On Jan 23, 2015 10:37 PM, "Connor Abbott" <cwabbo...@gmail.com> wrote: > > Other than the one comment fix below, > > Reviewed-by: Connor Abbott <cwabbo...@gmail.com> > > On Fri, Jan 23, 2015 at 7:17 PM, Jason Ekstrand <ja...@jlekstrand.net> wrote: > > Add a required field to the Opcode class, const_expr, that contains an > > expression or statement that computes the result of the opcode given known > > constant inputs. Then take those const_expr's and expand them into a function > > that takes an opcode and an array of constant inputs and spits out the constant > > result. This means that when adding opcodes, there's one less place to update, > > and almost all the opcodes are self-documenting since the information on how to > > compute the result is right next to the definition. > > > > The helper functions in nir_constant_expressions.c were taken from > > ir_constant_expressions.cpp. > > > > v3 Jason Ekstrand <jason.ekstr...@iastate.edu> > > Might want to fix your email address here and a few lines below.
Oops. I'll fix that. > > > - Use mako to generate one function per opcode instead of doing piles of > > string splicing > > > > v4 Jason Ekstrand <jason.ekstr...@iastate.edu> > > - More comments and better indentation in the mako > > - Add a description of the constant expression language in nir_opcodes.py > > - Added nir_constant_expressions.py to EXTRA_DIST in Makefile.am > > > > Signed-off-by: Jason Ekstrand <jason.ekstr...@intel.com> > > --- > > src/glsl/Makefile.am | 6 + > > src/glsl/Makefile.sources | 1 + > > src/glsl/nir/.gitignore | 1 + > > src/glsl/nir/nir_constant_expressions.h | 31 ++ > > src/glsl/nir/nir_constant_expressions.py | 351 +++++++++++++++++++ > > src/glsl/nir/nir_opcodes.py | 580 +++++++++++++++++++++---------- > > 6 files changed, 786 insertions(+), 184 deletions(-) > > create mode 100644 src/glsl/nir/nir_constant_expressions.h > > create mode 100644 src/glsl/nir/nir_constant_expressions.py > > > > diff --git a/src/glsl/Makefile.am b/src/glsl/Makefile.am > > index bbaffbe..8c6c8b9 100644 > > --- a/src/glsl/Makefile.am > > +++ b/src/glsl/Makefile.am > > @@ -37,6 +37,7 @@ EXTRA_DIST = tests glcpp/tests README TODO glcpp/README \ > > glsl_parser.yy \ > > glcpp/glcpp-lex.l \ > > glcpp/glcpp-parse.y \ > > + nir/nir_constant_expressions.py \ > > nir/nir_opcodes.py \ > > nir/nir_opcodes_c.py \ > > nir/nir_opcodes_h.py \ > > @@ -220,6 +221,7 @@ BUILT_SOURCES = \ > > glsl_lexer.cpp \ > > glcpp/glcpp-parse.c \ > > glcpp/glcpp-lex.c \ > > + nir/nir_constant_expressions.c \ > > nir/nir_opcodes.c \ > > nir/nir_opcodes.h \ > > nir/nir_opt_algebraic.c > > @@ -235,6 +237,10 @@ dist-hook: > > $(RM) glcpp/tests/*.out > > $(RM) glcpp/tests/subtest*/*.out > > > > +nir/nir_constant_expressions.c: nir/nir_opcodes.py nir/nir_constant_expressions.py nir/nir_constant_expressions.h > > + $(MKDIR_P) nir; \ > > + $(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/nir/nir_constant_expressions.py > $@ > > + > > nir/nir_opcodes.h: nir/nir_opcodes.py nir/nir_opcodes_h.py > > $(MKDIR_P) nir; \ > > $(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/nir/nir_opcodes_h.py > $@ > > diff --git a/src/glsl/Makefile.sources b/src/glsl/Makefile.sources > > index dc1c55d..dd76c44 100644 > > --- a/src/glsl/Makefile.sources > > +++ b/src/glsl/Makefile.sources > > @@ -14,6 +14,7 @@ LIBGLCPP_GENERATED_FILES = \ > > $(GLSL_BUILDDIR)/glcpp/glcpp-parse.c > > > > NIR_GENERATED_FILES = \ > > + $(GLSL_BUILDDIR)/nir/nir_constant_expressions.c \ > > $(GLSL_BUILDDIR)/nir/nir_opcodes.c \ > > $(GLSL_BUILDDIR)/nir/nir_opcodes.h \ > > $(GLSL_BUILDDIR)/nir/nir_opt_algebraic.c > > diff --git a/src/glsl/nir/.gitignore b/src/glsl/nir/.gitignore > > index 4c28193..261f64f 100644 > > --- a/src/glsl/nir/.gitignore > > +++ b/src/glsl/nir/.gitignore > > @@ -1,3 +1,4 @@ > > nir_opt_algebraic.c > > nir_opcodes.c > > nir_opcodes.h > > +nir_constant_expressions.c > > diff --git a/src/glsl/nir/nir_constant_expressions.h b/src/glsl/nir/nir_constant_expressions.h > > new file mode 100644 > > index 0000000..97997f2 > > --- /dev/null > > +++ b/src/glsl/nir/nir_constant_expressions.h > > @@ -0,0 +1,31 @@ > > +/* > > + * Copyright © 2014 Connor Abbott > > + * > > + * Permission is hereby granted, free of charge, to any person obtaining a > > + * copy of this software and associated documentation files (the "Software"), > > + * to deal in the Software without restriction, including without limitation > > + * the rights to use, copy, modify, merge, publish, distribute, sublicense, > > + * and/or sell copies of the Software, and to permit persons to whom the > > + * Software is furnished to do so, subject to the following conditions: > > + * > > + * The above copyright notice and this permission notice (including the next > > + * paragraph) shall be included in all copies or substantial portions of the > > + * Software. > > + * > > + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR > > + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, > > + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL > > + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER > > + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING > > + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS > > + * IN THE SOFTWARE. > > + * > > + * Authors: > > + * Connor Abbott (cwabbo...