On Mon, Oct 26, 2020 at 05:04:09PM -0400, Bruce Momjian wrote:
> On Sat, Oct 17, 2020 at 01:50:26PM +0000, Daniel Westermann (DWE) wrote:
> > On Fri, Oct 9, 2020 at 11:08:32AM -0400, Bruce Momjian wrote:
> > >This is not applying to PG 12 or earlier because the patch mentions JIT,
> > >which was only mentioned in the PG bloom docs in PG 13+.
> >
> > Does that mean we need separate patches for each release starting with 10?
> > As I am not frequently writing patches, I would need some help here.
>
> I can regenerate the output for older versions using your patch.
> However, I am confused about the parallelism you are seeing. Your patch
> shows:
>
> Without the two indexes being created, a parallel sequential scan
> will happen for the query below:
> -------------------
> <programlisting>
> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 =
> 123451;
> QUERY PLAN
>
> ---------------------------------------------------------------------------------------------------
> Seq Scan on tbloom (cost=0.00..214.00 rows=1 width=24) (actual
> time=2.729..2.731 rows=0 loops=1)
> Filter: ((i2 = 898732) AND (i5 = 123451))
> Rows Removed by Filter: 10000
> Planning Time: 0.257 ms
> Execution Time: 2.764 ms
> (5 rows)
>
> However, I don't see any parallelism in this output. Also, I don't see
> any parallelism once the indexes are created. What PG version is this?
> and what config settings did you use? Thanks.
I figured it out --- you have to use the larger generate_series value to
get the parallel output. I have adjusted all the docs back to 9.6 to
show accurate output for that version, and simplified the query
ordering --- patch to master attached. The other releases are similar.
Daniel, please let me know if I have left out any details.
--
Bruce Momjian <[email protected]> https://momjian.us
EnterpriseDB https://enterprisedb.com
The usefulness of a cup is in its emptiness, Bruce Lee
diff --git a/doc/src/sgml/bloom.sgml b/doc/src/sgml/bloom.sgml
new file mode 100644
index 285b67b..d1cf9ac
*** a/doc/src/sgml/bloom.sgml
--- b/doc/src/sgml/bloom.sgml
*************** CREATE INDEX bloomidx ON tbloom USING bl
*** 110,184 ****
FROM
generate_series(1,10000000);
SELECT 10000000
- =# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
- CREATE INDEX
- =# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
- pg_size_pretty
- ----------------
- 153 MB
- (1 row)
- =# CREATE index btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
- CREATE INDEX
- =# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
- pg_size_pretty
- ----------------
- 387 MB
- (1 row)
</programlisting>
<para>
A sequential scan over this large table takes a long time:
<programlisting>
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;-----------------------------------------
! Seq Scan on tbloom (cost=0.00..213694.08 rows=1 width=24) (actual time=1445.438..1445.438 rows=0 loops=1)
Filter: ((i2 = 898732) AND (i5 = 123451))
! Rows Removed by Filter: 10000000
! Planning time: 0.177 ms
! Execution time: 1445.473 ms
(5 rows)
</programlisting>
</para>
<para>
! So the planner will usually select an index scan if possible.
! With a btree index, we get results like this:
<programlisting>
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;-------------------------------------------------------------
! Index Only Scan using btreeidx on tbloom (cost=0.56..298311.96 rows=1 width=24) (actual time=445.709..445.709 rows=0 loops=1)
! Index Cond: ((i2 = 898732) AND (i5 = 123451))
! Heap Fetches: 0
! Planning time: 0.193 ms
! Execution time: 445.770 ms
(5 rows)
</programlisting>
</para>
<para>
! Bloom is better than btree in handling this type of search:
<programlisting>
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;--------------------------------------------------------
! Bitmap Heap Scan on tbloom (cost=178435.39..178439.41 rows=1 width=24) (actual time=76.698..76.698 rows=0 loops=1)
Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
! Rows Removed by Index Recheck: 2439
! Heap Blocks: exact=2408
! -> Bitmap Index Scan on bloomidx (cost=0.00..178435.39 rows=1 width=0) (actual time=72.455..72.455 rows=2439 loops=1)
Index Cond: ((i2 = 898732) AND (i5 = 123451))
! Planning time: 0.475 ms
! Execution time: 76.778 ms
(8 rows)
</programlisting>
- Note the relatively large number of false positives: 2439 rows were
- selected to be visited in the heap, but none actually matched the
- query. We could reduce that by specifying a larger signature length.
- In this example, creating the index with <literal>length=200</literal>
- reduced the number of false positives to 55; but it doubled the index size
- (to 306 MB) and ended up being slower for this query (125 ms overall).
