This issue occurs when the Aggregate node has more rows than the other node in 
the Join. The join selectivity is determined by the jselectivity factor, which 
is calculated based on the maximum number of distinct rows between the two 
nodes, as defined in the function eqjoinsel_inner. However, since the number of 
distinct rows for the Aggregate node defaults to 200, the other node's distinct 
row count is often larger and is therefore used as the maximum, despite the 
Aggregate node having a greater total number of rows.



Steps to recreate the issue:



postgres=# create table t1(a int);

CREATE TABLE

postgres=# create table t2(a int, b int);

CREATE TABLE

postgres=# insert into t1 select id from generate_series(1, 1000) as id;

INSERT 0 1000

insert into t2 select id, id%10 from generate_series(991, 20000) as id;

INSERT 0 19010

postgres=# analyze;

ANALYZE

postgres=# explain analyze select * from t1 left join (select a, max(b) from t2 
group by a) t2 on t1.a = t2.a;

                                                       QUERY PLAN               
                                       

------------------------------------------------------------------------------------------------------------------------

Hash Left Join  (cost=797.88..815.51 rows=19010 width=12) (actual 
time=8.613..8.780 rows=1000 loops=1)

   Hash Cond: (t1.a = t2.a)

   ->  Seq Scan on t1  (cost=0.00..15.00 rows=1000 width=4) (actual 
time=0.010..0.058 rows=1000 loops=1)

   ->  Hash  (cost=560.25..560.25 rows=19010 width=8) (actual time=8.589..8.590 
rows=19010 loops=1)

         Buckets: 32768  Batches: 1  Memory Usage: 999kB

         ->  HashAggregate  (cost=370.15..560.25 rows=19010 width=8) (actual 
time=4.594..6.735 rows=19010 loops=1)

               Group Key: t2.a

               Batches: 1  Memory Usage: 2321kB

               ->  Seq Scan on t2  (cost=0.00..275.10 rows=19010 width=8) 
(actual time=0.005..0.927 rows=19010 loops=1)

Planning Time: 0.166 ms

Execution Time: 9.399 ms

(11 rows)



After applying the patch we get the results as:



postgres=# explain analyze select * from t1 left join (select a, max(b) from t2 
group by a) t2 on t1.a = t2.a;


                                                    QUERY PLAN                  
                                 

------------------------------------------------------------------------------------------------------------------

Hash Right Join  (cost=397.65..669.04 rows=1000 width=12) (actual 
time=8.003..11.075 rows=1000 loops=1)

   Hash Cond: (t2.a = t1.a)

   ->  HashAggregate  (cost=370.15..560.25 rows=19010 width=8) (actual 
time=7.301..9.457 rows=19010 loops=1)

         Group Key: t2.a

         Batches: 1  Memory Usage: 2321kB

         ->  Seq Scan on t2  (cost=0.00..275.10 rows=19010 width=8) (actual 
time=0.006..1.382 rows=19010 loops=1)

   ->  Hash  (cost=15.00..15.00 rows=1000 width=4) (actual time=0.385..0.385 
rows=1000 loops=1)

         Buckets: 1024  Batches: 1  Memory Usage: 44kB

         ->  Seq Scan on t1  (cost=0.00..15.00 rows=1000 width=4) (actual 
time=0.023..0.155 rows=1000 loops=1)

Planning Time: 0.197 ms

Execution Time: 12.218 ms

(11 rows)



Thanks & Regards,


Ravi Revathy

Member Technical Staff

ZOHO Corporation





---- On Wed, 27 Nov 2024 21:30:12 +0530 Alena Rybakina 
<a.rybak...@postgrespro.ru> wrote ---



Hi!

On 27.11.2024 16:17, Ravi wrote:

Please
                  find the patch attached below for your review.
 
 Thanks & Regards,

Ravi
                  Revathy

Member
                  Technical Staff

ZOHO
                  Corporation











---- On Wed, 27 Nov 2024 18:41:13 +0530 Ravi mailto:revath...@zohocorp.com 
wrote ---



Hi Developers,

     Currently, PostgreSQL relies on table
                  statistics, extracted within the
                  examine_simple_variable function, to estimate join
                  selectivity. However, when dealing with subqueries
                  that include GROUP BY clauses even for the single
                  length clauses which result in distinct rows, the
                  planner often defaults to an assumption of 200
                  distinct rows. This leads to inaccurate cardinality
                  predictions, potentially resulting in suboptimal join
                  plans.