@gmail.com) > > + * > > + */ > > + > > +#include "nir.h" > > + > > +nir_const_value nir_eval_const_opcode(nir_op op, unsigned num_components, > > + nir_const_value *src); > > diff --git a/src/glsl/nir/nir_constant_expressions.py b/src/glsl/nir/nir_constant_expressions.py > > new file mode 100644 > > index 0000000..6860ad3 > > --- /dev/null > > +++ b/src/glsl/nir/nir_constant_expressions.py > > @@ -0,0 +1,351 @@ > > +#! /usr/bin/python2 > > +template = """\ > > +/* > > + * Copyright (C) 2014 Intel Corporation > > + * > > + * Permission is hereby granted, free of charge, to any person obtaining a > > + * copy of this software and associated documentation files (the "Software"), > > + * to deal in the Software without restriction, including without limitation > > + * the rights to use, copy, modify, merge, publish, distribute, sublicense, > > + * and/or sell copies of the Software, and to permit persons to whom the > > + * Software is furnished to do so, subject to the following conditions: > > + * > > + * The above copyright notice and this permission notice (including the next > > + * paragraph) shall be included in all copies or substantial portions of the > > + * Software. > > + * > > + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR > > + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, > > + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL > > + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER > > + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING > > + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS > > + * IN THE SOFTWARE. > > + * > > + * Authors: > > + * Jason Ekstrand (ja...@jlekstrand.net) > > + */ > > + > > +#include <math.h> > > +#include "main/core.h" > > +#include "nir_constant_expressions.h" > > + > > +#if defined(_MSC_VER) && (_MSC_VER < 1800) > > +static int isnormal(double x) > > +{ > > + return _fpclass(x) == _FPCLASS_NN || _fpclass(x) == _FPCLASS_PN; > > +} > > +#elif defined(__SUNPRO_CC) > > +#include <ieeefp.h> > > +static int isnormal(double x) > > +{ > > + return fpclass(x) == FP_NORMAL; > > +} > > +#endif > > + > > +#if defined(_MSC_VER) > > +static double copysign(double x, double y) > > +{ > > + return _copysign(x, y); > > +} > > +#endif > > + > > +/** > > + * Evaluate one component of packSnorm4x8. > > + */ > > +static uint8_t > > +pack_snorm_1x8(float x) > > +{ > > + /* From section 8.4 of the GLSL 4.30 spec: > > + * > > + * packSnorm4x8 > > + * ------------ > > + * The conversion for component c of v to fixed point is done as > > + * follows: > > + * > > + * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) > > + * > > + * We must first cast the float to an int, because casting a negative > > + * float to a uint is undefined. > > + */ > > + return (uint8_t) (int8_t) > > + _mesa_round_to_even(CLAMP(x, -1.0f, +1.0f) * 127.0f); > > +} > > + > > +/** > > + * Evaluate one component of packSnorm2x16. > > + */ > > +static uint16_t > > +pack_snorm_1x16(float x) > > +{ > > + /* From section 8.4 of the GLSL ES 3.00 spec: > > + * > > + * packSnorm2x16 > > + * ------------- > > + * The conversion for component c of v to fixed point is done as > > + * follows: > > + * > > + * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) > > + * > > + * We must first cast the float to an int, because casting a negative > > + * float to a uint is undefined. > > + */ > > + return (uint16_t) (int16_t) > > + _mesa_round_to_even(CLAMP(x, -1.0f, +1.0f) * 32767.0f); > > +} > > + > > +/** > > + * Evaluate one component of unpackSnorm4x8. > > + */ > > +static float > > +unpack_snorm_1x8(uint8_t u) > > +{ > > + /* From section 8.4 of the GLSL 4.30 spec: > > + * > > + * unpackSnorm4x8 > > + * -------------- > > + * The conversion for unpacked fixed-point value f to floating point is > > + * done as follows: > > + * > > + * unpackSnorm4x8: clamp(f / 127.0, -1, +1) > > + */ > > + return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); > > +} > > + > > +/** > > + * Evaluate one component of unpackSnorm2x16. > > + */ > > +static float > > +unpack_snorm_1x16(uint16_t u) > > +{ > > + /* From section 8.4 of the GLSL ES 3.00 spec: > > + * > > + * unpackSnorm2x16 > > + * --------------- > > + * The conversion for unpacked fixed-point value f to floating point is > > + * done as follows: > > + * > > + * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) > > + */ > > + return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); > > +} > > + > > +/** > > + * Evaluate one component packUnorm4x8. > > + */ > > +static uint8_t > > +pack_unorm_1x8(float x) > > +{ > > + /* From section 8.4 of the GLSL 4.30 spec: > > + * > > + * packUnorm4x8 > > + * ------------ > > + * The conversion for component c of v to fixed point is done as > > + * follows: > > + * > > + * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) > > + */ > > + return (uint8_t) _mesa_round_to_even(CLAMP(x, 0.0f, 1.0f) * 255.0f); > > +} > > + > > +/** > > + * Evaluate one component packUnorm2x16. > > + */ > > +static uint16_t > > +pack_unorm_1x16(float x) > > +{ > > + /* From section 8.4 of the GLSL ES 3.00 spec: > > + * > > + * packUnorm2x16 > > + * ------------- > > + * The conversion for component c of v to fixed point is done as > > + * follows: > > + * > > + * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) > > + */ > > + return (uint16_t) _mesa_round_to_even(CLAMP(x, 0.0f, 1.0f) * 65535.0f); > > +} > > + > > +/** > > + * Evaluate one component of unpackUnorm4x8. > > + */ > > +static float > > +unpack_unorm_1x8(uint8_t u) > > +{ > > + /* From section 8.4 of the GLSL 4.30 spec: > > + * > > + * unpackUnorm4x8 > > + * -------------- > > + * The conversion for unpacked fixed-point value f to floating point is > > + * done as follows: > > + * > > + * unpackUnorm4x8: f / 255.0 > > + */ > > + return (float) u / 255.0f; > > +} > > + > > +/** > > + * Evaluate one component of unpackUnorm2x16. > > + */ > > +static float > > +unpack_unorm_1x16(uint16_t u) > > +{ > > + /* From section 8.4 of the GLSL ES 3.00 spec: > > + * > > + * unpackUnorm2x16 > > + * --------------- > > + * The conversion