Em sáb., 10 de dez. de 2022 às 22:08, marcone augusto araújo borges
<marconeborge...@hotmail.com> escreveu:
>
> Seja p um número primo tal que p = = 3 (mod4) e @ um ângulo tal que tan@ é 
> racional. Prove que tan((p+1)@) também é racional com numerador múltiplo de p
> Desde já agradeço por algum esclarecimento ou solução.

Bem, o que eu consigo pensar é em algo desse tipo.

Sabemos que tan(m+n) = (tan(m) + tan(n))/(1-tan(m)* tan(n))

Escrevamos tan(nX)=p(n)/q(n), onde p e q são polinômios em t=tan(X).
Temos então a seguinte recorrência:

p(1)=t; p(n+1)=p(n)+tq(n)
q(1)=1; q(n+1)=-tp(n)+q(n)

Jogando aqui e ali, temos

p(1)=t; p(2)=2t; p(n+2)=2p(n+1)-(t^2+1)p(n)
q(1)=1; q(2)=1-t^2; q(n+2)=2q(n+1)-(t^2+1)q(n)

De cara, se nota que p sempre será múltiplo de p, e que q sempre deixa
resto 1 módulo t, o que já dá uma pista do que procurar...
Decerto, vai aparecer alguma coisa do tipo x^2+1, e com isso se usa o
fato de p ser primo da forma 4k-1...

>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================

Responder a