Hello Looking at your hash partitioning syntax, I implemented a hash partition in a more concise way, with no need to determine the number of sub-tables, and dynamically add partitions.
Description The hash partition's implement is on the basis of the original range / list partition,and using similar syntax. To create a partitioned table ,use: CREATE TABLE h (id int) PARTITION BY HASH(id); The partitioning key supports only one value, and I think the partition key can support multiple values, which may be difficult to implement when querying, but it is not impossible. A partition table can be create as bellow: CREATE TABLE h1 PARTITION OF h; CREATE TABLE h2 PARTITION OF h; CREATE TABLE h3 PARTITION OF h; FOR VALUES clause cannot be used, and the partition bound is calclulated automatically as partition index of single integer value. An inserted record is stored in a partition whose index equals DatumGetUInt32(OidFunctionCall1(lookup_type_cache(key->parttypid[0], TYPECACHE_HASH_PROC)->hash_proc, values[0])) % nparts/* Number of partitions */ ; In the above example, this is DatumGetUInt32(OidFunctionCall1(lookup_type_cache(key->parttypid[0], TYPECACHE_HASH_PROC)->hash_proc, id)) % 3; postgres=# insert into h select generate_series(1,20); INSERT 0 20 postgres=# select tableoid::regclass,* from h; tableoid | id ----------+---- h1 | 3 h1 | 5 h1 | 17 h1 | 19 h2 | 2 h2 | 6 h2 | 7 h2 | 11 h2 | 12 h2 | 14 h2 | 15 h2 | 18 h2 | 20 h3 | 1 h3 | 4 h3 | 8 h3 | 9 h3 | 10 h3 | 13 h3 | 16 (20 rows) The number of partitions here can be dynamically added, and if a new partition is created, the number of partitions changes, the calculated target partitions will change, and the same data is not reasonable in different partitions,So you need to re-calculate the existing data and insert the target partition when you create a new partition. postgres=# create table h4 partition of h; CREATE TABLE postgres=# select tableoid::regclass,* from h; tableoid | id ----------+---- h1 | 5 h1 | 17 h1 | 19 h1 | 6 h1 | 12 h1 | 8 h1 | 13 h2 | 11 h2 | 14 h3 | 1 h3 | 9 h3 | 2 h3 | 15 h4 | 3 h4 | 7 h4 | 18 h4 | 20 h4 | 4 h4 | 10 h4 | 16 (20 rows) When querying the data, the hash partition uses the same algorithm as the insertion, and filters out the table that does not need to be scanned. postgres=# explain analyze select * from h where id = 1; QUERY PLAN ---------------------------------------------------------------------------------------------------- Append (cost=0.00..41.88 rows=13 width=4) (actual time=0.020..0.023 rows=1 loops=1) -> Seq Scan on h3 (cost=0.00..41.88 rows=13 width=4) (actual time=0.013..0.016 rows=1 loops=1) Filter: (id = 1) Rows Removed by Filter: 3 Planning time: 0.346 ms Execution time: 0.061 ms (6 rows) postgres=# explain analyze select * from h where id in (1,5);; QUERY PLAN ---------------------------------------------------------------------------------------------------- Append (cost=0.00..83.75 rows=52 width=4) (actual time=0.016..0.028 rows=2 loops=1) -> Seq Scan on h1 (cost=0.00..41.88 rows=26 width=4) (actual time=0.015..0.018 rows=1 loops=1) Filter: (id = ANY ('{1,5}'::integer[])) Rows Removed by Filter: 6 -> Seq Scan on h3 (cost=0.00..41.88 rows=26 width=4) (actual time=0.005..0.007 rows=1 loops=1) Filter: (id = ANY ('{1,5}'::integer[])) Rows Removed by Filter: 3 Planning time: 0.720 ms Execution time: 0.074 ms (9 rows) postgres=# explain analyze select * from h where id = 1 or id = 5;; QUERY PLAN ---------------------------------------------------------------------------------------------------- Append (cost=0.00..96.50 rows=50 width=4) (actual time=0.017..0.078 rows=2 loops=1) -> Seq Scan on h1 (cost=0.00..48.25 rows=25 width=4) (actual time=0.015..0.019 rows=1 loops=1) Filter: ((id = 1) OR (id = 5)) Rows Removed by Filter: 6 -> Seq Scan on h3 (cost=0.00..48.25 rows=25 width=4) (actual time=0.005..0.010 rows=1 loops=1) Filter: ((id = 1) OR (id = 5)) Rows Removed by Filter: 3 Planning time: 0.396 ms Execution time: 0.139 ms (9 rows) Can not detach / attach / drop partition table. Best regards, young yonj1e.github.io yang...@highgo.com