for unpacked fixed-point value f to floating point is > > + * done as follows: > > + * > > + * unpackUnorm2x16: f / 65535.0 > > + */ > > + return (float) u / 65535.0f; > > +} > > + > > +/** > > + * Evaluate one component of packHalf2x16. > > + */ > > +static uint16_t > > +pack_half_1x16(float x) > > +{ > > + return _mesa_float_to_half(x); > > +} > > + > > +/** > > + * Evaluate one component of unpackHalf2x16. > > + */ > > +static float > > +unpack_half_1x16(uint16_t u) > > +{ > > + return _mesa_half_to_float(u); > > +} > > + > > +/* Some typed vector structures to make things like src0.y work */ > > +% for type in ["float", "int", "unsigned", "bool"]: > > +struct ${type}_vec { > > + ${type} x; > > + ${type} y; > > + ${type} z; > > + ${type} w; > > +}; > > +% endfor > > + > > +% for name, op in sorted(opcodes.iteritems()): > > +static nir_const_value > > +evaluate_${name}(unsigned num_components, nir_const_value *_src) > > +{ > > + nir_const_value _dst_val = { { {0, 0, 0, 0} } }; > > + > > + ## For each non-per-component input, create a variable srcN that > > + ## contains x, y, z, and w elements which are filled in with the > > + ## appropriately-typed values. > > + % for j in range(op.num_inputs): > > + % if op.input_sizes[j] == 0: > > + <% continue %> > > + % elif "src" + str(j) not in op.const_expr: > > + ## Avoid unused variable warnings > > + <% continue %> > > + %endif > > + > > + struct ${op.input_types[j]}_vec src${j} = { > > + % for k in range(op.input_sizes[j]): > > + % if op.input_types[j] == "bool": > > + _src[${j}].u[${k}] != 0, > > + % else: > > + _src[${j}].${op.input_types[j][:1]}[${k}], > > + % endif > > + % endfor > > + }; > > + % endfor > > + > > + % if op.output_size == 0: > > + ## For per-component instructions, we need to iterate over the > > + ## components and apply the constant expression one component > > + ## at a time. > > + for (unsigned _i = 0; _i < num_components; _i++) { > > + ## For each per-component input, create a variable srcN that > > + ## contains the value of the current (_i'th) component. > > + % for j in range(op.num_inputs): > > + % if op.input_sizes[j] != 0: > > + <% continue %> > > + % elif "src" + str(j) not in op.const_expr: > > + ## Avoid unused variable warnings > > + <% continue %> > > + % elif op.input_types[j] == "bool": > > + bool src${j} = _src[${j}].u[_i] != 0; > > + % else: > > + ${op.input_types[j]} src${j} = _src[${j}].${op.input_types[j][:1]}[_i]; > > + % endif > > + % endfor > > + > > + ## Create an appropriately-typed variable dst and assign the > > + ## result of the const_expr to it. If const_expr already contains > > + ## writes to dst, just include const_expr directly. > > + % if "dst" in op.const_expr: > > + ${op.output_type} dst; > > + ${op.const_expr} > > + % else: > > + ${op.output_type} dst = ${op.const_expr}; > > + % endif > > + > > + ## Store the current component of the actual destination to the > > + ## value of dst. > > + % if op.output_type == "bool": > > + ## Sanitize the C value to a proper NIR bool > > + _dst_val.u[_i] = dst ? NIR_TRUE : NIR_FALSE; > > + % else: > > + _dst_val.${op.output_type[:1]}[_i] = dst; > > + % endif > > + } > > + % else: > > + ## In the non-per-component case, create a struct dst with > > + ## appropriately-typed elements x, y, z, and w and assign the result > > + ## of the const_expr to all components of dst, or include the > > + ## const_expr directly if it writes to dst already. > > + struct ${op.output_type}_vec dst; > > + > > + % if "dst" in op.const_expr: > > + ${op.const_expr} > > + % else: > > + ## Splat the value to all components. This way expressions such > > + ## as fnoise and ddx which take on the constant value 0.0f > > + ## irrespective of their inputs. > > Seems like you're something there. I assume you meant to say "...will > only have to have '0.0f' as their const_expr" or something like that. > Also, I think fnoise is currently the only thing that depends on this > - ddx is per-component, so it doesn't hit this codepath. Sure. I'll adjust the comment. Thanks for the comments and review. --Jason > > + dst.x = dst.y = dst.z = dst.w = ${op.const_expr}; > > + % endif > > + > > + ## For each component in the destination, copy the value of dst to > > + ## the actual destination. > > + % for k in range(op.output_size): > > + % if op.output_type == "bool": > > + ## Sanitize the C value to a proper NIR bool > > + _dst_val.u[${k}] = dst.${"xyzw"[k]} ? NIR_TRUE : NIR_FALSE; > > + % else: > > + _dst_val.${op.output_type[:1]}[${k}] = dst.${"xyzw"[k]}; > > + % endif > > + % endfor > > + % endif > > + > > + return _dst_val; > > +} > > +% endfor > > + > > +nir_const_value > > +nir_eval_const_opcode(nir_op op, unsigned num_components, > > + nir_const_value *src) > > +{ > > + switch (op) { > > +% for name in sorted(opcodes.iterkeys()): > > + case nir_op_${name}: { > > + return evaluate_${name}(num_components, src); > > + break; > > + } > > +% endfor > > + default: > > + unreachable("shouldn't get here"); > > + } > > +}""" > > + > > +from nir_opcodes import opcodes > > +from mako.template import Template > > + > > +print Template(template).render(opcodes=opcodes) > > diff --git a/src/glsl/nir/nir_opcodes.py b/src/glsl/nir/nir_opcodes.py > > index 5bafbb0..5fe9572 100644 > > --- a/src/glsl/nir/nir_opcodes.py > > +++ b/src/glsl/nir/nir_opcodes.py > > @@ -24,6 +24,7 @@ > > # Authors: > > # Connor Abbott (cwabbo...