Hi John, 1. In the case of no variable definition, cmd_quick_cluster returns a CMD_FAILURE now. 2. By the now, default number of clusters and the mxiter are both set to 2. 3. Your test strategy is very well, but multi-dimensionality is also a problem. I tried this with your code:
______________________________________________________________ input program. loop #i = 1 to 50000. compute x = rv.uniform (0, 1). compute y = rv.uniform (0, 1). compute z = rv.uniform (0, 1). end case. end loop. loop #i = 1 to 50000. compute x = rv.uniform (0, 1)+1. compute y = rv.uniform (0, 1)+1. compute z = rv.uniform (0, 1)+1. end case. end loop. loop #i = 1 to 50000. compute x = rv.uniform (0, 1)+2. compute y = rv.uniform (0, 1)+2. compute z = rv.uniform (0, 1)+2. end case. end loop. loop #i = 1 to 50000. compute x = rv.uniform (0, 1)+3. compute y = rv.uniform (0, 1)+3. compute z = rv.uniform (0, 1)+3. end case. end loop. end file. end input program. QUICK CLUSTER ALL /CRITERIA = CLUSTER(4) MXITER (100). ______________________________________________________________ The expected cluster centers are (0.5, 0.5, 0.5) (1.5, 1.5, 1.5) (2.5, 2.5, 2.5) (3.5, 3.5, 3.5) and the actual output is Result: Number of cases: 200000 Number of variables: 3 Number of groups: 4 Number of trials: 1 Number of iterations at last trial: 5 Centers: Center of Group 1: 1.498 1.501 1.502 Center of Group 2: 3.500 3.500 3.501 Center of Group 3: 2.498 2.499 2.499 Center of Group 4: 0.501 0.502 0.502 which is nearly same as the expected one. I think its ok. It is also be tried that generating some big data with R and using kmeans command to calculate centers and comparing one-or-two samples with pspp. But as in your simulation study, cluster centers map to correct quantiles of uniform distribution. 4. I re-formatted the code using indent with --gnu-style parameter. 5. This is the part what i didn't understand. Which part of code must be labeled as "static"? If the answer is "All methods must be defined as static", what i must do for "struct Kmeans* kmeans_create(...." ? 6. I changed malloc 's to xmalloc 's. I think this is why we didn't control the null pointer in memory allocations. 7. I used the gsl_rng_* things instead of standard library. 8) this link (http://www.norusis.com/pdf/SPC_v13.pdf) and googling "kmeans spss" may help for the output of quick cluster. I haven't got a copy of SPSS too. Ben has sent me the form about fsf. I answered the questions and re-sent the given address. I hope corrections are suitable for the project. Best. Mehmet Hakan Satman http://www.mhsatman.com ________________________________ From: John Darrington <j...@darrington.wattle.id.au> To: Mehmet Hakan Satman <mhsat...@yahoo.com> Cc: John Darrington <j...@darrington.wattle.id.au>; pspp-dev@gnu.org Sent: Tue, March 15, 2011 11:23:34 AM Subject: Re: K-Means Clustering On Mon, Mar 14, 2011 at 12:22:36PM -0700, Mehmet Hakan Satman wrote: Hi John, 1) I renamed the file as "quick-cluster.c" 2. I added an entry to? "src/language/stats/automake.mk" for quick-cluster 3. I removed the entry "UNIMPL_CMD ("QUICK CLUSTER", "Fast clustering")" from command.def file. Thanks. I tried some experiments with it. It looks promising. But there are some improvements which can be made. 4. Now cmd_quick_cluster can parse a command line like: QUICK CLUSTER x y z ? ? ? /CRITERIA = CLUSTER(5) MXITER (100). I inadvertently ran it with the wrong syntax (I typed just "QUICK CLUSTER." without any variables), and it caused PSPP to crash. You should check the return value of parse_variables_const and return an error if it fails. See the code for the other procedures to see how to do this. It also crashed if I omitted the /CRITERIA subcommand because your algorithm expects the