On Mon, Oct 26, 2020 at 05:04:09PM -0400, Bruce Momjian wrote: > On Sat, Oct 17, 2020 at 01:50:26PM +0000, Daniel Westermann (DWE) wrote: > > On Fri, Oct 9, 2020 at 11:08:32AM -0400, Bruce Momjian wrote: > > >This is not applying to PG 12 or earlier because the patch mentions JIT, > > >which was only mentioned in the PG bloom docs in PG 13+. > > > > Does that mean we need separate patches for each release starting with 10? > > As I am not frequently writing patches, I would need some help here. > > I can regenerate the output for older versions using your patch. > However, I am confused about the parallelism you are seeing. Your patch > shows: > > Without the two indexes being created, a parallel sequential scan > will happen for the query below: > ------------------- > <programlisting> > =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = > 123451; > QUERY PLAN > > --------------------------------------------------------------------------------------------------- > Seq Scan on tbloom (cost=0.00..214.00 rows=1 width=24) (actual > time=2.729..2.731 rows=0 loops=1) > Filter: ((i2 = 898732) AND (i5 = 123451)) > Rows Removed by Filter: 10000 > Planning Time: 0.257 ms > Execution Time: 2.764 ms > (5 rows) > > However, I don't see any parallelism in this output. Also, I don't see > any parallelism once the indexes are created. What PG version is this? > and what config settings did you use? Thanks.
I figured it out --- you have to use the larger generate_series value to get the parallel output. I have adjusted all the docs back to 9.6 to show accurate output for that version, and simplified the query ordering --- patch to master attached. The other releases are similar. Daniel, please let me know if I have left out any details. -- Bruce Momjian <br...@momjian.us> https://momjian.us EnterpriseDB https://enterprisedb.com The usefulness of a cup is in its emptiness, Bruce Lee
diff --git a/doc/src/sgml/bloom.sgml b/doc/src/sgml/bloom.sgml new file mode 100644 index 285b67b..d1cf9ac *** a/doc/src/sgml/bloom.sgml --- b/doc/src/sgml/bloom.sgml *************** CREATE INDEX bloomidx ON tbloom USING bl *** 110,184 **** FROM generate_series(1,10000000); SELECT 10000000 - =# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6); - CREATE INDEX - =# SELECT pg_size_pretty(pg_relation_size('bloomidx')); - pg_size_pretty - ---------------- - 153 MB - (1 row) - =# CREATE index btreeidx ON tbloom (i1, i2, i3, i4, i5, i6); - CREATE INDEX - =# SELECT pg_size_pretty(pg_relation_size('btreeidx')); - pg_size_pretty - ---------------- - 387 MB - (1 row) </programlisting> <para> A sequential scan over this large table takes a long time: <programlisting> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;----------------------------------------- ! Seq Scan on tbloom (cost=0.00..213694.08 rows=1 width=24) (actual time=1445.438..1445.438 rows=0 loops=1) Filter: ((i2 = 898732) AND (i5 = 123451)) ! Rows Removed by Filter: 10000000 ! Planning time: 0.177 ms ! Execution time: 1445.473 ms (5 rows) </programlisting> </para> <para> ! So the planner will usually select an index scan if possible. ! With a btree index, we get results like this: <programlisting> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;------------------------------------------------------------- ! Index Only Scan using btreeidx on tbloom (cost=0.56..298311.96 rows=1 width=24) (actual time=445.709..445.709 rows=0 loops=1) ! Index Cond: ((i2 = 898732) AND (i5 = 123451)) ! Heap Fetches: 0 ! Planning time: 0.193 ms ! Execution time: 445.770 ms (5 rows) </programlisting> </para> <para> ! Bloom is better than btree in handling this type of search: <programlisting> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;-------------------------------------------------------- ! Bitmap Heap Scan on tbloom (cost=178435.39..178439.41 rows=1 width=24) (actual time=76.698..76.698 rows=0 loops=1) Recheck Cond: ((i2 = 898732) AND (i5 = 123451)) ! Rows Removed by Index Recheck: 2439 ! Heap Blocks: exact=2408 ! -> Bitmap Index Scan on bloomidx (cost=0.00..178435.39 rows=1 width=0) (actual time=72.455..72.455 rows=2439 loops=1) Index Cond: ((i2 = 898732) AND (i5 = 123451)) ! Planning time: 0.475 ms ! Execution time: 76.778 ms (8 rows) </programlisting> - Note the relatively large number of false positives: 2439 rows were - selected to be visited in the heap, but none actually matched the - query. We could reduce that by specifying a larger signature length. - In this example, creating the index with <literal>length=200</literal> - reduced the number of false positives to 55; but it doubled the index size - (to 306 MB) and ended up being slower for this query (125 ms overall). </para> <para> --- 110,179 ---- FROM generate_series(1,10000000); SELECT 10000000 </programlisting> <para> A sequential scan over this large table takes a long time: <programlisting> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;----------------------------------- ! Seq Scan on tbloom (cost=0.00..2137.14 rows=3 width=24) (actual time=16.971..16.971 rows=0 loops=1) Filter: ((i2 = 898732) AND (i5 = 123451)) ! Rows Removed by Filter: 100000 ! Planning Time: 0.346 ms ! Execution Time: 16.988 ms (5 rows) </programlisting> </para> <para> ! Even with the btree index defined the result will still be a ! sequential scan: <programlisting> + =# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6); + CREATE INDEX + =# SELECT pg_size_pretty(pg_relation_size('btreeidx')); + pg_size_pretty + ---------------- + 3976 kB + (1 row) =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;----------------------------------- ! Seq Scan on tbloom (cost=0.00..2137.00 rows=2 width=24) (actual time=12.805..12.805 rows=0 loops=1) ! Filter: ((i2 = 898732) AND (i5 = 123451)) ! Rows Removed by Filter: 100000 ! Planning Time: 0.138 ms ! Execution Time: 12.817 ms (5 rows) </programlisting> </para> <para> ! Having the bloom index defined on the table is better than btree in ! handling this type of search: <programlisting> + =# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6); + CREATE INDEX + =# SELECT pg_size_pretty(pg_relation_size('bloomidx')); + pg_size_pretty + ---------------- + 1584 kB + (1 row) =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;-------------------------------------------------- ! Bitmap Heap Scan on tbloom (cost=1792.00..1799.69 rows=2 width=24) (actual time=0.388..0.388 rows=0 loops=1) Recheck Cond: ((i2 = 898732) AND (i5 = 123451)) ! Rows Removed by Index Recheck: 29 ! Heap Blocks: exact=28 ! -> Bitmap Index Scan on bloomidx (cost=0.00..1792.00 rows=2 width=0) (actual time=0.356..0.356 rows=29 loops=1) Index Cond: ((i2 = 898732) AND (i5 = 123451)) ! Planning Time: 0.099 ms ! Execution Time: 0.408 ms (8 rows) </programlisting> </para> <para> *************** CREATE INDEX *** 187,210 **** A better strategy for btree is to create a separate index on each column. Then the planner will choose something like this: <programlisting> =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;----------------------------------------------------------- ! Bitmap Heap Scan on tbloom (cost=9.29..13.30 rows=1 width=24) (actual time=0.148..0.148 rows=0 loops=1) Recheck Cond: ((i5 = 123451) AND (i2 = 898732)) ! -> BitmapAnd (cost=9.29..9.29 rows=1 width=0) (actual time=0.145..0.145 rows=0 loops=1) ! -> Bitmap Index Scan on tbloom_i5_idx (cost=0.00..4.52 rows=11 width=0) (actual time=0.089..0.089 rows=10 loops=1) Index Cond: (i5 = 123451) ! -> Bitmap Index Scan on tbloom_i2_idx (cost=0.00..4.52 rows=11 width=0) (actual time=0.048..0.048 rows=8 loops=1) Index Cond: (i2 = 898732) ! Planning time: 2.049 ms ! Execution time: 0.280 ms (9 rows) </programlisting> Although this query runs much faster than with either of the single ! indexes, we pay a large penalty in index size. Each of the single-column ! btree indexes occupies 214 MB, so the total space needed is over 1.2GB, ! more than 8 times the space used by the bloom index. </para> </sect2> --- 182,217 ---- A better strategy for btree is to create a separate index on each column. Then the planner will choose something like this: <programlisting> + =# CREATE INDEX btreeidx1 ON tbloom (i1); + CREATE INDEX + =# CREATE INDEX btreeidx2 ON tbloom (i2); + CREATE INDEX + =# CREATE INDEX btreeidx3 ON tbloom (i3); + CREATE INDEX + =# CREATE INDEX btreeidx4 ON tbloom (i4); + CREATE INDEX + =# CREATE INDEX btreeidx5 ON tbloom (i5); + CREATE INDEX + =# CREATE INDEX btreeidx6 ON tbloom (i6); + CREATE INDEX =# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451; ! QUERY PLAN ! -------------------------------------------------------------------&zwsp;-------------------------------------------------------- ! Bitmap Heap Scan on tbloom (cost=24.34..32.03 rows=2 width=24) (actual time=0.028..0.029 rows=0 loops=1) Recheck Cond: ((i5 = 123451) AND (i2 = 898732)) ! -> BitmapAnd (cost=24.34..24.34 rows=2 width=0) (actual time=0.027..0.027 rows=0 loops=1) ! -> Bitmap Index Scan on btreeidx5 (cost=0.00..12.04 rows=500 width=0) (actual time=0.026..0.026 rows=0 loops=1) Index Cond: (i5 = 123451) ! -> Bitmap Index Scan on btreeidx2 (cost=0.00..12.04 rows=500 width=0) (never executed) Index Cond: (i2 = 898732) ! Planning Time: 0.491 ms ! Execution Time: 0.055 ms (9 rows) </programlisting> Although this query runs much faster than with either of the single ! indexes, we pay a penalty in index size. Each of the single-column ! btree indexes occupies 2 MB, so the total space needed is 12 MB, ! eight times the space used by the bloom index. </para> </sect2>