ldd -o on the petsc program (static) and the non petsc program (static), what are the differences?
nm -o both executables | grep cudaFree() > On Feb 12, 2020, at 1:51 PM, Munson, Todd via petsc-dev > <petsc-dev@mcs.anl.gov> wrote: > > > There are some side effects when loading shared libraries, such as > initializations of > static variables, etc. Is something like that happening? > > Another place is the initial runtime library that gets linked (libcrt0 > maybe?). I > think some MPI compilers insert their own version. > > Todd. > >> On Feb 12, 2020, at 11:38 AM, Zhang, Hong via petsc-dev >> <petsc-dev@mcs.anl.gov> wrote: >> >> >> >>> On Feb 12, 2020, at 11:09 AM, Matthew Knepley <knep...@gmail.com> wrote: >>> >>> On Wed, Feb 12, 2020 at 11:06 AM Zhang, Hong via petsc-dev >>> <petsc-dev@mcs.anl.gov> wrote: >>> Sorry for the long post. Here are replies I have got from OLCF so far. We >>> still don’t know how to solve the problem. >>> >>> One interesting thing that Tom noticed is PetscInitialize() may have called >>> cudaFree(0) 32 times as NVPROF shows, and they all run very fast. These >>> calls may be triggered by some other libraries like cublas. But if PETSc >>> calls cudaFree() explicitly, it is always very slow. >>> >>> It sounds really painful, but I would start removing lines from >>> PetscInitialize() until it runs fast. >> >> It may be more painful than it sounds. The problem is not really related to >> PetscInitialize(). In the following simple example, we do not call any PETsc >> function. But if we link it to the PETSc shared library, cudaFree(0) would >> be very slow. CUDA is a blackbox. There is not much we can debug with this >> simple example. >> >> bash-4.2$ cat ex_simple.c >> #include <time.h> >> #include <cuda_runtime.h> >> #include <stdio.h> >> >> int main(int argc,char **args) >> { >> clock_t start,s1,s2,s3; >> double cputime; >> double *init,tmp[100] = {0}; >> >> start = clock(); >> cudaFree(0); >> s1 = clock(); >> cudaMalloc((void **)&init,100*sizeof(double)); >> s2 = clock(); >> cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); >> s3 = clock(); >> printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) (s1 - >> start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / CLOCKS_PER_SEC,((double) (s3 >> - s2)) / CLOCKS_PER_SEC); >> return 0; >> } >> >> >>> >>> Thanks, >>> >>> Matt >>> >>> Hong >>> >>> >>> On Wed Feb 12 09:51:33 2020, tpapathe wrote: >>> >>> Something else I noticed from the nvprof output (see my previous post) is >>> that the runs with PETSc initialized have 33 calls to cudaFree, whereas the >>> non-PETSc versions only have the 1 call to cudaFree. I'm not sure what is >>> happening in the PETSc initialize/finalize, but it appears to be doing a >>> lot under the hood. You can also see there are many additional CUDA calls >>> that are not shown in the profiler output from the non-PETSc runs (e.g., >>> additional cudaMalloc and cudaMemcpy calls, cudaDeviceSychronize, etc.). >>> Which other systems have you tested this on? Which CUDA Toolkits and CUDA >>> drivers were installed on those systems? Please let me know if there is any >>> additional information you can share with me about this. >>> >>> -Tom >>> On Wed Feb 12 09:25:23 2020, tpapathe wrote: >>> >>> Ok. Thanks for the additional info, Hong. I'll ask around to see if any >>> local (PETSc or CUDA) experts have experienced this behavior. In the >>> meantime, is this impacting your work or something you're just curious >>> about? A 5-7 second initialization time is indeed unusual, but is it >>> negligible relative to the overall walltime of your jobs, or is it >>> somehow affecting your productivity? >>> >>> -Tom >>> On Tue Feb 11 17:04:25 2020, hongzh...