> On Sep 13, 2018, at 12:17 PM, Arup Rakshit <a...@zeit.io> wrote:
> 
> The below query basically gives the result by maintaining the order of the 
> sizes in the list.
> 
> explain analyze select
>         "price_levels"."name",
>         "price_levels"."size"
> from
>         "price_levels"
> join unnest(array['M',
>         'L',
>         'XL',
>         '2XL',
>         '3XL',
>         '4XL',
>         '5XL',
>         '6XL',
>         'S']) with ordinality t(size,
>         ord)
>                 using (size)
> order by
>         t.size
> 
> 
> I have a Btree index on the size column.
> 
> Explain output is:
> 
> Merge Join  (cost=4.61..5165.38 rows=60000 width=46) (actual 
> time=0.157..57.872 rows=60000 loops=1)
>   Merge Cond: ((price_levels.size)::text = t.size)
>   ->  Index Scan using price_levels_size_idx on price_levels  
> (cost=0.29..4111.05 rows=60000 width=14) (actual time=0.044..25.941 
> rows=60000 loops=1)
>   ->  Sort  (cost=4.32..4.57 rows=100 width=32) (actual time=0.108..3.946 
> rows=53289 loops=1)
>         Sort Key: t.size
>         Sort Method: quicksort  Memory: 25kB
>         ->  Function Scan on unnest t  (cost=0.00..1.00 rows=100 width=32) 
> (actual time=0.030..0.033 rows=9 loops=1)
> Planning time: 0.667 ms
> Execution time: 62.846 ms
> 
> 
> 
> Thanks,
> 
> Arup Rakshit
> a...@zeit.io <mailto:a...@zeit.io>
> 
> 
There are not value of size fit it to be a worthwhile key.
> 

Reply via email to