Thanks Hernán! On Thu, Sep 25, 2014 at 8:59 PM, Hernán Morales Durand < hernan.mora...@gmail.com> wrote:
> In BioSmalltalk you can do something like this: > > | cluster classifier trainedData observations| > cluster := BioGroupOrganization forSimilarityOn: #value. > trainedData := { 'Polaromonas naphthalenivorans CJ2' . > 'Polaromonas sp. JS666' . > 'Planctomyces limnophilus DSM 3776' . > 'Nautilia' . > 'Lactobacillus crispatus ST1' . > 'Acidithiobacillus ferrooxidans' }. > trainedData do: [ : feature | cluster addOrganization: (BioOrganization > new feature: feature) ]. > classifier := BioClassifier new organization: cluster. > observations := 'Acidithiobacillus ferrooxidans ATCC 53993 chromosome, > complete genome > Lactobacillus crispatus ST1, complete genome > Nautilia profundicola AmH chromosome, complete genome > Planctomyces limnophilus DSM 3776 plasmid pPLIM01, complete sequence > Planctomyces limnophilus DSM 3776 chromosome, complete genome > Polaromonas sp. JS666 plasmid 2, complete sequence > Polaromonas sp. JS666 plasmid 1, complete sequence > Polaromonas sp. JS666, complete genome > Polaromonas naphthalenivorans CJ2, complete genome > Polaromonas naphthalenivorans CJ2 plasmid pPNAP08, complete sequence > Polaromonas naphthalenivorans CJ2 plasmid pPNAP07, complete sequence > Polaromonas naphthalenivorans CJ2 plasmid pPNAP06, complete sequence > Polaromonas naphthalenivorans CJ2 plasmid pPNAP05, complete sequence > Polaromonas naphthalenivorans CJ2 plasmid pPNAP04, complete sequence > ' lines. > observations do: [ : obs | classifier classify: obs ]. > classifier classesSize = 6. > classifier maxClasses = 6. > classifier maxClass feature = 'Polaromonas naphthalenivorans CJ2'. > classifier minClasses = 1. > classifier minClass feature = 'Nautilia'. > > Hernán > > 2014-09-25 7:08 GMT-03:00 Martin Dias <tinchod...@gmail.com>: > > Hi all, >> >> I'm playing with weka [1] for classifying data using data mining/machine >> learning. I'm really new on this field so I want to give you a concrete >> example of my use case to make it clear: >> >> I have elements that can be classified as true or false. In a training >> phase, I set up a bayesian network with elements that I manually >> classified. Then, I can use such network for predicting the classification >> of new elements. >> >> ---> my question is: >> Do we have a package for replacing weka-in-my-use-case in Pharo? It >> doesn't need to be exactly a bayesian network, it could be simpler. >> >> >> I looked a bit in Moose-Algos and in BioSmalltalk but I think they don't >> have what I need. >> >> I would appreciate any help. Cheers. >> Martín >> >> >> [1]: http://www.cs.waikato.ac.nz/ml/weka/ >> >> >> >