@anl.gov wrote: >>> >>> We know it happens with PETSc. But note that the slow down occurs on >>> the first CUDA function call. In the example I sent to you, if we simply >>> link it to the PETSc shared library and don’t call any PETSc function, the >>> slow down still happens on cudaFree(0). We have never seen this behavior on >>> other GPU systems. >>> >>> On Feb 11, 2020, at 3:31 PM, Thomas Papatheodore via RT <h...@nccs.gov> >>> wrote: >>> >>> Thanks for the update. I have now reproduced the behavior you described with >>> PETSc + CUDA using your example code: >>> >>> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun -n1 >>> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >>> >>> ==16991== NVPROF is profiling process 16991, command: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >>> >>> ==16991== Profiling application: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_petsc >>> >>> free time =4.730000 malloc time =0.000000 copy time =0.000000 >>> >>> ==16991== Profiling result: >>> >>> Type Time(%) Time Calls Avg Min Max Name >>> >>> GPU activities: 100.00% 9.3760us 6 1.5620us 1.3440us 1.7920us [CUDA memcpy >>> HtoD] >>> >>> API calls: 99.78% 5.99333s 33 181.62ms 883ns 4.71976s cudaFree >>> >>> 0.11% 6.3603ms 379 16.781us 233ns 693.40us cuDeviceGetAttribute >>> >>> 0.07% 4.1453ms 4 1.0363ms 1.0186ms 1.0623ms cuDeviceTotalMem >>> >>> 0.02% 1.0046ms 4 251.15us 131.45us 449.32us cuDeviceGetName >>> >>> 0.01% 808.21us 16 50.513us 6.7080us 621.54us cudaMalloc >>> >>> 0.01% 452.06us 450 1.0040us 830ns 6.4430us cudaFuncSetAttribute >>> >>> 0.00% 104.89us 6 17.481us 13.419us 21.338us cudaMemcpy >>> >>> 0.00% 102.26us 15 6.8170us 6.1900us 10.072us cudaDeviceSynchronize >>> >>> 0.00% 93.635us 80 1.1700us 1.0190us 2.1990us cudaEventCreateWithFlags >>> >>> 0.00% 92.168us 83 1.1100us 951ns 2.3550us cudaEventDestroy >>> >>> 0.00% 52.277us 74 706ns 592ns 1.5640us cudaDeviceGetAttribute >>> >>> 0.00% 34.558us 3 11.519us 9.5410us 15.129us cudaStreamDestroy >>> >>> 0.00% 27.778us 3 9.2590us 4.9120us 17.632us cudaStreamCreateWithFlags >>> >>> 0.00% 11.955us 1 11.955us 11.955us 11.955us cudaSetDevice >>> >>> 0.00% 10.361us 7 1.4800us 809ns 3.6580us cudaGetDevice >>> >>> 0.00% 5.4310us 3 1.8100us 1.6420us 1.9980us cudaEventCreate >>> >>> 0.00% 3.8040us 6 634ns 391ns 1.5350us cuDeviceGetCount >>> >>> 0.00% 3.5350us 1 3.5350us 3.5350us 3.5350us cuDeviceGetPCIBusId >>> >>> 0.00% 3.2210us 3 1.0730us 949ns 1.1640us cuInit >>> >>> 0.00% 2.6780us 5 535ns 369ns 1.0210us cuDeviceGet >>> >>> 0.00% 2.5080us 1 2.5080us 2.5080us 2.5080us cudaSetDeviceFlags >>> >>> 0.00% 1.6800us 4 420ns 392ns 488ns cuDeviceGetUuid >>> >>> 0.00% 1.5720us 3 524ns 398ns 590ns cuDriverGetVersion >>> >>> >>> >>> If I remove all mention of PETSc from the code, compile manually and run, I >>> get >>> the expected behavior: >>> >>> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ pgc++ >>> -L$OLCF_CUDA_ROOT/lib64 -lcudart ex_simple.c -o ex_simple >>> >>> >>> [tpapathe@batch2: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun -n1 >>> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >>> >>> ==17248== NVPROF is profiling process 