On Tue, 2 Jul 2024 at 21:10, Joel Jacobson <j...@compiler.org> wrote:
>
> I found the bug in the case 3 code,
> and it turns out the same type of bug also exists in the case 2 code:
>
>                         case 2:
>                                 newdig = (int) var1digits[1] * 
> var2digits[res_ndigits - 4];
>
> The problem here is that res_ndigits could become less than 4,

Yes. It can't be less than 3 though (per an earlier test), so the case
2 code was correct.

I've been hacking on this a bit and trying to tidy it up. Firstly, I
moved it to a separate function, because it was starting to look messy
having so much extra code in mul_var(). Then I added a bunch more
comments to explain what's going on, and the limits of the various
variables. Note that most of the boundary checks are actually
unnecessary -- in particular all the ones in or after the main loop,
provided you pull out the first 2 result digits from the main loop in
the 3-digit case. That does seem to work very well, but...

I wasn't entirely happy with how messy that code is getting, so I
tried a different approach. Similar to div_var_int(), I tried writing
a mul_var_int() function instead. This can be used for 1 and 2 digit
factors, and we could add a similar mul_var_int64() function on
platforms with 128-bit integers. The code looks quite a lot neater, so
it's probably less likely to contain bugs (though I have just written
it in a hurry,so it might still have bugs). In testing, it seemed to
give a decent speedup, but perhaps a little less than before. But
that's to be balanced against having more maintainable code, and also
a function that might be useful elsewhere in numeric.c.

Anyway, here are both patches for comparison. I'll stop hacking for a
while and let you see what you make of these.

Regards,
Dean
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c
new file mode 100644
index 5510a20..81600b3
--- a/src/backend/utils/adt/numeric.c
+++ b/src/backend/utils/adt/numeric.c
@@ -551,6 +551,8 @@ static void sub_var(const NumericVar *va
 static void mul_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale);
+static void mul_var_small(const NumericVar *var1, const NumericVar *var2,
+						  NumericVar *result, int rscale);
 static void div_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale, bool round);
@@ -8707,7 +8709,7 @@ mul_var(const NumericVar *var1, const Nu
 	var1digits = var1->digits;
 	var2digits = var2->digits;
 
-	if (var1ndigits == 0 || var2ndigits == 0)
+	if (var1ndigits == 0)
 	{
 		/* one or both inputs is zero; so is result */
 		zero_var(result);
@@ -8715,6 +8717,16 @@ mul_var(const NumericVar *var1, const Nu
 		return;
 	}
 
+	/*
+	 * If var1 has 3 digits or fewer, delegate to mul_var_small() which uses a
+	 * faster short multiplication algorithm.
+	 */
+	if (var1ndigits <= 3)
+	{
+		mul_var_small(var1, var2, result, rscale);
+		return;
+	}
+
 	/* Determine result sign and (maximum possible) weight */
 	if (var1->sign == var2->sign)
 		res_sign = NUMERIC_POS;
@@ -8858,6 +8870,188 @@ mul_var(const NumericVar *var1, const Nu
 	result->sign = res_sign;
 