Problem Example



Consider the following query:



explain select * from t1 left join
                            (select a, max(b) from t2 group by a) t2 on
                            t1.a = t2.a;







The resulting plan predicts a high cardinality
                    for the join, and places the larger dataset on the
                    hash side:
 
                                    
                               QUERY
                              PLAN                                   

--------------------------------------------------------------------------------

Hash Join  (cost=943037.92..955323.45
                              rows=6963818 width=16)

   Hash Cond: (t1.a = t2.a)

   ->  Seq Scan on t1 
                              (cost=0.00..289.00 rows=20000 width=8)

   ->  Hash 
                              (cost=893538.50..893538.50 rows=3017074
                              width=8)

         ->  HashAggregate 
                              (cost=777429.49..893538.50 rows=3017074
                              width=8)

               Group Key: t2.a

               Planned Partitions: 64

               ->  Seq Scan on t2 
                              (cost=0.00..158673.98 rows=11000098
                              width=8)

(8 rows)






Here, the join cardinality is overestimated, and
                    table t2 with larger dataset being placed on the
                    hash side, despite t1 having fewer rows.
 



Proposed Solution:

In subqueries with a GROUP BY clause that has a
                  single grouping column, it is reasonable to assume the
                  result set contains unique values for that column.

By taking this assumption, we can consider the
                  output of the aggregate node as unique and instead of
                  assuming a default distinct row count (200), we should
                  derive the estimate from the HashAggregate node’s row
                  count.



Execution Plan after the patch applied:
 
                                   QUERY
                            PLAN                                

--------------------------------------------------------------------------

Hash Join  (cost=777968.49..935762.27
                            rows=20000 width=16)

   Hash Cond: (t2.a = t1.a)

   ->  HashAggregate 
                            (cost=777429.49..893538.50 rows=3017074
                            width=8)

         Group Key: t2.a

         Planned Partitions: 64

         ->  Seq Scan on t2 
                            (cost=0.00..158673.98 rows=11000098 width=8)

   ->  Hash  (cost=289.00..289.00
                            rows=20000 width=8)

         ->  Seq Scan on t1 
                            (cost=0.00..289.00 rows=20000 width=8)

(8 rows)







Can you confirm if my assumption about leveraging
                    the distinct row property of a GROUP BY clause with
                    a single grouping column for improving join
                    cardinality estimation is valid? If not, I would
                    appreciate suggestions or corrections regarding this
                    approach.










maybe I realized something was wrong, but I didn't see a problem with 
cardinality when I took out the problem like this:

alena@postgres=# drop table t1;
DROP TABLE
alena@postgres=# drop table t2;
DROP TABLE
alena@postgres=# create table t1 (a int);
CREATE TABLE
alena@postgres=# create table t1 (x int);
ERROR:  relation "t1" already exists
alena@postgres=# create table t2 (a int, b int);
CREATE TABLE
alena@postgres=# insert into t1 select id from generate_series(1,1000) as id;
INSERT 0 1000
alena@postgres=# insert into t2 select id, id%10 from generate_series(991,1900) 
as id;
INSERT 0 910
alena@postgres=# analyze;
ANALYZE
alena@postgres=# explain analyze select * from t1 left join (select a, max(b) 
from t2 group by a) t2 on t1.a = t2.a;
                                                    QUERY PLAN                  
                                   
-------------------------------------------------------------------------------------------------------------------
 Hash Left Join  (cost=39.12..56.76 rows=1000 width=12) (actual 
time=2.024..2.731 rows=1000 loops=1)
   Hash Cond: (t1.a = t2.a)
   ->  Seq Scan on t1  (cost=0.00..15.00 rows=1000 width=4) (actual 
time=0.030..0.259 rows=1000 loops=1)
   ->  Hash  (cost=27.75..27.75 rows=910 width=8) (actual time=1.986..1.987 
rows=910 loops=1)
         Buckets: 1024  Batches: 1  Memory Usage: 44kB
         ->  HashAggregate  (cost=18.65..27.75 rows=910 width=8) (actual 
time=1.162..1.586 rows=910 loops=1)
               Group Key: t2.a
               Batches: 1  Memory Usage: 169kB
               ->  Seq Scan on t2  (cost=0.00..14.10 rows=910 width=8) (actual 
time=0.018..0.239 rows=910 loops=1)
 Planning Time: 0.215 ms
 Execution Time: 2.926 ms
(11 rows)

Cardinality is predicted correctly as I see. I'm missing something?

-- 
Regards,
Alena Rybakina
Postgres Professional

Reply via email to