17248, command: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >>> >>> ==17248== Profiling application: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple >>> >>> free time =0.340000 malloc time =0.000000 copy time =0.000000 >>> >>> ==17248== Profiling result: >>> >>> Type Time(%) Time Calls Avg Min Max Name >>> >>> GPU activities: 100.00% 1.7600us 1 1.7600us 1.7600us 1.7600us [CUDA memcpy >>> HtoD] >>> >>> API calls: 98.56% 231.76ms 1 231.76ms 231.76ms 231.76ms cudaFree >>> >>> 0.67% 1.5764ms 97 16.251us 234ns 652.65us cuDeviceGetAttribute >>> >>> 0.46% 1.0727ms 1 1.0727ms 1.0727ms 1.0727ms cuDeviceTotalMem >>> >>> 0.23% 537.38us 1 537.38us 537.38us 537.38us cudaMalloc >>> >>> 0.07% 172.80us 1 172.80us 172.80us 172.80us cuDeviceGetName >>> >>> 0.01% 21.648us 1 21.648us 21.648us 21.648us cudaMemcpy >>> >>> 0.00% 3.3470us 1 3.3470us 3.3470us 3.3470us cuDeviceGetPCIBusId >>> >>> 0.00% 2.5310us 3 843ns 464ns 1.3700us cuDeviceGetCount >>> >>> 0.00% 1.7260us 2 863ns 490ns 1.2360us cuDeviceGet >>> >>> 0.00% 377ns 1 377ns 377ns 377ns cuDeviceGetUuid >>> >>> >>> >>> I also get the expected behavior if I add an MPI_Init and MPI_Finalize to >>> the >>> code instead of PETSc initialization: >>> >>> [tpapathe@login1: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ mpicc >>> -L$OLCF_CUDA_ROOT/lib64 -lcudart ex_simple_mpi.c -o ex_simple_mpi >>> >>> >>> [tpapathe@batch1: /gpfs/alpine/scratch/tpapathe/stf007/petsc/src]$ jsrun -n1 >>> -a1 -c1 -g1 -r1 -l cpu-cpu -dpacked -bpacked:1 nvprof >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >>> >>> ==35166== NVPROF is profiling process 35166, command: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >>> >>> ==35166== Profiling application: >>> /gpfs/alpine/scratch/tpapathe/stf007/petsc/src/ex_simple_mpi >>> >>> free time =0.340000 malloc time =0.000000 copy time =0.000000 >>> >>> ==35166== Profiling result: >>> >>> Type Time(%) Time Calls Avg Min Max Name >>> >>> GPU activities: 100.00% 1.7600us 1 1.7600us 1.7600us 1.7600us [CUDA memcpy >>> HtoD] >>> >>> API calls: 98.57% 235.61ms 1 235.61ms 235.61ms 235.61ms cudaFree >>> >>> 0.66% 1.5802ms 97 16.290us 239ns 650.72us cuDeviceGetAttribute >>> >>> 0.45% 1.0825ms 1 1.0825ms 1.0825ms 1.0825ms cuDeviceTotalMem >>> >>> 0.23% 542.73us 1 542.73us 542.73us 542.73us cudaMalloc >>> >>> 0.07% 174.77us 1 174.77us 174.77us 174.77us cuDeviceGetName >>> >>> 0.01% 26.431us 1 26.431us 26.431us 26.431us cudaMemcpy >>> >>> 0.00% 4.0330us 1 4.0330us 4.0330us 4.0330us cuDeviceGetPCIBusId >>> >>> 0.00% 2.8560us 3 952ns 528ns 1.6150us cuDeviceGetCount >>> >>> 0.00% 1.6190us 2 809ns 576ns 1.0430us cuDeviceGet >>> >>> 0.00% 341ns 1 341ns 341ns 341ns cuDeviceGetUuid >>> >>> >>> So this appears to be something specific happening within PETSc itself - not >>> necessarily an OLCF issue. I would suggest asking this question within the >>> PETSc community to understand what's happening. Please let me know if you >>> have >>> any additional questions. >>> >>> -Tom >>> >>>> On Feb 10, 2020, at 11:14 AM, Smith, Barry F. <bsm...@mcs.anl.gov> wrote: >>>> >>>> >>>> gprof or some similar tool? >>>> >>>> >>>>> On Feb 10, 2020, at 11:18 AM, Zhang, Hong via petsc-dev >>>>> <petsc-dev@mcs.anl.gov> wrote: >>>>> >>>>> -cuda_initialize 0 does not make any difference. Actually this issue has >>>>> nothing to do with PetscInitialize(). I tried to call cudaFree(0) before >>>>> PetscInitialize(), and it still took 7.5 seconds. >>>>> >>>>> Hong >>>>> >>>>>> On Feb 10, 2020, at 10:44 AM, Zhang, Junchao <jczh...