 	/* Round to target rscale (and set result->dscale) */
+	round_var(result, rscale);
+
+	/* Strip leading and trailing zeroes */
+	strip_var(result);
+}
+
+
+/*
+ * mul_var_small() -
+ *
+ *	This has the same API as mul_var, but it assumes that var1 has no more
+ *	than 3 digits and var2 has at least as many digits as var1.  For variables
+ *	satisfying these conditions, the product can be computed more quickly than
+ *	the general algorithm used in mul_var.
+ */
+static void
+mul_var_small(const NumericVar *var1, const NumericVar *var2,
+			  NumericVar *result, int rscale)
+{
+	int			var1ndigits = var1->ndigits;
+	int			var2ndigits = var2->ndigits;
+	NumericDigit *var1digits = var1->digits;
+	NumericDigit *var2digits = var2->digits;
+	int			res_sign;
+	int			res_weight;
+	int			res_ndigits;
+	int			maxdigits;
+	NumericDigit *res_buf;
+	NumericDigit *res_digits;
+	int			carry;
+	int			term;
+
+	/* Check preconditions */
+	Assert(var1ndigits <= 3);
+	Assert(var2ndigits >= var1ndigits);
+
+	/* Determine result sign and (maximum possible) weight */
+	if (var1->sign == var2->sign)
+		res_sign = NUMERIC_POS;
+	else
+		res_sign = NUMERIC_NEG;
+	res_weight = var1->weight + var2->weight + 2;
+
+	/* Determine the number of result digits to compute - see mul_var() */
+	res_ndigits = var1ndigits + var2ndigits + 1;
+	maxdigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS +
+		MUL_GUARD_DIGITS;
+	res_ndigits = Min(res_ndigits, maxdigits);
+
+	if (res_ndigits < 3)
+	{
+		/* All input digits will be ignored; so result is zero */
+		zero_var(result);
+		result->dscale = rscale;
+		return;
+	}
+
+	/* Allocate result digit array */
+	res_buf = digitbuf_alloc(res_ndigits);
+	res_buf[0] = 0;				/* spare digit for later rounding */
+	res_digits = res_buf + 1;
+
+	/*
+	 * Compute the result digits in reverse, in one pass, propagating the
+	 * carry up as we go.
+	 *
+	 * This computes res_digits[res_ndigits - 2], ... res_digits[0] by summing
+	 * the products var1digits[i1] * var2digits[i2] for which i1 + i2 + 1 is
+	 * the result index.
+	 */
+	switch (var1ndigits)
+	{
+		case 1:
+			/* ---------
+			 * 1-digit case:
+			 *		var1ndigits = 1
+			 *		var2ndigits >= 1
+			 *		3 <= res_ndigits <= var2ndigits + 2
+			 * ----------
+			 */
+			carry = 0;
+			for (int i = res_ndigits - 3; i >= 0; i--)
+			{
+				term = (int) var1digits[0] * var2digits[i] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+			res_digits[0] = (NumericDigit) carry;
+			break;
+
+		case 2:
+			/* ---------
+			 * 2-digit case:
+			 *		var1ndigits = 2
+			 *		var2ndigits >= 2
+			 *		3 <= res_ndigits <= var2ndigits + 3
+			 * ----------
+			 */
+			/* last result digit and carry */
+			term = 0;
+			if (res_ndigits - 3 < var2ndigits)
+				term += (int) var1digits[0] * var2digits[res_ndigits - 3];
+			if (res_ndigits > 3)
+				term += (int) var1digits[1] * var2digits[res_ndigits - 4];
+			res_digits[res_ndigits - 2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* remaining digits, except for the first two */
+			for (int i = res_ndigits - 4; i >= 1; i--)
+			{
+				term = (int) var1digits[0] * var2digits[i] +
+					(int) var1digits[1] * var2digits[i - 1] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+
+			/* first two digits */
+			term = (int) var1digits[0] * var2digits[0] + carry;
+			res_digits[1] = (NumericDigit) (term % NBASE);
+			res_digits[0] = (NumericDigit) (term / NBASE);
+			break;
+
+		case 3:
+			/* ---------
+			 * 3-digit case:
+			 *		var1ndigits = 3
+			 *		var2ndigits >= 3
+			 *		3 <= res_ndigits <= var2ndigits + 4
+			 * ----------
+			 */
+			/* last result digit and carry */
+			term = 0;
+			if (res_ndigits - 3 < var2ndigits)
+				term += (int) var1digits[0] * var2digits[res_ndigits - 3];
+			if (res_ndigits > 3 && res_ndigits - 4 < var2ndigits)
+				term += (int) var1digits[1] * var2digits[res_ndigits - 4];
+			if (res_ndigits > 4)
+				term += (int) var1digits[2] * var2digits[res_ndigits - 5];
+			res_digits[res_ndigits - 2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* penultimate result digit */
+			term = carry;
+			if (res_ndigits > 3 && res_ndigits - 4 < var2ndigits)
+				term += (int) var1digits[0] * var2digits[res_ndigits - 4];
+			if (res_ndigits > 4)
+				term += (int) var1digits[1] * var2digits[res_ndigits - 5];
+			if (res_ndigits > 5)
+				term += (int) var1digits[2] * var2digits[res_ndigits - 6];
+			res_digits[res_ndigits - 3] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+
+			/* remaining digits, except for the first three */
+			for (int i = res_ndigits - 5; i >= 2; i--)
+			{
+				term = (int) var1digits[0] * var2digits[i] +
+					(int) var1digits[1] * var2digits[i - 1] +
+					(int) var1digits[2] * var2digits[i - 2] + carry;
+				res_digits[i + 1] = (NumericDigit) (term % NBASE);
+				carry = term / NBASE;
+			}
+
+			/* first three digits */
+			term = (int) var1digits[0] * var2digits[1] +
+				(int) var1digits[1] * var2digits[0] + carry;
+			res_digits[2] = (NumericDigit) (term % NBASE);
+			carry = term / NBASE;
+			term = (int) var1digits[0] * var2digits[0] + carry;
+			res_digits[1] = (NumericDigit) (term % NBASE);
+			res_digits[0] = (NumericDigit) (term / NBASE);
+			break;
+	}
+
+	/* Store the product in result (minus extra rounding digit) */
+	digitbuf_free(result->buf);
+	result->ndigits = res_ndigits - 1;
+	result->buf = res_buf;
+	result->digits = res_digits;
+	result->weight = res_weight - 1;
+	result->sign = res_sign;
+
+	/* Round to target rscale (and set result->dscale) */
 	round_var(result, rscale);
 
