Mark Dickinson <dicki...@gmail.com> added the comment:

Hmm. On second thoughts, the proposed solution wouldn't actually *help* with 
the situation I gave: the elements (lazily) realised from the NumPy array are 
highly likely to all end up with the same address in RAM. :-(

>>> x = np.full(10, np.nan)
>>> for v in x:
...     print(id(v))
...     del v
... 
4601757008
4601757008
4601757008
4601757008
4601757008
4601757008
4601757008
4601757008
4601757008
4601757008

----------

_______________________________________
Python tracker <rep...@bugs.python.org>
<https://bugs.python.org/issue43475>
_______________________________________
_______________________________________________
Python-bugs-list mailing list
Unsubscribe: 
https://mail.python.org/mailman/options/python-bugs-list/archive%40mail-archive.com

Reply via email to