@mcs.anl.gov> wrote: >>>>>> >>>>>> As I mentioned, have you tried -cuda_initialize 0? Also, >>>>>> PetscCUDAInitialize contains >>>>>> ierr = PetscCUBLASInitializeHandle();CHKERRQ(ierr); >>>>>> ierr = PetscCUSOLVERDnInitializeHandle();CHKERRQ(ierr); >>>>>> Have you tried to comment out them and test again? >>>>>> --Junchao Zhang >>>>>> >>>>>> >>>>>> On Sat, Feb 8, 2020 at 5:22 PM Zhang, Hong via petsc-dev >>>>>> <petsc-dev@mcs.anl.gov> wrote: >>>>>> >>>>>> >>>>>>> On Feb 8, 2020, at 5:03 PM, Matthew Knepley <knep...@gmail.com> wrote: >>>>>>> >>>>>>> On Sat, Feb 8, 2020 at 4:34 PM Zhang, Hong via petsc-dev >>>>>>> <petsc-dev@mcs.anl.gov> wrote: >>>>>>> I did some further investigation. The overhead persists for both the >>>>>>> PETSc shared library and the static library. In the previous example, >>>>>>> it does not call any PETSc function, the first CUDA function becomes >>>>>>> very slow when it is linked to the petsc so. This indicates that the >>>>>>> slowdown occurs if the symbol (cudafree)is searched through the petsc >>>>>>> so, but does not occur if the symbol is found directly in the cuda >>>>>>> runtime lib. >>>>>>> >>>>>>> So the issue has nothing to do with the dynamic linker. The following >>>>>>> example can be used to easily reproduce the problem (cudaFree(0) always >>>>>>> takes ~7.5 seconds). >>>>>>> >>>>>>> 1) This should go to OLCF admin as Jeff suggests >>>>>> >>>>>> I had sent this to OLCF admin before the discussion was started here. >>>>>> Thomas Papatheodore has followed up. I am trying to help him reproduce >>>>>> the problem on summit. >>>>>> >>>>>>> >>>>>>> 2) Just to make sure I understand, a static executable with this code >>>>>>> is still slow on the cudaFree(), since CUDA is a shared library by >>>>>>> default. >>>>>> >>>>>> I prepared the code as a minimal example to reproduce the problem. It >>>>>> would be fair to say any code using PETSc (with CUDA enabled, built >>>>>> statically or dynamically) on summit suffers a 7.5-second overhead on >>>>>> the first CUDA function call (either in the user code or inside PETSc). >>>>>> >>>>>> Thanks, >>>>>> Hong >>>>>> >>>>>>> >>>>>>> I think we should try: >>>>>>> >>>>>>> a) Forcing a full static link, if possible >>>>>>> >>>>>>> b) Asking OLCF about link resolution order >>>>>>> >>>>>>> It sounds like a similar thing I have seen in the past where link >>>>>>> resolution order can exponentially increase load time. >>>>>>> >>>>>>> Thanks, >>>>>>> >>>>>>> Matt >>>>>>> >>>>>>> bash-4.2$ cat ex_simple_petsc.c >>>>>>> #include <time.h> >>>>>>> #include <cuda_runtime.h> >>>>>>> #include <stdio.h> >>>>>>> #include <petscmat.h> >>>>>>> >>>>>>> int main(int argc,char **args) >>>>>>> { >>>>>>> clock_t start,s1,s2,s3; >>>>>>> double cputime; >>>>>>> double *init,tmp[100] = {0}; >>>>>>> PetscErrorCode ierr=0; >>>>>>> >>>>>>> ierr = PetscInitialize(&argc,&args,(char*)0,NULL);if (ierr) return ierr; >>>>>>> start = clock(); >>>>>>> cudaFree(0); >>>>>>> s1 = clock(); >>>>>>> cudaMalloc((void **)&init,100*sizeof(double)); >>>>>>> s2 = clock(); >>>>>>> cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); >>>>>>> s3 = clock(); >>>>>>> printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) (s1 >>>>>>> - start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / >>>>>>> CLOCKS_PER_SEC,((double) (s3 - s2)) / CLOCKS_PER_SEC); >>>>>>> ierr = PetscFinalize(); >>>>>>> return ierr; >>>>>>> } >>>>>>> >>>>>>> Hong >>>>>>> >>>>>>>> On Feb 7, 2020, at 3:09 PM, Zhang, Hong <hongzh...