On Wed, Feb 07, 2018 at 11:27:38AM -0800, Jason Ekstrand wrote: > On Wed, Feb 7, 2018 at 9:59 AM, Nanley Chery <nanleych...@gmail.com> wrote: > > > On Tue, Feb 06, 2018 at 05:57:26PM -0800, Jason Ekstrand wrote: > > > On Tue, Feb 6, 2018 at 5:09 PM, Nanley Chery <nanleych...@gmail.com> > > wrote: > > > > > > > On Mon, Feb 05, 2018 at 06:16:26PM -0800, Jason Ekstrand wrote: > > > > > This commit completely reworks aux tracking. This includes a number > > of > > > > > somewhat distinct changes: > > > > > > > > > > 1) Since we are no longer fast-clearing multiple slices, we only > > need > > > > > to track one fast clear color and one fast clear type. > > > > > > > > > > 2) We store two bits for fast clear instead of one to let us > > > > > distinguish between zero and non-zero fast clear colors. This is > > > > > needed so that we can do full resolves when transitioning to > > > > > PRESENT_SRC_KHR with gen9 CCS images where we allow zero clear > > > > > values in all sorts of places we wouldn't normally. > > > > > > > > > > 3) We now track compression state as a boolean separate from fast > > clear > > > > > type and this is tracked on a per-slice granularity. > > > > > > > > > > The previous scheme had some issues when it came to individual > > slices of > > > > > a multi-LOD images. In particular, we only tracked "needs resolve" > > > > > per-LOD but you could do a vkCmdPipelineBarrier that would only > > resolve > > > > > a portion of the image and would set "needs resolve" to false anyway. > > > > > Also, any transition from an undefined layout would reset the clear > > > > > color for the entire LOD regardless of whether or not there was some > > > > > clear color on some other slice. > > > > > > > > > > As far as full/partial resolves go, he assumptions of the previous > > > > > scheme held because the one case where we do need a full resolve when > > > > > CCS_E is enabled is for window-system images. Since we only ever > > > > > allowed X-tiled window-system images, CCS was entirely disabled on > > gen9+ > > > > > and we never got CCS_E. With the advent of Y-tiled window-system > > > > > buffers, we now need to properly support doing a full resolve of > > images > > > > > marked CCS_E. > > > > > > > > > > v2 (Jason Ekstrand): > > > > > - Fix an bug in the compressed flag offset calculation > > > > > - Treat 3D images as multi-slice for the purposes of resolve > > tracking > > > > > > > > > > Reviewed-by: Topi Pohjolainen <topi.pohjolai...@intel.com> > > > > > --- > > > > > src/intel/vulkan/anv_blorp.c | 3 +- > > > > > src/intel/vulkan/anv_image.c | 100 ++++++----- > > > > > src/intel/vulkan/anv_private.h | 60 ++++--- > > > > > src/intel/vulkan/genX_cmd_buffer.c | 340 > > +++++++++++++++++++++++++++--- > > > > ------- > > > > > 4 files changed, 345 insertions(+), 158 deletions(-) > > > > > > > > > > diff --git a/src/intel/vulkan/anv_blorp.c > > b/src/intel/vulkan/anv_blorp.c > > > > > index 497ae6f..fc3b717 100644 > > > > > --- a/src/intel/vulkan/anv_blorp.c > > > > > +++ b/src/intel/vulkan/anv_blorp.c > > > > > @@ -1758,8 +1758,7 @@ anv_image_ccs_op(struct anv_cmd_buffer > > *cmd_buffer, > > > > > * particular value and don't care about format or clear > > value. > > > > > */ > > > > > const struct anv_address clear_color_addr = > > > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > > - aspect, level); > > > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > aspect); > > > > > surf.clear_color_addr = anv_to_blorp_address(clear_ > > color_addr); > > > > > } > > > > > > > > > > diff --git a/src/intel/vulkan/anv_image.c > > b/src/intel/vulkan/anv_image.c > > > > > index 11942d0..011e952 100644 > > > > > --- a/src/intel/vulkan/anv_image.c > > > > > +++ b/src/intel/vulkan/anv_image.c > > > > > @@ -190,46 +190,54 @@ all_formats_ccs_e_compatible(const struct > > > > gen_device_info *devinfo, > > > > > * fast-clear values in non-trivial cases (e.g., outside of a render > > > > pass in > > > > > * which a fast clear has occurred). > > > > > * > > > > > - * For the purpose of discoverability, the algorithm used to manage > > > > this buffer > > > > > - * is described here. A clear value in this buffer is updated when a > > > > fast clear > > > > > - * is performed on a subresource. One of two synchronization > > operations > > > > is > > > > > - * performed in order for a following memory access to use the > > > > fast-clear > > > > > - * value: > > > > > - * a. Copy the value from the buffer to the surface state object > > > > used for > > > > > - * reading. This is done implicitly when the value is the > > clear > > > > value > > > > > - * predetermined to be the default in other surface state > > > > objects. This > > > > > - * is currently only done explicitly for the operation below. > > > > > - * b. Do (a) and use the surface state object to resolve the > > > > subresource. > > > > > - * This is only done during layout transitions for decent > > > > performance. > > > > > + * In order to avoid having multiple clear colors for a single > > plane of > > > > an > > > > > + * image (hence a single RENDER_SURFACE_STATE), we only allow > > > > fast-clears on > > > > > + * the first slice (level 0, layer 0). At the time of our testing > > (Jan > > > > 17, > > > > > + * 2018), there were no known applications which would benefit from > > > > fast- > > > > > + * clearing more than just the first slice. > > > > > * > > > > > - * With the above scheme, we can fast-clear whenever the hardware > > > > allows except > > > > > - * for two cases in which synchronization becomes impossible or > > > > undesirable: > > > > > - * * The subresource is in the GENERAL layout and is cleared to a > > > > value > > > > > - * other than the special default value. > > > > > + * The fast clear portion of the image is laid out in the following > > > > order: > > > > > * > > > > > - * Performing a synchronization operation in order to read > > from the > > > > > - * subresource is undesirable in this case. Firstly, b) is not > > an > > > > option > > > > > - * because a layout transition isn't required between a write > > and > > > > read of > > > > > - * an image in the GENERAL layout. Secondly, it's undesirable > > to > > > > do a) > > > > > - * explicitly because it would require large infrastructural > > > > changes. The > > > > > - * Vulkan API supports us in deciding not to optimize this > > layout > > > > by > > > > > - * stating that using this layout may cause suboptimal > > > > performance. NOTE: > > > > > - * the auxiliary buffer must always be enabled to support a) > > > > implicitly. > > > > > + * * 1 or 4 dwords (depending on hardware generation) for the clear > > > > color > > > > > + * * 1 dword for the anv_fast_clear_type of the clear color > > > > > + * * On gen9+, 1 dword per level and layer of the image (3D levels > > > > count > > > > > + * multiple layers) in level-major order for compression state. > > > > > * > > > > > + * For the purpose of discoverability, the algorithm used to manage > > > > > + * compression and fast-clears is described here: > > > > > * > > > > > - * * For the given miplevel, only some of the layers are cleared > > at > > > > once. > > > > > + * * On a transition from UNDEFINED or PREINITIALIZED to a defined > > > > layout, > > > > > + * all of the values in the fast clear portion of the image are > > > > initialized > > > > > + * to default values. > > > > > * > > > > > - * If the user clears each layer to a different value, then > > tries > > > > to > > > > > - * render to multiple layers at once, we have no ability to > > > > perform a > > > > > - * synchronization operation in between. a) is not helpful > > because > > > > the > > > > > - * object can only hold one clear value. b) is not an option > > > > because a > > > > > - * layout transition isn't required in this case. > > > > > + * * On fast-clear, the clear value is written into surface state > > and > > > > also > > > > > + * into the buffer and the fast clear type is set appropriately. > > > > Both > > > > > + * setting the fast-clear value in the buffer and setting the > > > > fast-clear > > > > > + * type happen from the GPU using MI commands. > > > > > > > > There's no mention about setting the compression dwords during > > > > fast-clear operations or on render target writes. > > > > > > > > > > I've added another bullet: > > > > > > * * Whenever a render or blorp operation is performed with CCS_E, we > > call > > > * anv_cmd_buffer_mark_image_written to set the compression state to > > 1. > > > > > > > > > > That'll work. I think we should replace > > anv_cmd_buffer_mark_image_written with > > genX(cmd_buffer_mark_image_written) though, since the former's a wrapper > > that only gets called for blorp operations. > > > > Done. > > > > > > > + * > > > > > + * * On pipeline barrier transitions, the worst-case transition is > > > > computed > > > > > + * from the image layouts. The command streamer inspects the > > fast > > > > clear > > > > > + * type and compression state dwords and constructs a > > predicate. The > > > > > + * worst-case resolve is performed with the given predicate and > > the > > > > fast > > > > > + * clear and compression state is set accordingly. > > > > > + * > > > > > + * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type > > > > functions for > > > > > + * details on exactly what is allowed in what layouts. > > > > > + * > > > > > + * On gen7-9, we do not have a concept of indirect clear colors in > > > > hardware. > > > > > + * In order to deal with this, we have to do some clear color > > > > management. > > > > > + * > > > > > + * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy > > the > > > > clear > > > > > + * value from the buffer into the surface state with MI commands. > > > > > + * > > > > > + * * For any blorp operations, we pass the address to the clear > > value > > > > into > > > > > + * blorp and it knows to copy the clear color. > > > > > */ > > > > > static void > > > > > -add_fast_clear_state_buffer(struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - uint32_t plane, > > > > > - const struct anv_device *device) > > > > > +add_aux_state_tracking_buffer(struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect, > > > > > + uint32_t plane, > > > > > + const struct anv_device *device) > > > > > > > > The comment referencing this function in genX_cmd_buffer.c needs to be > > > > updated. > > > > > > > > > > I don't see that comment anywhere. > > > > > > > > > > Maybe you delete it in a future series? This is the one I have in mind: > > > > /* We only allow fast clears in the GENERAL layout if the auxiliary > > * buffer is always enabled and the fast-clear value is all 0's. See > > * add_fast_clear_state_buffer() for more information. > > */ > > > > Right. Somehow my grepping missed it. Fixed. > > > > > > > { > > > > > assert(image && device); > > > > > assert(image->planes[plane].aux_surface.isl.size > 0 && > > > > > @@ -251,20 +259,24 @@ add_fast_clear_state_buffer(struct anv_image > > > > *image, > > > > > (image->planes[plane].offset + > > image->planes[plane].size)); > > > > > } > > > > > > > > > > - const unsigned entry_size = anv_fast_clear_state_entry_ > > size(device); > > > > > - /* There's no padding between entries, so ensure that they're > > always > > > > a > > > > > - * multiple of 32 bits in order to enable GPU memcpy operations. > > > > > - */ > > > > > - assert(entry_size % 4 == 0); > > > > > + /* Clear color and fast clear type */ > > > > > + unsigned state_size = device->isl_dev.ss.clear_value_size + 4; > > > > > > > > > > - const unsigned plane_state_size = > > > > > - entry_size * anv_image_aux_levels(image, aspect); > > > > > + /* We only need to track compression on CCS_E surfaces. */ > > > > > + if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { > > > > > + if (image->type == VK_IMAGE_TYPE_3D) { > > > > > + for (uint32_t l = 0; l < image->levels; l++) > > > > > + state_size += anv_minify(image->extent.depth, l) * 4; > > > > > + } else { > > > > > + state_size += image->levels * image->array_size * 4; > > > > > + } > > > > > + } > > > > > > > > > > image->planes[plane].fast_clear_state_offset = > > > > > image->planes[plane].offset + image->planes[plane].size; > > > > > > > > > > - image->planes[plane].size += plane_state_size; > > > > > - image->size += plane_state_size; > > > > > + image->planes[plane].size += state_size; > > > > > + image->size += state_size; > > > > > } > > > > > > > > > > /** > > > > > @@ -437,7 +449,7 @@ make_surface(const struct anv_device *dev, > > > > > } > > > > > > > > > > add_surface(image, &image->planes[plane].aux_surface, > > > > plane); > > > > > - add_fast_clear_state_buffer(image, aspect, plane, dev); > > > > > + add_aux_state_tracking_buffer(image, aspect, plane, > > dev); > > > > > > > > > > /* For images created without MUTABLE_FORMAT_BIT set, we > > > > know that > > > > > * they will always be used with the original format. > > In > > > > > @@ -461,7 +473,7 @@ make_surface(const struct anv_device *dev, > > > > > &image->planes[plane].aux_ > > > > surface.isl); > > > > > if (ok) { > > > > > add_surface(image, &image->planes[plane].aux_surface, > > plane); > > > > > - add_fast_clear_state_buffer(image, aspect, plane, dev); > > > > > + add_aux_state_tracking_buffer(image, aspect, plane, dev); > > > > > image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; > > > > > } > > > > > } > > > > > diff --git a/src/intel/vulkan/anv_private.h b/src/intel/vulkan/anv_ > > > > private.h > > > > > index 5f82702..d38dd9e 100644 > > > > > --- a/src/intel/vulkan/anv_private.h > > > > > +++ b/src/intel/vulkan/anv_private.h > > > > > @@ -2533,50 +2533,58 @@ anv_image_aux_layers(const struct anv_image * > > > > const image, > > > > > } > > > > > } > > > > > > > > > > -static inline unsigned > > > > > -anv_fast_clear_state_entry_size(const struct anv_device *device) > > > > > -{ > > > > > - assert(device); > > > > > - /* Entry contents: > > > > > - * +--------------------------------------------+ > > > > > - * | clear value dword(s) | needs resolve dword | > > > > > - * +--------------------------------------------+ > > > > > - */ > > > > > - > > > > > - /* Ensure that the needs resolve dword is in fact dword-aligned > > to > > > > enable > > > > > - * GPU memcpy operations. > > > > > - */ > > > > > - assert(device->isl_dev.ss.clear_value_size % 4 == 0); > > > > > - return device->isl_dev.ss.clear_value_size + 4; > > > > > -} > > > > > - > > > > > static inline struct anv_address > > > > > anv_image_get_clear_color_addr(const struct anv_device *device, > > > > > const struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - unsigned level) > > > > > + VkImageAspectFlagBits aspect) > > > > > { > > > > > + assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > > > + > > > > > uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > aspect); > > > > > return (struct anv_address) { > > > > > .bo = image->planes[plane].bo, > > > > > .offset = image->planes[plane].bo_offset + > > > > > - image->planes[plane].fast_clear_state_offset + > > > > > - anv_fast_clear_state_entry_size(device) * level, > > > > > + image->planes[plane].fast_clear_state_offset, > > > > > }; > > > > > } > > > > > > > > > > static inline struct anv_address > > > > > -anv_image_get_needs_resolve_addr(const struct anv_device *device, > > > > > - const struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - unsigned level) > > > > > +anv_image_get_fast_clear_type_addr(const struct anv_device *device, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect) > > > > > { > > > > > struct anv_address addr = > > > > > - anv_image_get_clear_color_addr(device, image, aspect, level); > > > > > + anv_image_get_clear_color_addr(device, image, aspect); > > > > > addr.offset += device->isl_dev.ss.clear_value_size; > > > > > return addr; > > > > > } > > > > > > > > > > +static inline struct anv_address > > > > > +anv_image_get_compression_state_addr(const struct anv_device > > *device, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect, > > > > > + uint32_t level, uint32_t > > > > array_layer) > > > > > +{ > > > > > + assert(level < anv_image_aux_levels(image, aspect)); > > > > > + assert(array_layer < anv_image_aux_layers(image, aspect, level)); > > > > > + UNUSED uint32_t plane = anv_image_aspect_to_plane( > > image->aspects, > > > > aspect); > > > > > + assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E); > > > > > + > > > > > + struct anv_address addr = > > > > > + anv_image_get_fast_clear_type_addr(device, image, aspect); > > > > > + addr.offset += 4; /* Go past the fast clear type */ > > > > > + > > > > > + if (image->type == VK_IMAGE_TYPE_3D) { > > > > > + for (uint32_t l = 0; l < level; l++) > > > > > + addr.offset += anv_minify(image->extent.depth, l) * 4; > > > > > + } else { > > > > > + addr.offset += level * image->array_size * 4; > > > > > + } > > > > > + addr.offset += array_layer * 4; > > > > > + > > > > > + return addr; > > > > > +} > > > > > + > > > > > /* Returns true if a HiZ-enabled depth buffer can be sampled from. > > */ > > > > > static inline bool > > > > > anv_can_sample_with_hiz(const struct gen_device_info * const > > devinfo, > > > > > diff --git a/src/intel/vulkan/genX_cmd_buffer.c > > > > b/src/intel/vulkan/genX_cmd_buffer.c > > > > > index e1a4d95..4c75e0c 100644 > > > > > --- a/src/intel/vulkan/genX_cmd_buffer.c > > > > > +++ b/src/intel/vulkan/genX_cmd_buffer.c > > > > > @@ -407,27 +407,45 @@ transition_depth_buffer(struct anv_cmd_buffer > > > > *cmd_buffer, > > > > > #define MI_PREDICATE_SRC0 0x2400 > > > > > #define MI_PREDICATE_SRC1 0x2408 > > > > > > > > > > -/* Manages the state of an color image subresource to ensure > > resolves > > > > are > > > > > - * performed properly. > > > > > - */ > > > > > static void > > > > > -genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer, > > > > > - const struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - unsigned level, bool needs_resolve) > > > > > +set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect, > > > > > + enum anv_fast_clear_type fast_clear) > > > > > { > > > > > - assert(cmd_buffer && image); > > > > > - assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > > > - > > > > > - /* The HW docs say that there is no way to guarantee the > > completion > > > > of > > > > > - * the following command. We use it nevertheless because it > > shows no > > > > > - * issues in testing is currently being used in the GL driver. > > > > > - */ > > > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) { > > > > > - sdi.Address = anv_image_get_needs_resolve_ > > > > addr(cmd_buffer->device, > > > > > - image, aspect, > > > > level); > > > > > - sdi.ImmediateData = needs_resolve; > > > > > + sdi.Address = anv_image_get_fast_clear_type_ > > > > addr(cmd_buffer->device, > > > > > + image, > > aspect); > > > > > + sdi.ImmediateData = fast_clear; > > > > > + } > > > > > +} > > > > > + > > > > > +static void > > > > > +set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect, > > > > > + uint32_t level, > > > > > + uint32_t base_layer, uint32_t layer_count, > > > > > + bool compressed) > > > > > +{ > > > > > + /* We only have CCS_E on gen9+ */ > > > > > + if (GEN_GEN < 9) > > > > > + return; > > > > > + > > > > > > > > I'm also fine with dropping this if statement. > > > > > > > > > > Ok, we'll drop it. > > > > > > > > > > > + uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > aspect); > > > > > + > > > > > + /* We only have compression tracking for CCS_E */ > > > > > + if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) > > > > > + return; > > > > > + > > > > > + for (uint32_t a = 0; a < layer_count; a++) { > > > > > + uint32_t layer = base_layer + a; > > > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) > > > > { > > > > > + sdi.Address = anv_image_get_compression_ > > > > state_addr(cmd_buffer->device, > > > > > + image, > > > > aspect, > > > > > + level, > > > > layer); > > > > > + sdi.ImmediateData = compressed ? UINT32_MAX : 0; > > > > > + } > > > > > } > > > > > } > > > > > > > > > > @@ -451,32 +469,176 @@ mi_alu(uint32_t opcode, uint32_t operand1, > > > > uint32_t operand2) > > > > > #define CS_GPR(n) (0x2600 + (n) * 8) > > > > > > > > > > static void > > > > > -genX(load_needs_resolve_predicate)(struct anv_cmd_buffer > > *cmd_buffer, > > > > > - const struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - unsigned level) > > > > > +anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect, > > > > > + uint32_t level, uint32_t array_layer, > > > > > + enum isl_aux_op resolve_op, > > > > > + enum anv_fast_clear_type > > > > fast_clear_supported) > > > > > { > > > > > - assert(cmd_buffer && image); > > > > > - assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > > > + struct anv_address fast_clear_type_addr = > > > > > + anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, > > > > aspect); > > > > > + > > > > > +#if GEN_GEN >= 9 > > > > > + const uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > > > aspect); > > > > > + const bool decompress = > > > > > + resolve_op == ISL_AUX_OP_FULL_RESOLVE && > > > > > + image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E; > > > > > + > > > > > + /* This function shouldn't get called if it isn't going to do > > > > anything */ > > > > > + assert(decompress || fast_clear_supported < ANV_FAST_CLEAR_ANY); > > > > > + > > > > > + if (level == 0 && array_layer == 0) { > > > > > + /* This is the complex case because we have to worry about > > > > dealing with > > > > > + * the fast clear color. Unfortunately, it's also the common > > > > case. > > > > > + */ > > > > > + > > > > > + /* Poor-man's register allocation */ > > > > > + int next_reg = MI_ALU_REG0; > > > > > + int pred_reg = -1; > > > > > + > > > > > + /* Needed for ALU operations */ > > > > > + uint32_t *dw; > > > > > + > > > > > + const int image_fc = next_reg++; > > > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_LOAD_REGISTER_MEM), > > > > lrm) { > > > > > + lrm.RegisterAddress = CS_GPR(image_fc); > > > > > + lrm.MemoryAddress = fast_clear_type_addr; > > > > > + } > > > > > + emit_lri(&cmd_buffer->batch, CS_GPR(image_fc) + 4, 0); > > > > > + > > > > > + if (fast_clear_supported < ANV_FAST_CLEAR_ANY) { > > > > > + /* We need to compute (fast_clear_supported < > > > > image->fast_clear). > > > > > + * We do this by subtracting and storing the carry bit. > > > > > + */ > > > > > + const int fc_imm = next_reg++; > > > > > + emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm), > > > > fast_clear_supported); > > > > > + emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm) + 4, 0); > > > > > + > > > > > + assert(pred_reg == -1); > > > > > + pred_reg = next_reg++; > > > > > + > > > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, > > GENX(MI_MATH)); > > > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm); > > > > > + dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc); > > > > > + dw[3] = mi_alu(MI_ALU_SUB, 0, 0); > > > > > + dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF); > > > > > + } > > > > > + > > > > > + if (decompress) { > > > > > + /* If we're doing a full resolve, we need the compression > > > > state */ > > > > > + struct anv_address compression_state_addr = > > > > > + anv_image_get_compression_ > > state_addr(cmd_buffer->device, > > > > image, > > > > > + aspect, level, > > > > array_layer); > > > > > + if (pred_reg == -1) { > > > > > + pred_reg = next_reg++; > > > > > + anv_batch_emit(&cmd_buffer->batch, > > > > GENX(MI_LOAD_REGISTER_MEM), lrm) { > > > > > + lrm.RegisterAddress = CS_GPR(pred_reg); > > > > > + lrm.MemoryAddress = compression_state_addr; > > > > > + } > > > > > > > > > > In this case, we don't have a fast-clear predicate. This is because "if > > > (fast_clear_supported < ANV_FAST_CLEAR_ANY)" failed so we didn't compute > > > one. In this case, we treat the fast-clear predicate as being 0 and OR > > > with 0 is just the original value. > > > > > > > > > > > > > > + } else { > > > > > + /* OR the compression state into the predicate. The > > > > compression > > > > > + * state is already in 0/~0 form. > > > > > + */ > > > > > > > > The OR is a result of this function's structure and wouldn't be needed > > > > if the control flow in this function was different right? > > > > > > > > > > In this case, we have both a fast-clear predicate and a compression > > > predicate. We have to OR them together. > > > > > > I'm not sure what you mean about control-flow in this function being > > > different. Yes, I'm probably over-optimizing a bit to avoid unneeded CS > > > operations. > > > > > > > > > > By that, I'm referring to the organization of the if's and else's in > > this function - though that still isn't very exact/clear. Sorry for the > > confusion. > > > > It seems like the OR is one more CS operation than neeeded. It's always > > the case that if we have some fast-clear data, the compression state > > will always be true. > > > > I'm not sure if that's always true or not. I think it is in practice since > we only fast clear at the top of render passes and we always call > mark_image_written at the top of the render pass too. However, if the > first use of a fast-cleared image is an input attachment, this may not be > the case. Also, if we ever try to do something clever like you suggested > with PS depth count, this won't be the case. In GL, it's easy because all > you have to do is a fast-clear and some rendering as sRGB and you get into > the PARTIAL_CLEAR state. In any case, I don't know that we want them to be > coupled. > >
Clearing input attachments is not a problem because the attachment must also be used as a color attachment in the same subpass: If the first use of an attachment in this render pass is as an input attachment, and the attachment is not also used as a color or depth/stencil attachment in the same subpass, then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR Regardless of what we do with mark_image_written (use PS_DEPTH_COUNT, call it during vkDraw* commands), we could update the compression state as part of updating the fast clear state. What benefit would we get from allowing FC to be a non-zero value and COMP to be zero? > > Here's how I understand the states could look: > > FC | COMP > > ========== > > 0 | 0 > > 0 | 1 > > 1 | 1 > > 2 | 1 > > > > If that's the case we only have to check the compression_state when a > > decompress is called for. If we moved the "if (decompress) {}" block of > > the function higher we wouldn't need to OR the compression predicate > > with the fast clear predicate. > > > > Ugh... This is subtle... If the above table is accurate (which, as I said > above, I'm not convinced it is), then I think your statement there is > correct. > > I'm a bit torn. On the one hand, this code is complicated and we could > simplify it if we're willing to make the assumption above. On the other > hand, there are a bunch of subtle interactions here and I don't like subtle. > > > > > > > + const int image_comp = next_reg++; > > > > > + anv_batch_emit(&cmd_buffer->batch, > > > > GENX(MI_LOAD_REGISTER_MEM), lrm) { > > > > > + lrm.RegisterAddress = CS_GPR(image_comp); > > > > > + lrm.MemoryAddress = compression_state_addr; > > > > > + } > > > > > + > > > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, > > GENX(MI_MATH)); > > > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, pred_reg); > > > > > + dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_comp); > > > > > + dw[3] = mi_alu(MI_ALU_OR, 0, 0); > > > > > + dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_ACCU); > > > > > + } > > > > > + > > > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_STORE_DATA_IMM), > > > > sdi) { > > > > > + sdi.Address = compression_state_addr; > > > > > + sdi.ImmediateData = 0; > > > > > + } > > > > > + } > > > > > > > > > > - const struct anv_address resolve_flag_addr = > > > > > - anv_image_get_needs_resolve_addr(cmd_buffer->device, > > > > > - image, aspect, level); > > > > > + /* Store the predicate */ > > > > > + assert(pred_reg != -1); > > > > > + emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, > > CS_GPR(pred_reg)); > > > > > > > > > > - /* Make the pending predicated resolve a no-op if one is not > > needed. > > > > > - * predicate = do_resolve = resolve_flag != 0; > > > > > + /* If the predicate is true, we want to write 0 to the fast > > clear > > > > type > > > > > + * and, if it's false, leave it alone. We can do this by > > writing > > > > > + * > > > > > + * clear_type = clear_type & ~predicate; > > > > > + */ > > > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); > > > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc); > > > > > + dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg); > > > > > + dw[3] = mi_alu(MI_ALU_AND, 0, 0); > > > > > + dw[4] = mi_alu(MI_ALU_STORE, image_fc, MI_ALU_ACCU); > > > > > + > > > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_STORE_REGISTER_MEM), > > > > srm) { > > > > > + srm.RegisterAddress = CS_GPR(image_fc); > > > > > + srm.MemoryAddress = fast_clear_type_addr; > > > > > + } > > > > > + } else if (decompress) { > > > > > + /* We're trying to get rid of compression but we don't care > > about > > > > fast > > > > > + * clears so all we need is the compression predicate. > > > > > + */ > > > > > + assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); > > > > > + struct anv_address compression_state_addr = > > > > > + anv_image_get_compression_state_addr(cmd_buffer->device, > > > > image, > > > > > + aspect, level, > > > > array_layer); > > > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_LOAD_REGISTER_MEM), > > > > lrm) { > > > > > + lrm.RegisterAddress = MI_PREDICATE_SRC0; > > > > > + lrm.MemoryAddress = compression_state_addr; > > > > > + } > > > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) > > > > { > > > > > + sdi.Address = compression_state_addr; > > > > > + sdi.ImmediateData = 0; > > > > > + } > > > > If we want them decoupled, we probably want to do "compressed |= predicate" > here. > > > > > > > + } else { > > > > > + /* In this case, we're trying to do a partial resolve on a > > slice > > > > that > > > > > + * doesn't have clear color. There's nothing to do. > > > > > + */ > > > > > + return; > > > > > + } > > > > > + > > > > > +#else /* GEN_GEN <= 8 */ > > > > > + assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); > > > > > + assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); > > > > > + > > > > > + /* We don't support fast clears on anything other than the first > > > > slice. */ > > > > > + if (level > 0 || array_layer > 0) > > > > > + return; > > > > > + > > > > > + /* On gen8, we don't have a concept of default clear colors > > because > > > > we > > > > > + * can't sample from CCS surfaces. It's enough to just load the > > > > fast clear > > > > > + * state into the predicate register. > > > > > */ > > > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), > > lrm) > > > > { > > > > > + lrm.RegisterAddress = MI_PREDICATE_SRC0; > > > > > + lrm.MemoryAddress = fast_clear_type_addr; > > > > > + } > > > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) { > > > > > + sdi.Address = fast_clear_type_addr; > > > > > + sdi.ImmediateData = 0; > > > > > + } > > > > > +#endif > > > > > + > > > > > + /* We use the first half of src0 for the actual predicate. Set > > the > > > > second > > > > > + * half of src0 and all of src1 to 0 as the predicate operation > > will > > > > be > > > > > + * doing an implicit src0 != src1. > > > > > + */ > > > > > + emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0); > > > > > emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0); > > > > > emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0); > > > > > - emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0); > > > > > - emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, > > > > > - resolve_flag_addr.bo, resolve_flag_addr.offset); > > > > > + > > > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { > > > > > mip.LoadOperation = LOAD_LOADINV; > > > > > mip.CombineOperation = COMBINE_SET; > > > > > mip.CompareOperation = COMPARE_SRCS_EQUAL; > > > > > } > > > > > + > > > > > + anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > > > + array_layer, 1, resolve_op, true); > > > > > } > > > > > > > > > > void > > > > > @@ -490,17 +652,30 @@ genX(cmd_buffer_mark_image_written)(struct > > > > anv_cmd_buffer *cmd_buffer, > > > > > { > > > > > /* The aspect must be exactly one of the image aspects. */ > > > > > assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects)); > > > > > + > > > > > + /* The only compression types with more than just fast-clears are > > > > MCS, > > > > > + * CCS_E, and HiZ. With HiZ we just trust the layout and don't > > > > actually > > > > > + * track the current fast-clear and compression state. This > > leaves > > > > us > > > > > + * with just MCS and CCS_E. > > > > > + */ > > > > > + if (aux_usage != ISL_AUX_USAGE_CCS_E && > > > > > + aux_usage != ISL_AUX_USAGE_MCS) > > > > > + return; > > > > > + > > > > > + set_image_compressed_bit(cmd_buffer, image, aspect, > > > > > + level, base_layer, layer_count, true); > > > > > } > > > > > > > > > > static void > > > > > -init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer, > > > > > - const struct anv_image *image, > > > > > - VkImageAspectFlagBits aspect, > > > > > - unsigned level) > > > > > +init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, > > > > > + const