@gmail.com) > > > > + > > # Class that represents all the information we have about the opcode > > # NOTE: this must be kept in sync with nir_op_info > > > > @@ -32,7 +33,7 @@ class Opcode(object): > > NOTE: this must be kept in sync with nir_op_info > > """ > > def __init__(self, name, output_size, output_type, input_sizes, > > - input_types, algebraic_properties): > > + input_types, algebraic_properties, const_expr): > > """Parameters: > > > > - name is the name of the opcode (prepend nir_op_ for the enum name) > > @@ -40,6 +41,27 @@ class Opcode(object): > > - input_types is a list of types > > - algebraic_properties is a space-seperated string, where nir_op_is_ is > > prepended before each entry > > + - const_expr is an expression or series of statements that computes the > > + constant value of the opcode given the constant values of its inputs. > > + > > + Constant expressions are formed from the variables src0, src1, ..., > > + src(N-1), where N is the number of arguments. The output of the > > + expression should be stored in the dst variable. Per-component input > > + and output variables will be scalars and non-per-component input and > > + output variables will be a struct with fields named x, y, z, and w > > + all of the correct type. Input and output variables can be assumed > > + to already be of the correct type and need no conversion. In > > + particular, the conversion from the C bool type to/from NIR_TRUE and > > + NIR_FALSE happens automatically. > > + > > + For per-component instructions, the entire expression will be > > + executed once for each component. For non-per-component > > + instructions, the expression is expected to store the correct values > > + in dst.x, dst.y, etc. If "dst" does not exist anywhere in the > > + constant expression, an assignment to dst will happen automatically > > + and the result will be equivalent to "dst = <expression>" for > > + per-component instructions and "dst.x = dst.y = ... = <expression>" > > + for non-per-component instructions. > > """ > > assert isinstance(name, str) > > assert isinstance(output_size, int) > > @@ -49,6 +71,7 @@ class Opcode(object): > > assert isinstance(input_types, list) > > assert isinstance(input_types[0], str) > > assert isinstance(algebraic_properties, str) > > + assert isinstance(const_expr, str) > > assert len(input_sizes) == len(input_types) > > assert 0 <= output_size <= 4 > > for size in input_sizes: > > @@ -62,6 +85,7 @@ class Opcode(object): > > self.input_sizes = input_sizes > > self.input_types = input_types > > self.algebraic_properties = algebraic_properties > > + self.const_expr = const_expr > > > > # helper variables for strings > > tfloat = "float" > > @@ -76,178 +100,289 @@ associative = "associative " > > opcodes = {} > > > > def opcode(name, output_size, output_type, input_sizes, input_types, > > - algebraic_properties): > > + algebraic_properties, const_expr): > > assert name not in opcodes > > opcodes[name] = Opcode(name, output_size, output_type, input_sizes, > > - input_types, algebraic_properties) > > - > > -def unop_convert(name, in_type, out_type): > > - opcode(name, 0, out_type, [0], [in_type], "") > > - > > -def unop(name, ty): > > - opcode(name, 0, ty, [0], [ty], "") > > - > > -def unop_horiz(name, output_size, output_type, input_size, input_type): > > - opcode(name, output_size, output_type, [input_size], [input_type], "") > > - > > -def unop_reduce(name, output_size, output_type, input_type): > > - unop_horiz(name + "2", output_size, output_type, 2, input_type) > > - unop_horiz(name + "3", output_size, output_type, 3, input_type) > > - unop_horiz(name + "4", output_size, output_type, 4, input_type) > > + input_types, algebraic_properties, const_expr) > > + > > +def unop_convert(name, in_type, out_type, const_expr): > > + opcode(name, 0, out_type, [0], [in_type], "", const_expr) > > + > > +def unop(name, ty, const_expr): > > + opcode(name, 0, ty, [0], [ty], "", const_expr) > > + > > +def unop_horiz(name, output_size, output_type, input_size, input_type, > > + const_expr): > > + opcode(name, output_size, output_type, [input_size], [input_type], "", > > + const_expr) > > + > > +def unop_reduce(name, output_size, output_type, input_type, prereduce_expr, > > + reduce_expr, final_expr): > > + def prereduce(src): > > + return "(" + prereduce_expr.format(src=src) + ")" > > + def final(src): > > + return final_expr.format(src="(" + src + ")") > > + def reduce_(src0, src1): > > + return reduce_expr.format(src0=src0, src1=src1) > > + src0 = prereduce("src0.x") > > + src1 = prereduce("src0.y") > > + src2 = prereduce("src0.z") > > + src3 = prereduce("src0.w") > > + unop_horiz(name + "2", output_size, output_type, 2, input_type, > > + final(reduce_(src0, src1))) > > + unop_horiz(name + "3", output_size, output_type, 3, input_type, > > + final(reduce_(reduce_(src0, src1), src2))) > > + unop_horiz(name + "4", output_size, output_type, 4, input_type, > > + final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) > > > > > > # These two move instructions differ in what modifiers they support and what > > # the negate modifier means. Otherwise, they are identical. > > -unop("fmov", tfloat) > > -unop("imov", tint) > > - > > -unop("ineg", tint) > > -unop("fneg", tfloat) > > -unop("inot", tint) # invert every bit of the integer > > -unop("fnot", tfloat) # (src == 0.0) ? 