@anl.gov> wrote: >>>>>>>> >>>>>>>> Note that the overhead was triggered by the first call to a CUDA >>>>>>>> function. So it seems that the first CUDA function triggered loading >>>>>>>> petsc so (if petsc so is linked), which is slow on the summit file >>>>>>>> system. >>>>>>>> >>>>>>>> Hong >>>>>>>> >>>>>>>>> On Feb 7, 2020, at 2:54 PM, Zhang, Hong via petsc-dev >>>>>>>>> <petsc-dev@mcs.anl.gov> wrote: >>>>>>>>> >>>>>>>>> Linking any other shared library does not slow down the execution. >>>>>>>>> The PETSc shared library is the only one causing trouble. >>>>>>>>> >>>>>>>>> Here are the ldd output for two different versions. For the first >>>>>>>>> version, I removed -lpetsc and it ran very fast. The second (slow) >>>>>>>>> version was linked to petsc so. >>>>>>>>> >>>>>>>>> bash-4.2$ ldd ex_simple >>>>>>>>> linux-vdso64.so.1 => (0x0000200000050000) >>>>>>>>> liblapack.so.0 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/liblapack.so.0 >>>>>>>>> (0x0000200000070000) >>>>>>>>> libblas.so.0 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libblas.so.0 >>>>>>>>> (0x00002000009b0000) >>>>>>>>> libhdf5hl_fortran.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5hl_fortran.so.100 >>>>>>>>> (0x0000200000e80000) >>>>>>>>> libhdf5_fortran.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_fortran.so.100 >>>>>>>>> (0x0000200000ed0000) >>>>>>>>> libhdf5_hl.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_hl.so.100 >>>>>>>>> (0x0000200000f50000) >>>>>>>>> libhdf5.so.103 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5.so.103 >>>>>>>>> (0x0000200000fb0000) >>>>>>>>> libX11.so.6 => /usr/lib64/libX11.so.6 (0x00002000015e0000) >>>>>>>>> libcufft.so.10 => /sw/summit/cuda/10.1.168/lib64/libcufft.so.10 >>>>>>>>> (0x0000200001770000) >>>>>>>>> libcublas.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcublas.so.10 (0x0000200009b00000) >>>>>>>>> libcudart.so.10.1 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcudart.so.10.1 (0x000020000d950000) >>>>>>>>> libcusparse.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcusparse.so.10 (0x000020000d9f0000) >>>>>>>>> libcusolver.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcusolver.so.10 (0x0000200012f50000) >>>>>>>>> libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x000020001dc40000) >>>>>>>>> libdl.so.2 => /usr/lib64/libdl.so.2 (0x000020001ddd0000) >>>>>>>>> libpthread.so.0 => /usr/lib64/libpthread.so.0 >>>>>>>>> (0x000020001de00000) >>>>>>>>> libmpiprofilesupport.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpiprofilesupport.so.3 >>>>>>>>> (0x000020001de40000) >>>>>>>>> libmpi_ibm_usempi.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_usempi.so >>>>>>>>> (0x000020001de70000) >>>>>>>>> libmpi_ibm_mpifh.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_mpifh.so.3 >>>>>>>>> (0x000020001dea0000) >>>>>>>>> libmpi_ibm.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm.so.3 >>>>>>>>> (0x000020001df40000) >>>>>>>>> libpgf90rtl.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90rtl.so >>>>>>>>> (0x000020001e0b0000) >>>>>>>>> libpgf90.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90.so >>>>>>>>> (0x000020001e0f0000) >>>>>>>>> libpgf90_rpm1.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90_rpm1.so >>>>>>>>> (0x000020001e6a0000) >>>>>>>>> libpgf902.