n in range(Pmax+1) for k in range(0, n+1)) assert all(comb_small(n, k) == comb(n, k) for n in range(Cmax+1) for k in range(0, n+1)) ---------- _______________________________________ Python tracker <rep...@bugs.python.org> <https://bugs.python.org/issue37295> _______________________________________ _______________________________________________ Python-bugs-list mailing list Unsubscribe: https://mail.python.org/mailman/options/python-bugs-list/archive%40mail-archive.com