Hi. Seems previous test case not clear demonstrate the problem which i have stuck with.
Now much better and close to reality test case: Preparation: set random_page_cost to 4; set seq_page_cost to 1; create table test (id integer primary key, sections integer[], value float); insert into test select id, ('{'||((random()*10)::integer)||'}')::integer[] as value, random() as value from generate_series(1,1000000) as g(id); --generic gist index for array CREATE INDEX test_sections_gist on test using gist(sections); --specialized index on value for sections && '{2}' CREATE INDEX test_value_in2section_key on test(value) where sections && '{2}'; analyze test; Now actual tests: Good query but cost definitely wrong: postgres=# EXPLAIN ANALYZE SELECT * from test where sections && '{2}' order by value limit 100; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..539.29 rows=100 width=37) (actual time=0.043..0.499 rows=100 loops=1) -> Index Scan using test_value_in2section_key on test (cost=0.00..5392.87 rows=1000 width=37) (actual time=0.040..0.434 rows=100 loops=1) Total runtime: 0.570 ms Compare with almost equivalent query: postgres=# EXPLAIN ANALYZE SELECT * from test order by id limit 100; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..3.43 rows=100 width=37) (actual time=0.057..0.192 rows=100 loops=1) -> Index Scan using test_pkey on test (cost=0.00..34317.36 rows=1000000 width=37) (actual time=0.054..0.115 rows=100 loops=1) Total runtime: 0.258 ms Actual speed almost same but cost differs 100 times. Now if I increase the limit I start getting slow plans because it switch to GIST index and bitmap scan (because cost of common index scan too high): postgres=# EXPLAIN ANALYZE SELECT * from test where sections && '{2}' order by value limit 1000; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=2941.68..2944.18 rows=1000 width=37) (actual time=175.301..175.766 rows=1000 loops=1) -> Sort (cost=2941.68..2944.18 rows=1000 width=37) (actual time=175.298..175.541 rows=1000 loops=1) Sort Key: value Sort Method: top-N heapsort Memory: 127kB -> Bitmap Heap Scan on test (cost=56.48..2891.85 rows=1000 width=37) (actual time=80.230..132.479 rows=99641 loops=1) Recheck Cond: (sections && '{2}'::integer[]) -> Bitmap Index Scan on test_sections_gist (cost=0.00..56.23 rows=1000 width=0) (actual time=78.112..78.112 rows=99641 loops=1) Index Cond: (sections && '{2}'::integer[]) Total runtime: 175.960 ms (9 rows) Even if I drop GIST index i'm still getting wrong plan: postgres=# drop index test_sections_gist; DROP INDEX postgres=# EXPLAIN ANALYZE SELECT * from test where sections && '{2}' order by value limit 1000; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------- Limit (cost=4489.88..4492.38 rows=1000 width=37) (actual time=116.637..117.088 rows=1000 loops=1) -> Sort (cost=4489.88..4492.38 rows=1000 width=37) (actual time=116.635..116.857 rows=1000 loops=1) Sort Key: value Sort Method: top-N heapsort Memory: 127kB -> Bitmap Heap Scan on test (cost=1604.68..4440.05 rows=1000 width=37) (actual time=22.175..74.556 rows=99641 loops=1) Recheck Cond: (sections && '{2}'::integer[]) -> Bitmap Index Scan on test_value_in2section_key (cost=0.00..1604.43 rows=1000 width=0) (actual time=20.248..20.248 rows=99641 loops=1) Total runtime: 117.261 ms And only if I completely disable bitmap scan I get good fast plan (but with exceptional high cost): postgres=# set enable_bitmapscan to 0; SET postgres=# EXPLAIN ANALYZE SELECT * from test where sections && '{2}' order by value limit 1000; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------ Limit (cost=0.00..5392.87 rows=1000 width=37) (actual time=0.047..4.123 rows=1000 loops=1) -> Index Scan using test_value_in2section_key on test (cost=0.00..5392.87 rows=1000 width=37) (actual time=0.044..3.552 rows=1000 loops=1) Total runtime: 4.460 ms I hope that test case will make my issue more clear. Regards, Maksym On Mon, Jan 23, 2012 at 11:46 AM, Maxim Boguk <maxim.bo...