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf902.so >>>>>>>>> (0x000020001e6d0000) >>>>>>>>> libpgftnrtl.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgftnrtl.so >>>>>>>>> (0x000020001e700000) >>>>>>>>> libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x000020001e730000) >>>>>>>>> libpgkomp.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgkomp.so >>>>>>>>> (0x000020001e760000) >>>>>>>>> libomp.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomp.so >>>>>>>>> (0x000020001e790000) >>>>>>>>> libomptarget.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomptarget.so >>>>>>>>> (0x000020001e880000) >>>>>>>>> libpgmath.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgmath.so >>>>>>>>> (0x000020001e8b0000) >>>>>>>>> libpgc.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgc.so >>>>>>>>> (0x000020001e9d0000) >>>>>>>>> librt.so.1 => /usr/lib64/librt.so.1 (0x000020001eb40000) >>>>>>>>> libm.so.6 => /usr/lib64/libm.so.6 (0x000020001eb70000) >>>>>>>>> libgcc_s.so.1 => /usr/lib64/libgcc_s.so.1 (0x000020001ec60000) >>>>>>>>> libc.so.6 => /usr/lib64/libc.so.6 (0x000020001eca0000) >>>>>>>>> libz.so.1 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/zlib-1.2.11-2htm7ws4hgrthi5tyjnqxtjxgpfklxsc/lib/libz.so.1 >>>>>>>>> (0x000020001ee90000) >>>>>>>>> libxcb.so.1 => /usr/lib64/libxcb.so.1 (0x000020001eef0000) >>>>>>>>> /lib64/ld64.so.2 (0x0000200000000000) >>>>>>>>> libcublasLt.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcublasLt.so.10 (0x000020001ef40000) >>>>>>>>> libutil.so.1 => /usr/lib64/libutil.so.1 (0x0000200020e50000) >>>>>>>>> libhwloc_ompi.so.15 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libhwloc_ompi.so.15 >>>>>>>>> (0x0000200020e80000) >>>>>>>>> libevent-2.1.so.6 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent-2.1.so.6 >>>>>>>>> (0x0000200020ef0000) >>>>>>>>> libevent_pthreads-2.1.so.6 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent_pthreads-2.1.so.6 >>>>>>>>> (0x0000200020f70000) >>>>>>>>> libopen-rte.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-rte.so.3 >>>>>>>>> (0x0000200020fa0000) >>>>>>>>> libopen-pal.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-pal.so.3 >>>>>>>>> (0x00002000210b0000) >>>>>>>>> libXau.so.6 => /usr/lib64/libXau.so.6 (0x00002000211a0000) >>>>>>>>> >>>>>>>>> >>>>>>>>> bash-4.2$ ldd ex_simple_slow >>>>>>>>> linux-vdso64.so.1 => (0x0000200000050000) >>>>>>>>> libpetsc.so.3.012 => >>>>>>>>> /autofs/nccs-svm1_home1/hongzh/Projects/petsc/arch-olcf-summit-sell-opt/lib/libpetsc.so.3.012 >>>>>>>>> (0x0000200000070000) >>>>>>>>> liblapack.so.0 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/liblapack.so.0 >>>>>>>>> (0x0000200002be0000) >>>>>>>>> libblas.so.0 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libblas.so.0 >>>>>>>>> (0x0000200003520000) >>>>>>>>> libhdf5hl_fortran.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5hl_fortran.so.100 >>>>>>>>> (0x00002000039f0000) >>>>>>>>> libhdf5_fortran.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_fortran.so.100 >>>>>>>>> (0x0000200003a40000) >>>>>>>>> libhdf5_hl.so.100 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5_hl.so.100 >>>>>>>>> (0x0000200003ac0000) >>>>>>>>> libhdf5.so.103 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/hdf5-1.10.3-pgiul2yf4auv7krecd72t6vupd7e3qgn/lib/libhdf5.so.103 >>>>>>>>> (0x0000200003b20000) >>>>>>>>> libX11.so.6 => /usr/lib64/libX11.so.6 (0x0000200004150000) >>>>>>>>> libcufft.so.10 => /sw/summit/cuda/10.1.168/lib64/libcufft.so.10 >>>>>>>>> (0x00002000042e0000) >>>>>>>>> libcublas.