Hi,
You can use the following approaches for optimization:

   - Instead of inserting one row at a time, perform bulk inserts, which
   will reduce the overhead of each individual transaction
   - Partitioning can improve write performance by splitting the data into
   smaller, more manageable chunks
   - Tune postgres configuration like
   work_mem = '16MB'
   shared_buffers = '8GB'
   effective_cache_size = '24GB'


On Wed, 11 Sept 2024 at 13:50, Durgamahesh Manne <maheshpostgr...@gmail.com>
wrote:

> Hi
>     insert into
> dictionary(lang,tid,sportid,brandid,translatedtext,objecttype,basetid)
> values ($1,$2,$3,$4,$5,$6,$7) on conflict do nothing
>  *8vcpus and 32gb ram
>    Number of calls per sec 1600 at this time 42% of cpu utilized
>                  Max in ms 33.62 per call
>                  Avg in ms  0.17 per call
>                                                    Table
> "dictionary.dictionary"
>      Column     |           Type           | Collation | Nullable |
> Default  | Storage  | Compression | Stats target | Description
>
> ----------------+--------------------------+-----------+----------+----------+----------+-------------+--------------+-------------
>  lang           | text                     |           | not null |
>    | extended |             |              |
>  tid            | text                     |           | not null |
>    | extended |             |              |
>  basetid        | text                     |           | not null |
>    | extended |             |              |
>  sportid        | text                     |           |          |
>    | extended |             |              |
>  brandid        | text                     |           | not null |
>    | extended |             |              |
>  translatedtext | text                     |           |          |
>    | extended |             |              |
>  objecttype     | text                     |           |          |
>    | extended |             |              |
>  createdat      | timestamp with time zone |           | not null | now()
>    | plain    |             |              |
>  modified       | timestamp with time zone |           | not null | now()
>    | plain    |             |              |
>  modifiedby     | text                     |           | not null |
> ''::text | extended |             |              |
>  version        | integer                  |           | not null | 0
>    | plain    |             |              |
> Indexes:
>     "pk_dictionary" PRIMARY KEY, btree (lang, tid)
>     "idx_dictionary_basetid" btree (basetid)
>     "idx_dictionary_brandid" btree (brandid)
>     "idx_dictionary_objecttype" btree (objecttype)
>     "idx_dictionary_sportid" btree (sportid)
> Triggers:
>     i_dictionary_createdat BEFORE INSERT ON dictionary FOR EACH ROW
> EXECUTE FUNCTION update_createdat_col()
>     i_dictionary_modified BEFORE INSERT OR UPDATE ON dictionary FOR EACH
> ROW EXECUTE FUNCTION update_modified_col()
> Access method: heap
> How do we improve this query performance without taking more cpu?
>
> Regards,
> Durga Mahesh
>

Reply via email to