@gmail.com> wrote: > > On Mon, Jan 23, 2012 at 11:28 AM, Tom Lane <t...@sss.pgh.pa.us> wrote: > >> Maxim Boguk <maxim.bo...@gmail.com> writes: >> > But it seems that index scan cost for very narrow/selective conditional >> > indexes is greatly overestimated at least in some cases. >> >> I realized in connection with >> http://archives.postgresql.org/pgsql-general/2012-01/msg00459.php >> that btcostestimate is not correctly estimating numIndexTuples for >> partial indexes. But it's impossible to tell from this amount of >> information whether you're seeing an effect of that, or something else. >> Can you provide a self-contained test case? >> >> regards, tom lane >> > > Prorably simpliest test case: > > set random_page_cost to 4; > set seq_page_cost to 1; > drop table if exists test; > CREATE TABLE test (id integer primary key, value1 float, value2 float, > value3 float, value4 float); > INSERT into test select id,random() as value1,random() as value2, random() > as value3,random() as value4 from generate_series(1,1000000) as g(id); > CREATE INDEX test_special_key on test(value1) where value2*2<0.01 and > value3*2<0.01 and value4*2<0.01; > ANALYZE test; > > postgres=# EXPLAIN ANALYZE select * from test order by id limit 100; > QUERY PLAN > > ----------------------------------------------------------------------------------------------------------------------------------- > Limit (cost=0.00..3.43 rows=100 width=36) (actual time=0.042..0.170 > rows=100 loops=1) > -> Index Scan using test_pkey on test (cost=0.00..34317.36 > rows=1000000 width=36) (actual time=0.040..0.108 rows=100 loops=1) > Total runtime: 0.243 ms > (3 rows) > > vs > > postgres=# EXPLAIN ANALYZE select * from test where value2*2<0.01 and > value3*2<0.01 and value4*2<0.01 order by value1 limit 100; > QUERY PLAN > > -------------------------------------------------------------------------------------------------------------------------------------- > Limit (cost=0.00..92.52 rows=100 width=36) (actual time=0.072..0.072 > rows=0 loops=1) > -> Index Scan using test_special_key on test (cost=0.00..34264.97 > rows=37037 width=36) (actual time=0.070..0.070 rows=0 loops=1) > Total runtime: 0.113 ms > (3 rows) > > cost difference: > (cost=0.00..3.43 rows=100 width=36) > vs > (cost=0.00..92.52 rows=100 width=36) > > An actual speed (and theoretical performance) almost same. > > More selective conditions added to conditional index - worse situation > with wrong costing. > > > Kind Regards, > Maksym > > -- > Maxim Boguk > Senior Postgresql DBA. > > Phone RU: +7 910 405 4718 > Phone AU: +61 45 218 5678 > > Skype: maxim.boguk > Jabber: maxim.bo...@gmail.com > > LinkedIn profile: http://nz.linkedin.com/in/maximboguk > "If they can send one man to the moon... why can't they send them all?" > > МойКруг: http://mboguk.moikrug.ru/ > "People problems are solved with people. > If people cannot solve the problem, try technology. > People will then wish they'd listened at the first stage." > > > -- Maxim Boguk Senior Postgresql DBA. Phone RU: +7 910 405 4718 Phone AU: +61 45 218 5678 Skype: maxim.boguk Jabber: maxim.bo...@gmail.com LinkedIn profile: http://nz.linkedin.com/in/maximboguk "If they can send one man to the moon... why can't they send them all?" МойКруг: http://mboguk.moikrug.ru/ "People problems are solved with people. If people cannot solve the problem, try technology. People will then wish they'd listened at the first stage."