1.0 : 0.0 > > -unop("fsign", tfloat) > > -unop("isign", tint) > > -unop("iabs", tint) > > -unop("fabs", tfloat) > > -unop("fsat", tfloat) > > -unop("frcp", tfloat) > > -unop("frsq", tfloat) > > -unop("fsqrt", tfloat) > > -unop("fexp", tfloat) # < e^x > > -unop("flog", tfloat) # log base e > > -unop("fexp2", tfloat) > > -unop("flog2", tfloat) > > -unop_convert("f2i", tfloat, tint) # Float-to-integer conversion. > > -unop_convert("f2u", tfloat, tunsigned) # Float-to-unsigned conversion > > -unop_convert("i2f", tint, tfloat) # Integer-to-float conversion. > > -unop_convert("f2b", tfloat, tbool) # Float-to-boolean conversion > > -unop_convert("b2f", tbool, tfloat) # Boolean-to-float conversion > > -unop_convert("i2b", tint, tbool) # int-to-boolean conversion > > -unop_convert("b2i", tbool, tint) # Boolean-to-int conversion > > -unop_convert("u2f", tunsigned, tfloat) #Unsigned-to-float conversion. > > - > > -unop_reduce("bany", 1, tbool, tbool) # returns ~0 if any component of src[0] != 0 > > -unop_reduce("ball", 1, tbool, tbool) # returns ~0 if all components of src[0] != 0 > > -unop_reduce("fany", 1, tfloat, tfloat) # returns 1.0 if any component of src[0] != 0 > > -unop_reduce("fall", 1, tfloat, tfloat) # returns 1.0 if all components of src[0] != 0 > > +unop("fmov", tfloat, "src0") > > +unop("imov", tint, "src0") > > + > > +unop("ineg", tint, "-src0") > > +unop("fneg", tfloat, "-src0") > > +unop("inot", tint, "~src0") # invert every bit of the integer > > +unop("fnot", tfloat, "(src0 == 0.0f) ? 1.0f : 0.0f") > > +unop("fsign", tfloat, "(src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f)") > > +unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)") > > +unop("iabs", tint, "abs(src0)") > > +unop("fabs", tfloat, "fabsf(src0)") > > +unop("fsat", tfloat, "(src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0)") > > +unop("frcp", tfloat, "1.0f / src0") > > +unop("frsq", tfloat, "1.0f / sqrtf(src0)") > > +unop("fsqrt", tfloat, "sqrtf(src0)") > > +unop("fexp", tfloat, "expf(src0)") # < e^x > > +unop("flog", tfloat, "logf(src0)") # log base e > > +unop("fexp2", tfloat, "exp2f(src0)") > > +unop("flog2", tfloat, "log2f(src0)") > > +unop_convert("f2i", tfloat, tint, "src0") # Float-to-integer conversion. > > +unop_convert("f2u", tfloat, tunsigned, "src0") # Float-to-unsigned conversion > > +unop_convert("i2f", tint, tfloat, "src0") # Integer-to-float conversion. > > +# Float-to-boolean conversion > > +unop_convert("f2b", tfloat, tbool, "src0 == 0.0f") > > +# Boolean-to-float conversion > > +unop_convert("b2f", tbool, tfloat, "src0 ? 1.0f : 0.0f") > > +# Int-to-boolean conversion > > +unop_convert("i2b", tint, tbool, "src0 == 0") > > +unop_convert("b2i", tbool, tint, "src0 ? 0 : -1") # Boolean-to-int conversion > > +unop_convert("u2f", tunsigned, tfloat, "src0") #Unsigned-to-float conversion. > > + > > +unop_reduce("bany", 1, tbool, tbool, "{src}", "{src0} || {src1}", "{src}") > > +unop_reduce("ball", 1, tbool, tbool, "{src}", "{src0} && {src1}", "{src}") > > +unop_reduce("fany", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} || {src1}", > > + "{src} ? 1.0f : 0.0f") > > +unop_reduce("fall", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} && {src1}", > > + "{src} ? 1.0f : 0.0f") > > > > # Unary floating-point rounding operations. > > > > > > -unop("ftrunc", tfloat) > > -unop("fceil", tfloat) > > -unop("ffloor", tfloat) > > -unop("ffract", tfloat) > > -unop("fround_even", tfloat) > > +unop("ftrunc", tfloat, "truncf(src0)") > > +unop("fceil", tfloat, "ceilf(src0)") > > +unop("ffloor", tfloat, "floorf(src0)") > > +unop("ffract", tfloat, "src0 - floorf(src0)") > > +unop("fround_even", tfloat, "_mesa_round_to_even(src0)") > > > > > > # Trigonometric operations. > > > > > > -unop("fsin", tfloat) > > -unop("fcos", tfloat) > > -unop("fsin_reduced", tfloat) > > -unop("fcos_reduced", tfloat) > > +unop("fsin", tfloat, "sinf(src0)") > > +unop("fcos", tfloat, "cosf(src0)") > > +unop("fsin_reduced", tfloat, "sinf(src0)") > > +unop("fcos_reduced", tfloat, "cosf(src0)") > > > > > > # Partial derivatives. > > > > > > -unop("fddx", tfloat) > > -unop("fddy", tfloat) > > -unop("fddx_fine", tfloat) > > -unop("fddy_fine", tfloat) > > -unop("fddx_coarse", tfloat) > > -unop("fddy_coarse", tfloat) > > +unop("fddx", tfloat, "0.0f") # the derivative of a constant is 0. > > +unop("fddy", tfloat, "0.0f") > > +unop("fddx_fine", tfloat, "0.0f") > > +unop("fddy_fine", tfloat, "0.0f") > > +unop("fddx_coarse", tfloat, "0.0f") > > +unop("fddy_coarse", tfloat, "0.0f") > > > > > > # Floating point pack and unpack operations. > > > > - > > -unop_horiz("pack_snorm_2x16", 1, tunsigned, 2, tfloat) > > -unop_horiz("pack_snorm_4x8", 1, tunsigned, 4, tfloat) > > -unop_horiz("pack_unorm_2x16", 1, tunsigned, 2, tfloat) > > -unop_horiz("pack_unorm_4x8", 1, tunsigned, 4, tfloat) > > -unop_horiz("pack_half_2x16", 1, tunsigned, 2, tfloat) > > -unop_horiz("unpack_snorm_2x16", 2, tfloat, 1, tunsigned) > > -unop_horiz("unpack_snorm_4x8", 4, tfloat, 1, tunsigned) > > -unop_horiz("unpack_unorm_2x16", 2, tfloat, 1, tunsigned) > > -unop_horiz("unpack_unorm_4x8", 4, tfloat, 1, tunsigned) > > -unop_horiz("unpack_half_2x16", 2, tfloat, 1, tunsigned) > > +def pack_2x16(fmt): > > + unop_horiz("pack_" + fmt + "_2x16", 1, tunsigned, 2, tfloat, """ > > +dst.x = (uint32_t) pack_fmt_1x16(src0.x); > > +dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16; > > +""".replace("fmt", fmt)) > > + > > +def pack_4x8(fmt): > > + unop_horiz("pack_" + fmt + "_4x8", 1, tunsigned, 4, tfloat, """ > > +dst.x = (uint32_t) pack_fmt_1x8(src0.x); > > +dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8; > > +dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16; > > +dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24; > > +""".replace("fmt", fmt)) > > + > > +def unpack_2x16(fmt): > > + unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat, 1, tunsigned, """ > > +dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff)); > > +dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16)); > > +""".replace("fmt", fmt)) > > + > > +def unpack_4x8(fmt): > > + unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat, 1, tunsigned, """ > > +dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff)); > > +dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff)); > > +dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff)); > > +dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24)); > > +""".replace("fmt", fmt)) > > + > > + > > +pack_2x16("snorm") > > +pack_4x8("snorm") > > +pack_2x16("unorm") > > +pack_4x8("unorm") > > +pack_2x16("half") > > +unpack_2x16("snorm") > > +unpack_4x8("snorm") > > +unpack_2x16("unorm") > > +unpack_4x8("unorm") > > +unpack_2x16("half") > > > > > > # Lowered floating point unpacking operations. > > > > > > -unop_horiz("unpack_half_2x16_split_x", 1, tfloat, 1, tunsigned) > > -unop_horiz("unpack_half_2x16_split_y", 1, tfloat, 1, tunsigned) > > +unop_horiz("unpack_half_2x16_split_x", 1, tfloat, 1, tunsigned, """ > > +dst.x = unpack_half_1x16((uint16_t)(src0.x & 0xffff)); > > +""") > > +unop_horiz("unpack_half_2x16_split_y", 1, tfloat, 1, tunsigned, """ > > +dst.y = unpack_half_1x16((uint16_t)(src0.x >> 16)); > > +""") > > > > > > # Bit operations, part of ARB_gpu_shader5. > > > > > > -unop("bitfield_reverse", tunsigned) > > -unop("bit_count", tunsigned) > > -unop_convert("ufind_msb", tunsigned, tint) > > -unop("ifind_msb", tint) > > -unop("find_lsb", tint) > > +unop("bitfield_reverse", tunsigned, """ > > +/* we're not winning any awards for speed here, but that's ok */ > > +dst = 0; > > +for (unsigned bit = 0; bit < 32; bit++) > > + dst |= ((src0 >> bit) & 1) << (31 - bit); > > +""") > > +unop("bit_count", tunsigned, """ > > +dst = 0; > > +for (unsigned bit = 0; bit < 32; bit++) { > > + if ((src0 >> bit) & 1) > > + dst++; > > +} > > +""") > > + > > +unop_convert("ufind_msb", tunsigned, tint, """ > > +dst = -1; > > +for (int bit = 31; bit > 0; bit--) { > > + if ((src0 >> bit) & 1) { > > + dst = bit; > > + break; > > + } > > +} > > +""") > > + > > +unop("ifind_msb", tint, """ > > +dst = -1; > > +for (int bit = 31; bit >= 0; bit--) { > > + /* If src0 < 0, we're looking for the first 0 bit. > > + * if src0 >= 0, we're looking for the first 1 bit. > > + */ > > + if ((((src0 >> bit) & 1) && (src0 >= 0)) || > > + (!((src0 >> bit) & 1) && (src0 < 0))) { > > + dst = bit; > > + break; > > + } > > +} > > +""") > > + > > +unop("find_lsb", tint, """ > > +dst = -1; > > +for (unsigned bit = 0; bit < 32; bit++) { > > + if ((src0 >> bit) & 1) { > > + dst = bit; > > + break; > > + } > > +} > > +""") > > > > > > for i in xrange(1, 5): > > for j in xrange(1, 5): > > - unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat) > > + unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f") > > > > -def binop_convert(name, out_type, in_type, alg_props): > > - opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props) > > +def binop_convert(name, out_type, in_type, alg_props, const_expr): > > + opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props, const_expr) > > > > -def binop(name, ty, alg_props): > > - binop_convert(name, ty, ty, alg_props) > > +def binop(name, ty, alg_props, const_expr): > > + binop_convert(name, ty, ty, alg_props, const_expr) > > > > -def binop_compare(name, ty, alg_props): > > - binop_convert(name, ty, tbool, alg_props) > > +def binop_compare(name, ty, alg_props, const_expr): > > + binop_convert(name, tbool, ty, alg_props, const_expr) > > > > def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size, > > - src2_type): > > - opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], "") > > - > > -def binop_reduce(name, output_size, output_type, src_type): > > - opcode(name + "2",output_size, output_type, > > - [2, 2], [src_type, src_type], commutative) > > + src2_type, const_expr): > > + opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], > > + "", const_expr) > > + > > +def binop_reduce(name, output_size, output_type, src_type, prereduce_expr, > > + reduce_expr, final_expr): > > + def final(src): > > + return final_expr.format(src= "(" + src + ")") > > + def reduce_(src0, src1): > > + return reduce_expr.format(src0=src0, src1=src1) > > + def prereduce(src0, src1): > > + return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")" > > + src0 = prereduce("src0.x", "src1.x") > > + src1 = prereduce("src0.y", "src1.y") > > + src2 = prereduce("src0.z", "src1.z") > > + src3 = prereduce("src0.w", "src1.w") > > + opcode(name + "2", output_size, output_type, > > + [2, 2], [src_type, src_type], commutative, > > + final(reduce_(src0, src1))) > > opcode(name + "3", output_size, output_type, > > - [3, 3], [src_type, src_type], commutative) > > + [3, 3], [src_type, src_type], commutative, > > + final(reduce_(reduce_(src0, src1), src2))) > > opcode(name + "4", output_size, output_type, > > - [4, 4], [src_type, src_type], commutative) > > + [4, 4], [src_type, src_type], commutative, > > + final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) > > > > -binop("fadd", tfloat, commutative + associative) > > -binop("iadd", tint, commutative + associative) > > -binop("fsub", tfloat, "") > > -binop("isub", tint, "") > > +binop("fadd", tfloat, commutative + associative, "src0 + src1") > > +binop("iadd", tint, commutative + associative, "src0 + src1") > > +binop("fsub", tfloat, "", "src0 - src1") > > +binop("isub", tint, "", "src0 - src1") > > > > -binop("fmul", tfloat, commutative + associative) > > +binop("fmul", tfloat, commutative + associative, "src0 * src1") > > # low 32-bits of signed/unsigned integer multiply > > -binop("imul", tint, commutative + associative) > > +binop("imul", tint, commutative + associative, "src0 * src1") > > # high 32-bits of signed integer multiply > > -binop("imul_high", tint, commutative) > > +binop("imul_high", tint, commutative, > > + "(int32_t)(((int64_t) src0 * (int64_t) src1) >> 32)") > > # high 32-bits of unsigned integer multiply > > -binop("umul_high", tunsigned, commutative) > > +binop("umul_high", tunsigned, commutative, > > + "(uint32_t)(((uint64_t) src0 * (uint64_t) src1) >> 32)") > > > > -binop("fdiv", tfloat, "") > > -binop("idiv", tint, "") > > -binop("udiv", tunsigned, "") > > +binop("fdiv", tfloat, "", "src0 / src1") > > +binop("idiv", tint, "", "src0 / src1") > > +binop("udiv", tunsigned, "", "src0 / src1") > > > > # returns a boolean representing the carry resulting from the addition of > > # the two unsigned arguments. > > > > -binop_convert("uadd_carry", tbool, tunsigned, > > - commutative) > > +binop_convert("uadd_carry", tbool, tunsigned, commutative, "src0 + src1 < src0") > > > > # returns a boolean representing the borrow resulting from the subtraction > > # of the two unsigned arguments. > > > > -binop_convert("usub_borrow", tbool, tunsigned, "") > > +binop_convert("usub_borrow", tbool, tunsigned, "", "src1 < src0") > > > > -binop("fmod", tfloat, "") > > -binop("umod", tunsigned, "") > > +binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)") > > +binop("umod", tunsigned, "", "src1 == 0 ? 0 : src0 % src1") > > > > # > > # Comparisons > > @@ -256,41 +391,47 @@ binop("umod", tunsigned, "") > > > > # these integer-aware comparisons return a boolean (0 or ~0) > > > > -binop_compare("flt", tfloat, "") > > -binop_compare("fge", tfloat, "") > > -binop_compare("feq", tfloat, commutative) > > -binop_compare("fne", tfloat, commutative) > > -binop_compare("ilt", tint, "") > > -binop_compare("ige", tint, "") > > -binop_compare("ieq", tint, commutative) > > -binop_compare("ine", tint, commutative) > > -binop_compare("ult", tunsigned, "") > > -binop_compare("uge", tunsigned, "") > > +binop_compare("flt", tfloat, "", "src0 < src1") > > +binop_compare("fge", tfloat, "", "src0 >= src1") > > +binop_compare("feq", tfloat, commutative, "src0 == src1") > > +binop_compare("fne", tfloat, commutative, "src0 != src1") > > +binop_compare("ilt", tint, "", "src0 < src1") > > +binop_compare("ige", tint, "", "src0 >= src1") > > +binop_compare("ieq", tint, commutative, "src0 == src1") > > +binop_compare("ine", tint, commutative, "src0 != src1") > > +binop_compare("ult", tunsigned, "", "src0 < src1") > > +binop_compare("uge", tunsigned, "", "src0 >= src1") > > > > # integer-aware GLSL-style comparisons that compare floats and ints > > > > -binop_reduce("ball_fequal", 1, tbool, tfloat) > > -binop_reduce("bany_fnequal", 1, tbool, tfloat) > > -binop_reduce("ball_iequal", 1, tbool, tint) > > -binop_reduce("bany_inequal", 1, tbool, tint) > > +binop_reduce("ball_fequal", 1, tbool, tfloat, "{src0} == {src1}", > > + "{src0} && {src1}", "{src}") > > +binop_reduce("bany_fnequal", 1, tbool, tfloat, "{src0} != {src1}", > > + "{src0} || {src1}", "{src}") > > +binop_reduce("ball_iequal", 1, tbool, tint, "{src0} == {src1}", > > + "{src0} && {src1}", "{src}") > > +binop_reduce("bany_inequal", 1, tbool, tint, "{src0} != {src1}", > > + "{src0} || {src1}", "{src}") > > > > # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0 > > > > -binop_reduce("fall_equal", 1, tfloat, tfloat) > > -binop_reduce("fany_nequal", 1, tfloat, tfloat) > > +binop_reduce("fall_equal", 1, tfloat, tfloat, "{src0} == {src1}", > > + "{src0} && {src1}", "{src} ? 1.0f : 0.0f") > > +binop_reduce("fany_nequal", 1, tfloat, tfloat, "{src0} != {src1}", > > + "{src0} || {src1}", "{src} ? 1.0f : 0.0f") > > > > # These comparisons for integer-less hardware return 1.0 and 0.0 for true > > # and false respectively > > > > -binop("slt", tfloat, "") # Set on Less Than > > -binop("sge", tfloat, "") # Set on Greater Than or Equal > > -binop("seq", tfloat, commutative) # Set on Equal > > -binop("sne", tfloat, commutative) # Set on Not Equal > > +binop("slt", tfloat, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than > > +binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal > > +binop("seq", tfloat, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal > > +binop("sne", tfloat, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal > > > > > > -binop("ishl", tint, "") > > -binop("ishr", tint, "") > > -binop("ushr", tunsigned, "") > > +binop("ishl", tint, "", "src0 << src1") > > +binop("ishr", tint, "", "src0 >> src1") > > +binop("ushr", tunsigned, "", "src0 >> src1") > > > > # bitwise logic operators > > # > > @@ -298,9 +439,9 @@ binop("ushr", tunsigned, "") > > # integers. > > > > > > -binop("iand", tunsigned, commutative + associative) > > -binop("ior", tunsigned, commutative + associative) > > -binop("ixor", tunsigned, commutative + associative) > > +binop("iand", tunsigned, commutative + associative, "src0 & src1") > > +binop("ior", tunsigned, commutative + associative, "src0 | src1") > > +binop("ixor", tunsigned, commutative + associative, "src0 ^ src1") > > > > > > # floating point logic operators > > @@ -308,42 +449,60 @@ binop("ixor", tunsigned, commutative + associative) > > # These use (src != 0.0) for testing the truth of the input, and output 1.0 > > # for true and 0.0 for false > > > > -binop("fand", tfloat, commutative) > > -binop("for", tfloat, commutative) > > -binop("fxor", tfloat, commutative) > > - > > -binop_reduce("fdot", 1, tfloat, tfloat) > > - > > -binop("fmin", tfloat, "") > > -binop("imin", tint, commutative + associative) > > -binop("umin", tunsigned, commutative + associative) > > -binop("fmax", tfloat, "") > > -binop("imax", tint, commutative + associative) > > -binop("umax", tunsigned, commutative + associative) > > - > > -binop("fpow", tfloat, "") > > - > > -binop_horiz("pack_half_2x16_split", 1, tunsigned, 1, tfloat, 