 	/* Strip leading and trailing zeroes */
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c
new file mode 100644
index 5510a20..9e50ea7
--- a/src/backend/utils/adt/numeric.c
+++ b/src/backend/utils/adt/numeric.c
@@ -551,6 +551,8 @@ static void sub_var(const NumericVar *va
 static void mul_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale);
+static void mul_var_int(const NumericVar *var, int ival, int ival_weight,
+						NumericVar *result, int rscale);
 static void div_var(const NumericVar *var1, const NumericVar *var2,
 					NumericVar *result,
 					int rscale, bool round);
@@ -8707,7 +8709,7 @@ mul_var(const NumericVar *var1, const Nu
 	var1digits = var1->digits;
 	var2digits = var2->digits;
 
-	if (var1ndigits == 0 || var2ndigits == 0)
+	if (var1ndigits == 0)
 	{
 		/* one or both inputs is zero; so is result */
 		zero_var(result);
@@ -8715,6 +8717,31 @@ mul_var(const NumericVar *var1, const Nu
 		return;
 	}
 
+	/*
+	 * If var1 has just one or two digits, delegate to mul_var_int(), which
+	 * uses a faster direct multiplication algorithm.
+	 *
+	 * TODO: Similarly, on platforms with 128-bit integers ...
+	 */
+	if (var1ndigits <= 2)
+	{
+		int			ifactor;
+		int			ifactor_weight;
+
+		ifactor = var1->digits[0];
+		ifactor_weight = var1->weight;
+		if (var1ndigits == 2)
+		{
+			ifactor = ifactor * NBASE + var1->digits[1];
+			ifactor_weight--;
+		}
+		if (var1->sign == NUMERIC_NEG)
+			ifactor = -ifactor;
+
+		mul_var_int(var2, ifactor, ifactor_weight, result, rscale);
+		return;
+	}
+
 	/* Determine result sign and (maximum possible) weight */
 	if (var1->sign == var2->sign)
 		res_sign = NUMERIC_POS;
@@ -8857,6 +8884,123 @@ mul_var(const NumericVar *var1, const Nu
 	result->weight = res_weight;
 	result->sign = res_sign;
 