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcublas.so.10 (0x000020000c670000) >>>>>>>>> libcudart.so.10.1 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcudart.so.10.1 (0x00002000104c0000) >>>>>>>>> libcusparse.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcusparse.so.10 (0x0000200010560000) >>>>>>>>> libcusolver.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcusolver.so.10 (0x0000200015ac0000) >>>>>>>>> libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00002000207b0000) >>>>>>>>> libdl.so.2 => /usr/lib64/libdl.so.2 (0x0000200020940000) >>>>>>>>> libpthread.so.0 => /usr/lib64/libpthread.so.0 >>>>>>>>> (0x0000200020970000) >>>>>>>>> libmpiprofilesupport.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpiprofilesupport.so.3 >>>>>>>>> (0x00002000209b0000) >>>>>>>>> libmpi_ibm_usempi.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_usempi.so >>>>>>>>> (0x00002000209e0000) >>>>>>>>> libmpi_ibm_mpifh.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm_mpifh.so.3 >>>>>>>>> (0x0000200020a10000) >>>>>>>>> libmpi_ibm.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libmpi_ibm.so.3 >>>>>>>>> (0x0000200020ab0000) >>>>>>>>> libpgf90rtl.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90rtl.so >>>>>>>>> (0x0000200020c20000) >>>>>>>>> libpgf90.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90.so >>>>>>>>> (0x0000200020c60000) >>>>>>>>> libpgf90_rpm1.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf90_rpm1.so >>>>>>>>> (0x0000200021210000) >>>>>>>>> libpgf902.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgf902.so >>>>>>>>> (0x0000200021240000) >>>>>>>>> libpgftnrtl.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgftnrtl.so >>>>>>>>> (0x0000200021270000) >>>>>>>>> libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x00002000212a0000) >>>>>>>>> libpgkomp.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgkomp.so >>>>>>>>> (0x00002000212d0000) >>>>>>>>> libomp.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomp.so >>>>>>>>> (0x0000200021300000) >>>>>>>>> libomptarget.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libomptarget.so >>>>>>>>> (0x00002000213f0000) >>>>>>>>> libpgmath.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgmath.so >>>>>>>>> (0x0000200021420000) >>>>>>>>> libpgc.so => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/pgi-19.4-6acz4xyqjlpoaonjiiqjme2aknrfnzoy/linuxpower/19.4/lib/libpgc.so >>>>>>>>> (0x0000200021540000) >>>>>>>>> librt.so.1 => /usr/lib64/librt.so.1 (0x00002000216b0000) >>>>>>>>> libm.so.6 => /usr/lib64/libm.so.6 (0x00002000216e0000) >>>>>>>>> libgcc_s.so.1 => /usr/lib64/libgcc_s.so.1 (0x00002000217d0000) >>>>>>>>> libc.so.6 => /usr/lib64/libc.so.6 (0x0000200021810000) >>>>>>>>> libz.so.1 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/zlib-1.2.11-2htm7ws4hgrthi5tyjnqxtjxgpfklxsc/lib/libz.so.1 >>>>>>>>> (0x0000200021a10000) >>>>>>>>> libxcb.so.1 => /usr/lib64/libxcb.so.1 (0x0000200021a60000) >>>>>>>>> /lib64/ld64.so.2 (0x0000200000000000) >>>>>>>>> libcublasLt.so.10 => >>>>>>>>> /sw/summit/cuda/10.1.168/lib64/libcublasLt.so.10 (0x0000200021ab0000) >>>>>>>>> libutil.so.1 => /usr/lib64/libutil.so.1 (0x00002000239c0000) >>>>>>>>> libhwloc_ompi.so.15 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libhwloc_ompi.so.15 >>>>>>>>> (0x00002000239f0000) >>>>>>>>> libevent-2.1.so.6 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent-2.1.so.6 >>>>>>>>> (0x0000200023a60000) >>>>>>>>> libevent_pthreads-2.1.so.6 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libevent_pthreads-2.1.so.6 >>>>>>>>> (0x0000200023ae0000) >>>>>>>>> libopen-rte.