number of groups is greater than 0. The spss documentation says that the CLUSTER and MXITER parameters both default to 2. So you should initialise them accordingly. As I mentioned, i test my results with random data with uniform distributed random values. It can not be considered as a comprehensive work and should be tested with simulations. It's not my field of expertise, but I ran it with the following syntax: input program. loop #i = 1 to 100000. compute x = rv.uniform (0, 1). end case. end loop. end file. end input program. QUICK CLUSTER ALL /CRITERIA = CLUSTER(3) MXITER (100). and got : Centers: Center of Group 1: 0.499 Center of Group 2: 0.833 Center of Group 3: 0.165 which is close to what I would expect (the centres are 1/6, 3/6 and 5/6). Can you suggest some more comprehensive tests? I have some general suggestions about the quick-cluster.c file: 1. The formatting style doesn't really fit the GNU way of doing things. I recommend that you run the command "indent --gnu-style quick-cluster.c" to make it more consistent with the rest of the code. You might want to read the information at http://www.gnu.org/prep/standards/standards.html which explains how GNU software is normally written and why we do it that way. 2. When compiling, I get a number of warnings. Most of these are due to missing "static" qualifiers from the functions. 3. In PSPP we don't use the stdlib "malloc". Instead we use "xmalloc" from gnulib. 4. Similarly, we don't use the srand and rand functions. Use the gsl_rng_* functions. These are supposed to be better random number generators. See the file src/language/xforms/sample.c and/or the gsl manual for an example. I'm looking forward to seeing the QUICK CLUSTER command integrated into PSPP. I tried to find some examples of how spss presents its output for this command but I couldn't find any. Do you have any such examples or do you have access to a copy of pspp so that we can see how users might expect to see the results? Regards, John -- PGP Public key ID: 1024D/2DE827B3 fingerprint = 8797 A26D 0854 2EAB 0285 A290 8A67 719C 2DE8 27B3 See http://pgp.mit.edu or any PGP keyserver for public key.
/* PSPP - a program for statistical analysis. Copyright (C) 2009, 2010 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <config.h> #include <math.h> #include <libpspp/misc.h> #include <libpspp/str.h> #include <libpspp/message.h> #include <data/procedure.h> #include <data/missing-values.h> #include <data/casereader.h> #include <data/casegrouper.h> #include <data/dictionary.h> #include <data/format.h> #include <language/lexer/variable-parser.h> #include <language/command.h> #include <language/lexer/lexer.h> #include <math/moments.h> #include <output/tab.h> #include <output/text-item.h> #include <stdio.h> #include <gsl/gsl_matrix.h> #include <gsl/gsl_statistics.h> #include <gsl/gsl_rng.h> #include "gettext.h" #define _(msgid) gettext (msgid) #define N_(msgid) msgid struct quick_cluster { const char **varNames; int numGroups; }; /* Struct KMeans: Holds all of the information for the functions. */ struct Kmeans { gsl_matrix *data; //User Data (Given by the user) gsl_matrix *centers; //Centers for groups gsl_vector_int *index; //Integer values from zero to ngroups. Shows group of an observation. gsl_vector *v1, *v2, *v3; //Temporary vector for program. Do not use. gsl_rng *rng; //Random Number Generator. int ngroups; //Number of group. (Given by the user) int n; //Number of observations. (Given by the user) int m; //Number of observations. (Given by the user) int maxiter; //Maximum number of iterations (Given by the user) int lastiter; //Show at which iteration it found the solution. int trials; //If not convergence, how many times has clustering done. double *weights; //Double