struct anv_image *image, > > > > > + VkImageAspectFlagBits aspect) > > > > > { > > > > > assert(cmd_buffer && image); > > > > > assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > > > + > > > > > + set_image_fast_clear_state(cmd_buffer, image, aspect, > > > > > + ANV_FAST_CLEAR_NONE); > > > > > > > > > > uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > aspect); > > > > > enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; > > > > > @@ -517,7 +692,7 @@ init_fast_clear_state_entry(struct > > anv_cmd_buffer > > > > *cmd_buffer, > > > > > * values in the clear value dword(s). > > > > > */ > > > > > struct anv_address addr = > > > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > aspect, level); > > > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > aspect); > > > > > unsigned i = 0; > > > > > for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i > > += 4) > > > > { > > > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) > > > > { > > > > > @@ -558,19 +733,17 @@ genX(copy_fast_clear_dwords)(struct > > > > anv_cmd_buffer *cmd_buffer, > > > > > struct anv_state surface_state, > > > > > const struct anv_image *image, > > > > > VkImageAspectFlagBits aspect, > > > > > - unsigned level, > > > > > bool copy_from_surface_state) > > > > > { > > > > > assert(cmd_buffer && image); > > > > > assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > > > > > > > > struct anv_bo *ss_bo = > > > > > &cmd_buffer->device->surface_state_pool.block_pool.bo; > > > > > uint32_t ss_clear_offset = surface_state.offset + > > > > > cmd_buffer->device->isl_dev.ss.clear_value_offset; > > > > > const struct anv_address entry_addr = > > > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > aspect, level); > > > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > > aspect); > > > > > unsigned copy_size = cmd_buffer->device->isl_dev. > > > > ss.clear_value_size; > > > > > > > > > > if (copy_from_surface_state) { > > > > > @@ -660,18 +833,6 @@ transition_color_buffer(struct anv_cmd_buffer > > > > *cmd_buffer, > > > > > if (base_layer >= anv_image_aux_layers(image, aspect, > > base_level)) > > > > > return; > > > > > > > > > > - /* A transition of a 3D subresource works on all slices at a > > time. */ > > > > > - if (image->type == VK_IMAGE_TYPE_3D) { > > > > > - base_layer = 0; > > > > > - layer_count = anv_minify(image->extent.depth, base_level); > > > > > - } > > > > > - > > > > > - /* We're interested in the subresource range subset that has aux > > > > data. */ > > > > > - level_count = MIN2(level_count, anv_image_aux_levels(image, > > aspect) > > > > - base_level); > > > > > - layer_count = MIN2(layer_count, > > > > > - anv_image_aux_layers(image, aspect, > > base_level) - > > > > base_layer); > > > > > - last_level_num = base_level + level_count; > > > > > - > > > > > assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); > > > > > > > > > > if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || > > > > > @@ -684,8 +845,8 @@ transition_color_buffer(struct anv_cmd_buffer > > > > *cmd_buffer, > > > > > * > > > > > * Initialize the relevant clear buffer entries. > > > > > */ > > > > > - for (unsigned level = base_level; level < last_level_num; > > level++) > > > > > - init_fast_clear_state_entry(cmd_buffer, image, aspect, > > level); > > > > > + if (base_level == 0 && base_layer == 0) > > > > > + init_fast_clear_color(cmd_buffer, image, aspect); > > > > > > > > > > /* Initialize the aux buffers to enable correct rendering. In > > > > order to > > > > > * ensure that things such as storage images work correctly, > > aux > > > > buffers > > > > > @@ -723,13 +884,18 @@ transition_color_buffer(struct anv_cmd_buffer > > > > *cmd_buffer, > > > > > if (image->samples == 1) { > > > > > for (uint32_t l = 0; l < level_count; l++) { > > > > > const uint32_t level = base_level + l; > > > > > - const uint32_t level_layer_count = > > > > > + uint32_t level_layer_count = > > > > > MIN2(layer_count, anv_image_aux_layers(image, aspect, > > > > level)); > > > > > + > > > > > anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > > > base_layer, level_layer_count, > > > > > ISL_AUX_OP_AMBIGUATE, false); > > > > > > > > On gen8, we're doing extra ambiguates when the level is greater than 0. > > > > > > > > > > Only if we never render to it with CCS_D enabled on miplevels > 0. I'm > > not > > > sure if that's guaranteed by the current code. > > > > > > > You're right. Could you put a perf_warn for rendering with CCS_D enabled > > on miplevels > 0 for gen8 in the patch, > > "anv: Only fast clear single-slice images"? > > > > We already warn for everything that isn't just single-slice rendering to > the first slice. We could make a special warning for gen8+ but I don't > really see a reason. > Where do we do this? As far as I know, we only warn for fast-clears that get turned off due to the target not being the first slice. > --Jason > > > > -Nanley > > > > > --Jason > > > > > > > > > > -Nanley > > > > > > > > > - genX(set_image_needs_resolve)(cmd_buffer, image, > > > > > - aspect, level, false); > > > > > + > > > > > + if (image->planes[plane].aux_usage == > > ISL_AUX_USAGE_CCS_E) > > > > { > > > > > + set_image_compressed_bit(cmd_buffer, image, aspect, > > > > > + level, base_layer, > > > > level_layer_count, > > > > > + false); > > > > > + } > > > > > } > > > > > } else { > > > > > if (image->samples == 4 || image->samples == 16) { > > > > > @@ -812,19 +978,17 @@ transition_color_buffer(struct anv_cmd_buffer > > > > *cmd_buffer, > > > > > cmd_buffer->state.pending_pipe_bits |= > > > > > ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | > > ANV_PIPE_CS_STALL_BIT; > > > > > > > > > > - for (uint32_t level = base_level; level < last_level_num; > > level++) { > > > > > + for (uint32_t l = 0; l < level_count; l++) { > > > > > + uint32_t level = base_level + l; > > > > > + uint32_t level_layer_count = > > > > > + MIN2(layer_count, anv_image_aux_layers(image, aspect, > > level)); > > > > > > > > > > - /* The number of layers changes at each 3D miplevel. */ > > > > > - if (image->type == VK_IMAGE_TYPE_3D) { > > > > > - layer_count = MIN2(layer_count, anv_image_aux_layers(image, > > > > aspect, level)); > > > > > + for (uint32_t a = 0; a < level_layer_count; a++) { > > > > > + uint32_t array_layer = base_layer + a; > > > > > + anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect, > > > > > + level, array_layer, > > resolve_op, > > > > > + final_fast_clear); > > > > > } > > > > > - > > > > > - genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, > > > > level); > > > > > - > > > > > - anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > > > - base_layer, layer_count, resolve_op, true); > > > > > - > > > > > - genX(set_image_needs_resolve)(cmd_buffer, image, aspect, > > level, > > > > false); > > > > > } > > > > > > > > > > cmd_buffer->state.pending_pipe_bits |= > > > > > @@ -1488,12 +1652,20 @@ void genX(CmdPipelineBarrier)( > > > > > anv_image_expand_aspects(image, range->aspectMask); > > > > > uint32_t aspect_bit; > > > > > > > > > > + uint32_t base_layer, layer_count; > > > > > + if (image->type == VK_IMAGE_TYPE_3D) { > > > > > + base_layer = 0; > > > > > + layer_count = anv_minify(image->extent.depth, > > > > range->baseMipLevel); > > > > > + } else { > > > > > + base_layer = range->baseArrayLayer; > > > > > + layer_count = anv_get_layerCount(image, range); > > > > > + } > > > > > + > > > > > anv_foreach_image_aspect_bit(aspect_bit, image, > > > > color_aspects) { > > > > > transition_color_buffer(cmd_buffer, image, 1UL << > > > > aspect_bit, > > > > > range->baseMipLevel, > > > > > anv_get_levelCount(image, > > range), > > > > > - range->baseArrayLayer, > > > > > - anv_get_layerCount(image, > > range), > > > > > + base_layer, layer_count, > > > > > pImageMemoryBarriers[i]. > > oldLayout, > > > > > pImageMemoryBarriers[i]. > > newLayout); > > > > > } > > > > > @@ -3203,28 +3375,26 @@ cmd_buffer_subpass_sync_fast_ > > clear_values(struct > > > > anv_cmd_buffer *cmd_buffer) > > > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > > > att_state->color.state, > > > > > iview->image, > > > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > > > - iview->planes[0].isl.base_ > > level, > > > > > true /* copy from ss */); > > > > > > > > > > /* Fast-clears impact whether or not a resolve will be > > > > necessary. */ > > > > > - if (iview->image->planes[0].aux_usage == > > ISL_AUX_USAGE_CCS_E > > > > && > > > > > - att_state->clear_color_is_zero) { > > > > > + if (att_state->clear_color_is_zero) { > > > > > /* This image always has the auxiliary buffer enabled. > > We > > > > can mark > > > > > * the subresource as not needing a resolve because the > > > > clear color > > > > > * will match what's in every RENDER_SURFACE_STATE > > object > > > > when it's > > > > > * being used for sampling. > > > > > */ > > > > > - genX(set_image_needs_resolve)(cmd_buffer, iview->image, > > > > > - VK_IMAGE_ASPECT_COLOR_BIT, > > > > > - iview->planes[0].isl.base_ > > > > level, > > > > > - false); > > > > > + set_image_fast_clear_state(cmd_buffer, iview->image, > > > > > + VK_IMAGE_ASPECT_COLOR_BIT, > > > > > + > > ANV_FAST_CLEAR_DEFAULT_VALUE); > > > > > } else { > > > > > - genX(set_image_needs_resolve)(cmd_buffer, iview->image, > > > > > - VK_IMAGE_ASPECT_COLOR_BIT, > > > > > - iview->planes[0].isl.base_ > > > > level, > > > > > - true); > > > > > + set_image_fast_clear_state(cmd_buffer, iview->image, > > > > > + VK_IMAGE_ASPECT_COLOR_BIT, > > > > > + ANV_FAST_CLEAR_ANY); > > > > > } > > > > > - } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { > > > > > + } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD && > > > > > + iview->planes[0].isl.base_level == 0 && > > > > > + iview->planes[0].isl.base_array_layer == 0) { > > > > > /* The attachment may have been fast-cleared in a previous > > > > render > > > > > * pass and the value is needed now. Update the surface > > > > state(s). > > > > > * > > > > > @@ -3233,7 +3403,6 @@ cmd_buffer_subpass_sync_fast_ > > clear_values(struct > > > > anv_cmd_buffer *cmd_buffer) > > > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > > > att_state->color.state, > > > > > iview->image, > > > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > > > - iview->planes[0].isl.base_ > > level, > > > > > false /* copy to ss */); > > > > > > > > > > if (need_input_attachment_state(rp_att) && > > > > > @@ -3241,7 +3410,6 @@ cmd_buffer_subpass_sync_fast_ > > clear_values(struct > > > > anv_cmd_buffer *cmd_buffer) > > > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > > > att_state->input.state, > > > > > iview->image, > > > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > > > - iview->planes[0].isl.base_ > > > > level, > > > > > false /* copy to ss */); > > > > > } > > > > > } > > > > > -- > > > > > 2.5.0.400.gff86faf > > > > > > > > > > _______________________________________________ > > > > > mesa-dev mailing list > > > > > mesa-dev@lists.freedesktop.org > > > > > https://lists.freedesktop.org/mailman/listinfo/mesa-dev > > > > > > _______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org https://lists.freedesktop.org/mailman/listinfo/mesa-dev