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-rte.so.3 >>>>>>>>> (0x0000200023b10000) >>>>>>>>> libopen-pal.so.3 => >>>>>>>>> /autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/pgi-19.4/spectrum-mpi-10.3.0.1-20190611-4ymaahbai7ehhw4rves5jjiwon2laz3a/lib/libopen-pal.so.3 >>>>>>>>> (0x0000200023c20000) >>>>>>>>> libXau.so.6 => /usr/lib64/libXau.so.6 (0x0000200023d10000) >>>>>>>>> >>>>>>>>> >>>>>>>>>> On Feb 7, 2020, at 2:31 PM, Smith, Barry F. <bsm...@mcs.anl.gov> >>>>>>>>>> wrote: >>>>>>>>>> >>>>>>>>>> >>>>>>>>>> ldd -o on the executable of both linkings of your code. >>>>>>>>>> >>>>>>>>>> My guess is that without PETSc it is linking the static version of >>>>>>>>>> the needed libraries and with PETSc the shared. And, in typical >>>>>>>>>> fashion, the shared libraries are off on some super slow file system >>>>>>>>>> so take a long time to be loaded and linked in on demand. >>>>>>>>>> >>>>>>>>>> Still a performance bug in Summit. >>>>>>>>>> >>>>>>>>>> Barry >>>>>>>>>> >>>>>>>>>> >>>>>>>>>>> On Feb 7, 2020, at 12:23 PM, Zhang, Hong via petsc-dev >>>>>>>>>>> <petsc-dev@mcs.anl.gov> wrote: >>>>>>>>>>> >>>>>>>>>>> Hi all, >>>>>>>>>>> >>>>>>>>>>> Previously I have noticed that the first call to a CUDA function >>>>>>>>>>> such as cudaMalloc and cudaFree in PETSc takes a long time (7.5 >>>>>>>>>>> seconds) on summit. Then I prepared a simple example as attached to >>>>>>>>>>> help OCLF reproduce the problem. It turned out that the problem was >>>>>>>>>>> caused by PETSc. The 7.5-second overhead can be observed only when >>>>>>>>>>> the PETSc lib is linked. If I do not link PETSc, it runs normally. >>>>>>>>>>> Does anyone have any idea why this happens and how to fix it? >>>>>>>>>>> >>>>>>>>>>> Hong (Mr.) >>>>>>>>>>> >>>>>>>>>>> bash-4.2$ cat ex_simple.c >>>>>>>>>>> #include <time.h> >>>>>>>>>>> #include <cuda_runtime.h> >>>>>>>>>>> #include <stdio.h> >>>>>>>>>>> >>>>>>>>>>> int main(int argc,char **args) >>>>>>>>>>> { >>>>>>>>>>> clock_t start,s1,s2,s3; >>>>>>>>>>> double cputime; >>>>>>>>>>> double *init,tmp[100] = {0}; >>>>>>>>>>> >>>>>>>>>>> start = clock(); >>>>>>>>>>> cudaFree(0); >>>>>>>>>>> s1 = clock(); >>>>>>>>>>> cudaMalloc((void **)&init,100*sizeof(double)); >>>>>>>>>>> s2 = clock(); >>>>>>>>>>> cudaMemcpy(init,tmp,100*sizeof(double),cudaMemcpyHostToDevice); >>>>>>>>>>> s3 = clock(); >>>>>>>>>>> printf("free time =%lf malloc time =%lf copy time =%lf\n",((double) >>>>>>>>>>> (s1 - start)) / CLOCKS_PER_SEC,((double) (s2 - s1)) / >>>>>>>>>>> CLOCKS_PER_SEC,((double) (s3 - s2)) / CLOCKS_PER_SEC); >>>>>>>>>>> >>>>>>>>>>> return 0; >>>>>>>>>>> } >>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> -- >>>>>>> What most experimenters take for granted before they begin their >>>>>>> experiments is infinitely more interesting than any results to which >>>>>>> their experiments lead. >>>>>>> -- Norbert Wiener >>>>>>> >>>>>>> https://www.cse.buffalo.edu/~knepley/ >>>>>> >>>>> >>>> >>> >>> >>> >>> -- >>> What most experimenters take for granted before they begin their >>> experiments is infinitely more interesting than any results to which their >>> experiments lead. >>> -- Norbert Wiener >>> >>> https://www.cse.buffalo.edu/~knepley/ >> >