values for handling weights for program use. }; struct Kmeans * kmeans_create (double *data, int n, int m, int ngroups, int maxiter) { int i, j; struct Kmeans *k = (struct Kmeans *) xmalloc (sizeof (struct Kmeans)); k->data = gsl_matrix_alloc (n, m); k->centers = gsl_matrix_alloc (ngroups, m); k->ngroups = ngroups; k->index = gsl_vector_int_alloc (n); k->n = n; k->m = m; k->maxiter = maxiter; k->lastiter = 0; k->trials = 0; for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { gsl_matrix_set (k->data, i, j, data[i * m + j]); } } k->weights = (double *) malloc (sizeof (double) * k->index->size); k->v1 = gsl_vector_alloc (k->centers->size2); k->v2 = gsl_vector_alloc (k->centers->size2); k->v3 = gsl_vector_alloc (k->n); k->rng = gsl_rng_alloc (gsl_rng_taus); return (k); } void kmeans_randomize_centers (struct Kmeans *kmeans) { int i, j; int randind; for (i = 0; i < kmeans->centers->size1; i++) { randind = (int) (gsl_rng_uniform (kmeans->rng) * kmeans->data->size1); for (j = 0; j < kmeans->centers->size2; j++) { gsl_matrix_set (kmeans->centers, i, j, gsl_matrix_get (kmeans->data, randind, j)); } } } void kmeans_randomize_index (struct Kmeans *kmeans) { int i; for (i = 0; i < kmeans->index->size; i++) { kmeans->index->data[i] = -1; } } void kmeans_print (struct Kmeans *kmeans) { int i, j; printf ("Number of groups: %d\n", kmeans->ngroups); printf ("Centers:\n"); for (i = 0; i < kmeans->centers->size1; i++) { for (j = 0; j < kmeans->centers->size2; j++) { printf ("%f ", gsl_matrix_get (kmeans->centers, i, j)); } printf ("\n"); } printf ("Index:\n"); for (i = 0; i < kmeans->n; i++) { printf ("%d ", gsl_vector_int_get (kmeans->index, i)); } printf ("\nLast iter: %d\n", kmeans->lastiter); } void print_matrix (gsl_matrix * m) { int i, j; for (i = 0; i < m->size1; i++) { for (j = 0; j < m->size2; j++) { printf ("%f ", m->data[i * m->size2 + j]); } printf ("\n"); } } double kmeans_euclidean_distance (gsl_vector * v1, gsl_vector * v2) { double result = 0.0; double val; int i; for (i = 0; i < v1->size; i++) { val = v1->data[i] - v2->data[i]; result += val * val; } return (result); } int kmeans_num_elements_group (struct Kmeans *kmeans, int group) { int total = 0; int i; for (i = 0; i < kmeans->n; i++) { if (gsl_vector_int_get (kmeans->index, i) == group) total++; } return (total); } void kmeans_recalculate_centers (struct Kmeans *kmeans) { int i, j, h; int elm; double mean; gsl_vector *v1 = kmeans->v3; for (i = 0; i < kmeans->ngroups; i++) { elm = kmeans_num_elements_group (kmeans, i); for (j = 0; j < kmeans->index->size; j++) { if (gsl_vector_int_get (kmeans->index, j) == i) { kmeans->weights[j] = 1.0; } else { kmeans->weights[j] = 0.0; } } for (h = 0; h < kmeans->m; h++) { gsl_matrix_get_col (v1, kmeans->data, h); mean = gsl_stats_wmean (kmeans->weights, 1, v1->data, 1, v1->size); gsl_matrix_set (kmeans->centers, i, h, mean); } } } void kmeans_calculate_indexes (struct Kmeans *kmeans) { double dist; double mindist; int bestindex = 0; int i, j; gsl_vector *v1 = kmeans->v1; gsl_vector *v2 = kmeans->v2; for (i = 0; i < kmeans->n; i++) { mindist = INFINITY; gsl_matrix_get_row (v1, kmeans->data, i); for (j = 0; j < kmeans->ngroups; j++) { gsl_matrix_get_row (v2, kmeans->centers, j); dist = kmeans_euclidean_distance (v1, v2); if (dist < mindist) { mindist = dist; bestindex = j; } } gsl_vector_int_set (kmeans->index, i, bestindex); } } int kmeans_check_converge (gsl_vector_int * current, gsl_vector_int * old, struct Kmeans *kmeans) { int i; int total = 0; for (i = 0; i < current->size; i++) { if (current->data[i] == old->data[i]) total++; old->data[i] = current->data[i]; } return (current->size - total); } gsl_matrix * kmeans_getGroup (struct Kmeans * kmeans, int index) { int i; int j = 0; int