+	/* Round to target rscale (and set result->dscale) */
+	round_var(result, rscale);
+
+	/* Strip leading and trailing zeroes */
+	strip_var(result);
+}
+
+
+/*
+ * mul_var_int() -
+ *
+ *	Multiply a numeric variable by a 32-bit integer with the specified weight.
+ *	The product var * ival * NBASE^ival_weight is stored in result.
+ */
+static void
+mul_var_int(const NumericVar *var, int ival, int ival_weight,
+			NumericVar *result, int rscale)
+{
+	NumericDigit *var_digits = var->digits;
+	int			var_ndigits = var->ndigits;
+	int			res_sign;
+	int			res_weight;
+	int			res_ndigits;
+	int			maxdigits;
+	NumericDigit *res_buf;
+	NumericDigit *res_digits;
+	uint32		factor;
+	uint32		carry;
+
+	if (ival == 0 || var_ndigits == 0)
+	{
+		zero_var(result);
+		result->dscale = rscale;
+		return;
+	}
+
+	/*
+	 * Determine the result sign, (maximum possible) weight and number of
+	 * digits to calculate.  The weight figured here is correct if the emitted
+	 * product has no leading zero digits; otherwise strip_var() will fix
+	 * things up.
+	 */
+	if (var->sign == NUMERIC_POS)
+		res_sign = ival > 0 ? NUMERIC_POS : NUMERIC_NEG;
+	else
+		res_sign = ival > 0 ? NUMERIC_NEG : NUMERIC_POS;
+	res_weight = var->weight + ival_weight + 3;
+	/* The number of accurate result digits we need to produce: */
+	res_ndigits = var_ndigits + 3;
+	maxdigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS +
+		MUL_GUARD_DIGITS;
+	res_ndigits = Min(res_ndigits, maxdigits);
+
+	if (res_ndigits < 3)
+	{
+		/* All input digits will be ignored; so result is zero */
+		zero_var(result);
+		result->dscale = rscale;
+		return;
+	}
+
+	res_buf = digitbuf_alloc(res_ndigits + 1);
+	res_buf[0] = 0;				/* spare digit for later rounding */
+	res_digits = res_buf + 1;
+
+	/*
+	 * Now compute the product digits by procssing the input digits in reverse
+	 * and propagating the carry up as we go.
+	 *
+	 * In this algorithm, the carry from one digit to the next is at most
+	 * factor - 1, and product is at most factor * NBASE - 1, and so it needs
+	 * to be a 64-bit integer if this exceeds UINT_MAX.
+	 */
+	factor = abs(ival);
+	carry = 0;
+
+	if (factor <= UINT_MAX / NBASE)
+	{
+		/* product cannot overflow 32 bits */
+		uint32		product;
+
+		for (int i = res_ndigits - 4; i >= 0; i--)
+		{
+			product = factor * var_digits[i] + carry;
+			res_digits[i + 3] = (NumericDigit) (product % NBASE);
+			carry = product / NBASE;
+		}
+		res_digits[2] = (NumericDigit) (carry % NBASE);
+		carry = carry / NBASE;
+		res_digits[1] = (NumericDigit) (carry % NBASE);
+		res_digits[0] = (NumericDigit) (carry / NBASE);
+	}
+	else
+	{
+		/* product may exceed 32 bits */
+		uint64		product;
+
+		for (int i = res_ndigits - 4; i >= 0; i--)
+		{
+			product = (uint64) factor * var_digits[i] + carry;
+			res_digits[i + 3] = (NumericDigit) (product % NBASE);
+			carry = (uint32) (product / NBASE);
+		}
+		res_digits[2] = (NumericDigit) (carry % NBASE);
+		carry = carry / NBASE;
+		res_digits[1] = (NumericDigit) (carry % NBASE);
+		res_digits[0] = (NumericDigit) (carry / NBASE);
+	}
+
+	/* Store the product in result */
+	digitbuf_free(result->buf);
+	result->ndigits = res_ndigits;
+	result->buf = res_buf;
+	result->digits = res_digits;
+	result->weight = res_weight;
+	result->sign = res_sign;
+
 	/* Round to target rscale (and set result->dscale) */
 	round_var(result, rscale);
 

Reply via email to