Hi Eduard,

If you want to have a minimalistic model, with respect to both fixed effects 
and random effects, but still incorporate all 4 categories as well as the 
Markov element, you can try the minimal Continuous-Time Markov Model (mCTMM) 
described in "A Minimal Continuous-Time Markov Pharmacometric Model. Schindler 
E, Karlsson MO. AAPS J. 2017 Sep;19(5):1424-1435"
Best regards,
Mats

From: owner-nmus...@globomaxnm.com <owner-nmus...@globomaxnm.com> On Behalf Of 
Eduard Schmulenson
Sent: den 5 februari 2019 11:04
To: nmusers@globomaxnm.com
Subject: [NMusers] Ordinal data model: Incorporation of variability & 
assessment of predictive performance

Dear all,

I am currently trying to model the transitions between four adverse event 
grades (0-3) using a continuous-time Markov modeling approach. I have included 
a dose effect as well as a time effect on the transition constants. Overall, 
the parameters are well estimated and the VPC looks also quite good.
However, the model does not have any IIV or other variability incorporated, so 
no individual predictions can be made. I have tried different approaches to 
include variability:

-          Six different etas: a) One eta per transition constant without a 
block structure (this has resulted in rounding errors), b) with a full block 
structure (see Lacroix BD et al. CPT PSP 2014), also with rounding errors and 
c) with two OMEGA BLOCK(3) structures which solely include "forward" and 
"backward" transition constants, respectively (also with rounding errors).

-          Two different etas: One mutual eta on "forward" and "backward" 
transition constants (shrinkage values of ~ 40 and 60%, respectively, which do 
not lower after including the dose effect. The impact of time cannot be 
estimated anymore)

-          Just one eta on every transition constant (shrinkage value of 46% 
which slightly increases after including the dose and time effect.

The etas were added as exponential variables.
Other tested covariates were not significant or resulted in run errors when a 
bootstrap was performed.

Are there any other possibilities to incorporate variability in this type of 
model? Or is it solely a data-dependent issue? You can find the control stream 
(without any IIV) below.


My second question is about the assessment of predictive performance in the 
same model. One can compare the observed proportions of an adverse event grade 
vs. the simulated probability or the observed vs. simulated grade. Is there a 
meaningful error which I can calculate in order to assess bias and precision? 
Would be a median prediction error and a median absolute prediction error 
appropriate for this type of data? And what kind of error would you suggest 
when one has to calculate a relative error which would include a division by 0?

Thank you very much in advance.

Best regards,
Eduard

##########################################
$ABB COMRES = 1
$SUBROUTINES ADVAN6 TOL = 4
$MODEL
NCOMP = 4
COMP = (G0) ; No AE
COMP = (G1) ; Mild AE
COMP = (G2) ; Moderate AE
COMP = (G3) ; Severe AE

$PK
IF(NEWIND.NE.2) THEN
PSDV = 0
COM(1) = 0
ENDIF
PRSP = PSDV ; Previous DV

IF(PRSP.EQ.1) COM(1) = 0
IF(PRSP.EQ.2) COM(1) = 1
IF(PRSP.EQ.3) COM(1) = 2
IF(PRSP.EQ.4) COM(1) = 3

F1 = 0
F2 = 0
F3 = 0
F4 = 0

IF(COM(1).EQ.0) F1 = 1
IF(COM(1).EQ.1) F2 = 1
IF(COM(1).EQ.2) F3 = 1
IF(COM(1).EQ.3) F4 = 1

TVK01 = THETA(1)
K01 = TVK01*EXP(ETA(1))

TVK12 = THETA(2)
K12 = TVK12

TVK23 = THETA(3)
K23 = TVK23

TVK10 = THETA(4)
K10 = TVK10

TVK21 = THETA(5)
K21 = TVK21

TVK32 = THETA(6)
K32 = TVK32

TVKT = THETA(8)
KT = TVKT

$DES
K01F = K01*EXP(KT*T) ; Time effect
K12F = K12*EXP(KT*T)
K23F = K23*EXP(KT*T)

K10B = K10*EXP(THETA(7)*(DOSEDAY-3000)) ; Dose effect
K21B = K21*EXP(THETA(7)*(DOSEDAY-3000))
K32B = K32*EXP(THETA(7)*(DOSEDAY-3000))

DADT(1) = K10B*A(2) - K01F*A(1)                           ; Grade 0
DADT(2) = K01F*A(1) + K21B*A(3) - A(2)*(K10B + K12F)   ; Grade 1
DADT(3) = K12F*A(2) + K32B*A(4) - A(3)*(K21B + K23F)   ; Grade 2
DADT(4) = K23F*A(3) - K32B*A(4)                                            ; 
Grade 3

$ERROR
Y = 1
IF(DV.EQ.1.AND.CMT.EQ.0) Y = A(1)
IF(DV.EQ.2.AND.CMT.EQ.0) Y = A(2)
IF(DV.EQ.3.AND.CMT.EQ.0) Y = A(3)
IF(DV.EQ.4.AND.CMT.EQ.0) Y = A(4)

P0 = A(1)
P1 = A(2)
P2 = A(3)
P3 = A(4)

; Cumulative probabilities

CUP0 = P0
CUP1 = P0 + P1
CUP2 = P0 + P1 + P2
CUP3 = P0 + P1 + P2 + P3

; Start of simulation block
IF(ICALL.EQ.4) THEN
IF(CMT.EQ.0) THEN
  CALL RANDOM (2,R)
     IF(R.LE.CUP0) DV = 1
     IF(R.GT.CUP0.AND.R.LE.CUP1) DV = 2
     IF(R.GT.CUP1.AND.R.LE.CUP2) DV = 3
     IF(R.GT.CUP2) DV = 4
ENDIF
ENDIF
; End of simulation block

PSDV=DV

$THETA
...
$OMEGA
0 FIX

$COV PRINT=E
;$SIM (7776) (8877 UNIFORM) ONLYSIM NOPREDICTION
$EST METHOD=1 LAPLACIAN LIKE SIG=2 PRINT=1 MAX=9999 NOABORT

[cid:image004.png@01D3092E.080FB8B0][unnamed]
_____________________
Eduard Schmulenson, M.Sc.
Apotheker/Pharmacist

Klinische Pharmazie
Pharmazeutisches Institut
Universität Bonn
An der Immenburg 4
D-53121 Bonn

Tel.: +49 228 73-5242
e.schmulen...@uni-bonn.de<mailto:e.schmulen...@uni-bonn.de>









När du har kontakt med oss på Uppsala universitet med e-post så innebär det att 
vi behandlar dina personuppgifter. För att läsa mer om hur vi gör det kan du 
läsa här: http://www.uu.se/om-uu/dataskydd-personuppgifter/

E-mailing Uppsala University means that we will process your personal data. For 
more information on how this is performed, please read here: 
http://www.uu.se/en/about-uu/data-protection-policy

Reply via email to