elm = kmeans_num_elements_group (kmeans, index); gsl_matrix *agroup = gsl_matrix_alloc (elm, kmeans->data->size2); gsl_vector *v1 = gsl_vector_alloc (kmeans->data->size2); for (i = 0; i < kmeans->data->size1; i++) { if (kmeans->index->data[i] == index) { gsl_matrix_get_row (v1, kmeans->data, i); gsl_matrix_set_row (agroup, j, v1); j++; } } return (agroup); } static void kmeans_cluster (struct Kmeans *kmeans) { int i; double *ind; double sum; bool redo; gsl_vector_int *oldindex = gsl_vector_int_alloc (kmeans->index->size); cluster: redo = false; kmeans_randomize_centers (kmeans); for (kmeans->lastiter = 0; kmeans->lastiter < kmeans->maxiter; kmeans->lastiter++) { kmeans_calculate_indexes (kmeans); kmeans_recalculate_centers (kmeans); if (kmeans_check_converge (kmeans->index, oldindex, kmeans) == 0) break; } for (i = 0; i < kmeans->ngroups; i++) { if (kmeans_num_elements_group (kmeans, i) == 0) { kmeans->trials++; redo = true; break; } } if (redo) goto cluster; } void quick_cluster_show_results (struct Kmeans *kmeans) { int i, j; printf ("Number of cases: %d\n", kmeans->n); printf ("Number of variables: %d\n", kmeans->m); printf ("Number of groups: %d\n", kmeans->ngroups); printf ("Number of trials: %d\n", (kmeans->trials + 1)); printf ("Number of iterations at last trial: %d\n", (kmeans->lastiter + 1)); printf ("Centers:\n"); for (i = 0; i < kmeans->centers->size1; i++) { printf ("Center of Group %d: ", (i + 1)); for (j = 0; j < kmeans->centers->size2; j++) { printf ("%0.3f ", kmeans->centers->data[i * kmeans->centers->size2 + j]); } printf ("\n"); } printf ("Data Index:\n"); for (int i = 0; i < kmeans->index->size; i++) { printf ("%3d ", kmeans->index->data[i] + 1); } printf ("\n"); } int cmd_quick_cluster (struct lexer *lexer, struct dataset *ds) { struct Kmeans *kmeans; double *data; struct ccase *c; bool ok; struct dictionary *dict = dataset_dict (ds); int n; struct variable **variables; struct casereader *input, *inputnew; int groups = 2; int numobs = 0; int maxiter = 2; struct quick_cluster *qc = (struct quick_cluster *) malloc (sizeof (struct quick_cluster)); int i; if (!parse_variables_const (lexer, dict, &variables, &n, PV_NO_DUPLICATE | PV_NUMERIC)) { printf ("Variables cannot parse.\n"); return (CMD_FAILURE); } if (lex_match (lexer, T_SLASH)) { if (lex_match_id (lexer, "CRITERIA")) { lex_match (lexer, T_EQUALS); while (lex_token (lexer) != T_ENDCMD && lex_token (lexer) != T_SLASH) { if (lex_match_id (lexer, "CLUSTERS")) { if (lex_force_match (lexer, T_LPAREN)) { lex_force_int (lexer); groups = lex_integer (lexer); lex_get (lexer); lex_force_match (lexer, T_RPAREN); } } else if (lex_match_id (lexer, "MXITER")) { if (lex_force_match (lexer, T_LPAREN)) { lex_force_int (lexer); maxiter = lex_integer (lexer); lex_get (lexer); lex_force_match (lexer, T_RPAREN); } } else { //further command set printf ("Error parsing command.\n"); return (CMD_FAILURE); } } } } inputnew = proc_open (ds); numobs = casereader_count_cases (inputnew); if (groups > numobs) { printf ("Number of groups cannot be larger than the number of cases.\n"); ok = casereader_destroy (inputnew); proc_commit (ds); return (CMD_FAILURE); } data = (double *) xmalloc (numobs * n * sizeof (double)); i = 0; //j = 0; for (; (c = casereader_read (inputnew)) != NULL; case_unref (c)) { int v; double x; for (v = 0; v < n; ++v) { x = case_data (c, variables[v])->f; data[i * n + v] = x; } i++; } ok = casereader_destroy (inputnew); ok = proc_commit (ds) && ok; kmeans = kmeans_create (data, numobs, n, groups, maxiter); kmeans_cluster (kmeans); quick_cluster_show_results (kmeans); return (ok); }
_______________________________________________ pspp-dev mailing list pspp-dev@gnu.org http://lists.gnu.org/mailman/listinfo/pspp-dev