1, tfloat) > > - > > -binop("bfm", tunsigned, "") > > - > > -binop("ldexp", tunsigned, "") > > +binop("fand", tfloat, commutative, > > + "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f") > > +binop("for", tfloat, commutative, > > + "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f") > > +binop("fxor", tfloat, commutative, > > + "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f") > > + > > +binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", > > + "{src}") > > + > > +binop("fmin", tfloat, "", "fminf(src0, src1)") > > +binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1") > > +binop("umin", tunsigned, commutative + associative, "src1 > src0 ? src0 : src1") > > +binop("fmax", tfloat, "", "fmaxf(src0, src1)") > > +binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0") > > +binop("umax", tunsigned, commutative + associative, "src1 > src0 ? src1 : src0") > > + > > +binop("fpow", tfloat, "", "powf(src0, src1)") > > + > > +binop_horiz("pack_half_2x16_split", 1, tunsigned, 1, tfloat, 1, tfloat, > > + "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)") > > + > > +binop_convert("bfm", tunsigned, tint, "", """ > > +int offset = src0, bits = src1; > > +if (offset < 0 || bits < 0 || offset + bits > 32) > > + dst = 0; /* undefined per the spec */ > > +else > > + dst = ((1 << bits)- 1) << offset; > > +""") > > + > > +opcode("ldexp", 0, tunsigned, [0, 0], [tfloat, tint], "", """ > > +dst = ldexp(src0, src1); > > +/* flush denormals to zero. */ > > +if (!isnormal(dst)) > > + dst = copysign(0.0f, src0); > > +""") > > > > # Combines the first component of each input to make a 2-component vector. > > > > -binop_horiz("vec2", 2, tunsigned, 1, tunsigned, 1, tunsigned) > > +binop_horiz("vec2", 2, tunsigned, 1, tunsigned, 1, tunsigned, """ > > +dst.x = src0.x; > > +dst.y = src1.x; > > +""") > > > > -def triop(name, ty): > > - opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "") > > -def triop_horiz(name, output_size, src1_size, src2_size, src3_size): > > +def triop(name, ty, const_expr): > > + opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "", const_expr) > > +def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr): > > opcode(name, output_size, tunsigned, > > [src1_size, src2_size, src3_size], > > - [tunsigned, tunsigned, tunsigned], "") > > + [tunsigned, tunsigned, tunsigned], "", const_expr) > > > > -# fma(a, b, c) = (a# b) + c > > -triop("ffma", tfloat) > > +triop("ffma", tfloat, "src0 * src1 + src2") > > > > -triop("flrp", tfloat) > > +triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2") > > > > # Conditional Select > > # > > @@ -352,30 +511,83 @@ triop("flrp", tfloat) > > # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0). > > > > > > -triop("fcsel", tfloat) > > +triop("fcsel", tfloat, "(src0 != 0.0f) ? src1 : src2") > > opcode("bcsel", 0, tunsigned, [0, 0, 0], > > - [tbool, tunsigned, tunsigned], "") > > - > > -triop("bfi", tunsigned) > > - > > -triop("ubitfield_extract", tunsigned) > > -opcode("ibitfield_extract", 0, tint, [0, 0, 0], > > - [tint, tunsigned, tunsigned], "") > > + [tbool, tunsigned, tunsigned], "", "src0 ? src1 : src2") > > + > > +triop("bfi", tunsigned, """ > > +unsigned mask = src0, insert = src1 & mask, base = src2; > > +if (mask == 0) { > > + dst = base; > > +} else { > > + unsigned tmp = mask; > > + while (!(tmp & 1)) { > > + tmp >>= 1; > > + insert <<= 1; > > + } > > + dst = (base & ~mask) | insert; > > +} > > +""") > > + > > +opcode("ubitfield_extract", 0, tunsigned, > > + [0, 1, 1], [tunsigned, tint, tint], "", """ > > +unsigned base = src0; > > +int offset = src1.x, bits = src2.x; > > +if (bits == 0) { > > + dst = 0; > > +} else if (bits < 0 || offset < 0 || offset + bits > 32) { > > + dst = 0; /* undefined per the spec */ > > +} else { > > + dst = (base >> offset) & ((1 << bits) - 1); > > +} > > +""") > > +opcode("ibitfield_extract", 0, tint, > > + [0, 1, 1], [tint, tint, tint], "", """ > > +int base = src0; > > +int offset = src1.x, bits = src2.x; > > +if (bits == 0) { > > + dst = 0; > > +} else if (offset < 0 || bits < 0 || offset + bits > 32) { > > + dst = 0; > > +} else { > > + dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */ > > +} > > +""") > > > > # Combines the first component of each input to make a 3-component vector. > > > > -triop_horiz("vec3", 3, 1, 1, 1) > > +triop_horiz("vec3", 3, 1, 1, 1, """ > > +dst.x = src0.x; > > +dst.y = src1.x; > > +dst.z = src2.x; > > +""") > > > > -def quadop(name): > > - opcode(name, 0, tunsigned, [0, 0, 0, 0], > > - [tunsigned, tunsigned, tunsigned, tunsigned], > > - "") > > -def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, src4_size): > > +def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, > > + src4_size, const_expr): > > opcode(name, output_size, tunsigned, > > [src1_size, src2_size, src3_size, src4_size], > > [tunsigned, tunsigned, tunsigned, tunsigned], > > - "") > > + "", const_expr) > > + > > +opcode("bitfield_insert", 0, tunsigned, [0, 0, 1, 1], > > + [tunsigned, tunsigned, tint, tint], "", """ > > +unsigned base = src0, insert = src1; > > +int offset = src2.x, bits = src3.x; > > +if (bits == 0) { > > + dst = 0; > > +} else if (offset < 0 || bits < 0 || bits + offset > 32) { > > + dst = 0; > > +} else { > > + unsigned mask = ((1 << bits) - 1) << offset; > > + dst = (base & ~mask) | ((insert << bits) & mask); > > +} > > +""") > > + > > +quadop_horiz("vec4", 4, 1, 1, 1, 1, """ > > +dst.x = src0.x; > > +dst.y = src1.x; > > +dst.z = src2.x; > > +dst.w = src3.x; > > +""") > > > > -quadop("bitfield_insert") > > > > -quadop_horiz("vec4", 4, 1, 1, 1, 1) > > -- > > 2.2.1 > > > > _______________________________________________ > > mesa-dev mailing list > > mesa-dev@lists.freedesktop.org > > http://lists.freedesktop.org/mailman/listinfo/mesa-dev
_______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org http://lists.freedesktop.org/mailman/listinfo/mesa-dev