Hi,
The 1095 bits specify the key length . For bublic key cryptography we need two keys for encryption and decryption(public and private),these keys are generated by the following procedure
- Generate two large random primes, p and q, of approximately equal size such that their product n = pq is of the required bit length, e.g. 1024 bits.
- Compute n = pq and (φ) phi = (p-1)(q-1).
- Choose an integer e, 1 < e < phi, such that gcd(e, phi) = 1.
- Compute the secret exponent d, 1 < d < phi, such that
ed ≡ 1 (mod phi). [See note 3]. - The public key is (n, e) and the private key is (n, d). The values of p, q, and phi should also be kept secret.
- n is known as the modulus.
- e is known as the public exponent or encryption exponent.
- d is known as the secret exponent or decryption exponent.
----- Original Message ----
From: Marek Marcola <[EMAIL PROTECTED]>
To: openssl-users@openssl.org
Sent: Thursday, 8 June, 2006 11:23:15 PM
Subject: Re: 1095 bit key ??
From: Marek Marcola <[EMAIL PROTECTED]>
To: openssl-users@openssl.org
Sent: Thursday, 8 June, 2006 11:23:15 PM
Subject: Re: 1095 bit key ??
Hello,
After some calculations:
> Private-Key: (1095 bit)
> modulus:
> 4b:e9:e4:a6:3a:30:bc:0b:99:56:c6:b5:19:da:73:
> 79:f4:7f:35:15:d6:3f:4c:8d:e2:08:ab:43:c0:84:
> 0c:a2:69:98:5a:28:3a:fe:81:ac:ec:14:cb:97:8b:
> 48:b7:e6:b2:a9:fb:84:cf:88:77:2a:3b:6d:bf:e7:
> ed:7a:c7:92:34:75:9d:c8:6c:90:6e:8a:40:4d:66:
> 13:95:bb:6d:4c:d6:29:9c:46:6c:b1:f6:2d:39:09:
> 95:d8:cf:02:87:60:9c:af:79:d8:8e:9c:69:6f:26:
> af:8b:e1:26:d4:07:3f:7b:59:b1:52:0f:ce:3d:b4:
> ae:bd:0e:57:5b:39:72:17:ee:6b:64:25:8d:31:b0:
> b0:a1
Correct ( = prime1*prime2).
> prime1:
> 0c:23:ed:fc:fb:89:3e:f4:2c:0e:d7:4e:6e:b7:eb:
> 19:0c:e4:0b:35:03:d8:c1:2f:c2:6a:37:8f:16:72:
> 55:96:e3:a5:94:1d:69:b7:22:0d:67:3e:8f:30:fb:
> fd:45:a9:4c:ad:cf:78:2b:23:1c:a8:4c:f6:ff:7e:
> c4:cc:86:ee:72:41:1b:10:b1
Prime.
> prime2:
> 06:40:c4:cc:d8:09:39:05:17:fd:68:07:34:80:19:
> c7:fe:a6:09:69:60:66:b6:a9:5c:74:e2:01:a6:bd:
> 46:95:cd:9d:fe:d9:e1:bc:d8:7b:ae:b6:a6:8c:8f:
> 9a:74:c1:62:a0:8b:11:0f:3d:2b:75:b1:63:87:4a:
> 4c:d1:e4:22:46:60:c4:1a:f1
Prime.
RSA key looks good (and this is most important),
so this may be some command line bad parameter.
Best regards,
--
Marek Marcola <[EMAIL PROTECTED]>
______________________________________________________________________
OpenSSL Project http://www.openssl.org
User Support Mailing List openssl-users@openssl.org
Automated List Manager [EMAIL PROTECTED]
After some calculations:
> Private-Key: (1095 bit)
> modulus:
> 4b:e9:e4:a6:3a:30:bc:0b:99:56:c6:b5:19:da:73:
> 79:f4:7f:35:15:d6:3f:4c:8d:e2:08:ab:43:c0:84:
> 0c:a2:69:98:5a:28:3a:fe:81:ac:ec:14:cb:97:8b:
> 48:b7:e6:b2:a9:fb:84:cf:88:77:2a:3b:6d:bf:e7:
> ed:7a:c7:92:34:75:9d:c8:6c:90:6e:8a:40:4d:66:
> 13:95:bb:6d:4c:d6:29:9c:46:6c:b1:f6:2d:39:09:
> 95:d8:cf:02:87:60:9c:af:79:d8:8e:9c:69:6f:26:
> af:8b:e1:26:d4:07:3f:7b:59:b1:52:0f:ce:3d:b4:
> ae:bd:0e:57:5b:39:72:17:ee:6b:64:25:8d:31:b0:
> b0:a1
Correct ( = prime1*prime2).
> prime1:
> 0c:23:ed:fc:fb:89:3e:f4:2c:0e:d7:4e:6e:b7:eb:
> 19:0c:e4:0b:35:03:d8:c1:2f:c2:6a:37:8f:16:72:
> 55:96:e3:a5:94:1d:69:b7:22:0d:67:3e:8f:30:fb:
> fd:45:a9:4c:ad:cf:78:2b:23:1c:a8:4c:f6:ff:7e:
> c4:cc:86:ee:72:41:1b:10:b1
Prime.
> prime2:
> 06:40:c4:cc:d8:09:39:05:17:fd:68:07:34:80:19:
> c7:fe:a6:09:69:60:66:b6:a9:5c:74:e2:01:a6:bd:
> 46:95:cd:9d:fe:d9:e1:bc:d8:7b:ae:b6:a6:8c:8f:
> 9a:74:c1:62:a0:8b:11:0f:3d:2b:75:b1:63:87:4a:
> 4c:d1:e4:22:46:60:c4:1a:f1
Prime.
RSA key looks good (and this is most important),
so this may be some command line bad parameter.
Best regards,
--
Marek Marcola <[EMAIL PROTECTED]>
______________________________________________________________________
OpenSSL Project http://www.openssl.org
User Support Mailing List openssl-users@openssl.org
Automated List Manager [EMAIL PROTECTED]