</para>
<para>
--- 110,179 ----
FROM
generate_series(1,10000000);
SELECT 10000000
</programlisting>
<para>
A sequential scan over this large table takes a long time:
<programlisting>
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;-----------------------------------
! Seq Scan on tbloom (cost=0.00..2137.14 rows=3 width=24) (actual time=16.971..16.971 rows=0 loops=1)
Filter: ((i2 = 898732) AND (i5 = 123451))
! Rows Removed by Filter: 100000
! Planning Time: 0.346 ms
! Execution Time: 16.988 ms
(5 rows)
</programlisting>
</para>
<para>
! Even with the btree index defined the result will still be a
! sequential scan:
<programlisting>
+ =# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
+ CREATE INDEX
+ =# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
+ pg_size_pretty
+ ----------------
+ 3976 kB
+ (1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;-----------------------------------
! Seq Scan on tbloom (cost=0.00..2137.00 rows=2 width=24) (actual time=12.805..12.805 rows=0 loops=1)
! Filter: ((i2 = 898732) AND (i5 = 123451))
! Rows Removed by Filter: 100000
! Planning Time: 0.138 ms
! Execution Time: 12.817 ms
(5 rows)
</programlisting>
</para>
<para>
! Having the bloom index defined on the table is better than btree in
! handling this type of search:
<programlisting>
+ =# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
+ CREATE INDEX
+ =# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
+ pg_size_pretty
+ ----------------
+ 1584 kB
+ (1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;--------------------------------------------------
! Bitmap Heap Scan on tbloom (cost=1792.00..1799.69 rows=2 width=24) (actual time=0.388..0.388 rows=0 loops=1)
Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
! Rows Removed by Index Recheck: 29
! Heap Blocks: exact=28
! -> Bitmap Index Scan on bloomidx (cost=0.00..1792.00 rows=2 width=0) (actual time=0.356..0.356 rows=29 loops=1)
Index Cond: ((i2 = 898732) AND (i5 = 123451))
! Planning Time: 0.099 ms
! Execution Time: 0.408 ms
(8 rows)
</programlisting>
</para>
<para>
*************** CREATE INDEX
*** 187,210 ****
A better strategy for btree is to create a separate index on each column.
Then the planner will choose something like this:
<programlisting>
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;-----------------------------------------------------------
! Bitmap Heap Scan on tbloom (cost=9.29..13.30 rows=1 width=24) (actual time=0.148..0.148 rows=0 loops=1)
Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
! -> BitmapAnd (cost=9.29..9.29 rows=1 width=0) (actual time=0.145..0.145 rows=0 loops=1)
! -> Bitmap Index Scan on tbloom_i5_idx (cost=0.00..4.52 rows=11 width=0) (actual time=0.089..0.089 rows=10 loops=1)
Index Cond: (i5 = 123451)
! -> Bitmap Index Scan on tbloom_i2_idx (cost=0.00..4.52 rows=11 width=0) (actual time=0.048..0.048 rows=8 loops=1)
Index Cond: (i2 = 898732)
! Planning time: 2.049 ms
! Execution time: 0.280 ms
(9 rows)
</programlisting>
Although this query runs much faster than with either of the single
! indexes, we pay a large penalty in index size. Each of the single-column
! btree indexes occupies 214 MB, so the total space needed is over 1.2GB,
! more than 8 times the space used by the bloom index.
</para>
</sect2>
--- 182,217 ----
A better strategy for btree is to create a separate index on each column.
Then the planner will choose something like this:
<programlisting>
+ =# CREATE INDEX btreeidx1 ON tbloom (i1);
+ CREATE INDEX
+ =# CREATE INDEX btreeidx2 ON tbloom (i2);
+ CREATE INDEX
+ =# CREATE INDEX btreeidx3 ON tbloom (i3);
+ CREATE INDEX
+ =# CREATE INDEX btreeidx4 ON tbloom (i4);
+ CREATE INDEX
+ =# CREATE INDEX btreeidx5 ON tbloom (i5);
+ CREATE INDEX
+ =# CREATE INDEX btreeidx6 ON tbloom (i6);
+ CREATE INDEX
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
! QUERY PLAN
! -------------------------------------------------------------------&zwsp;--------------------------------------------------------
! Bitmap Heap Scan on tbloom (cost=24.34..32.03 rows=2 width=24) (actual time=0.028..0.029 rows=0 loops=1)
Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
! -> BitmapAnd (cost=24.34..24.34 rows=2 width=0) (actual time=0.027..0.027 rows=0 loops=1)
! -> Bitmap Index Scan on btreeidx5 (cost=0.00..12.04 rows=500 width=0) (actual time=0.026..0.026 rows=0 loops=1)
Index Cond: (i5 = 123451)
! -> Bitmap Index Scan on btreeidx2 (cost=0.00..12.04 rows=500 width=0) (never executed)
Index Cond: (i2 = 898732)
! Planning Time: 0.491 ms
! Execution Time: 0.055 ms
(9 rows)
</programlisting>
Although this query runs much faster than with either of the single
! indexes, we pay a penalty in index size. Each of the single-column
! btree indexes occupies 2 MB, so the total space needed is 12 MB,
! eight times the space used by the bloom index.
</para>
</sect2>