On Mon, Feb 05, 2018 at 06:05:59PM -0800, Jason Ekstrand wrote: > On Mon, Feb 5, 2018 at 5:41 PM, Nanley Chery <nanleych...@gmail.com> wrote: > > > On Fri, Jan 19, 2018 at 03:47:37PM -0800, Jason Ekstrand wrote: > > > This commit completely reworks aux tracking. This includes a number of > > > somewhat distinct changes: > > > > > > 1) Since we are no longer fast-clearing multiple slices, we only need > > > to track one fast clear color and one fast clear type. > > > > > > 2) We store two bits for fast clear instead of one to let us > > > distinguish between zero and non-zero fast clear colors. This is > > > needed so that we can do full resolves when transitioning to > > > PRESENT_SRC_KHR with gen9 CCS images where we allow zero clear > > > values in all sorts of places wouldn't normally. > > > > > > 3) We now track compression state as a boolean separate from fast clear > > > type and this is tracked on a per-slice granularity. > > > > > > The previous scheme had some issues when it came to individual slices of > > > a multi-LOD images. In particular, we only tracked "needs resolve" > > > per-LOD but you could do a vkCmdPipelineBarrier that would only resolve > > > a portion of the image and would set "needs resolve" to false anyway. > > > Also, any transition from an undefined layout would reset the clear > > > color for the entire LOD regardless of whether or not there was some > > > clear color on some other slice. > > > > > > As far as full/partial resolves go, he assumptions of the previous > > > scheme held because the one case where we do need a full resolve when > > > CCS_E is enabled is for window-system images. Since we only ever > > > allowed X-tiled window-system images, CCS was entirely disabled on gen9+ > > > and we never got CCS_E. With the advent of Y-tiled window-system > > > buffers, we now need to properly support doing a full resolve of images > > > marked CCS_E. > > > --- > > > src/intel/vulkan/anv_blorp.c | 3 +- > > > src/intel/vulkan/anv_image.c | 96 ++++++----- > > > src/intel/vulkan/anv_private.h | 53 +++--- > > > src/intel/vulkan/genX_cmd_buffer.c | 340 +++++++++++++++++++++++++++--- > > ------- > > > 4 files changed, 331 insertions(+), 161 deletions(-) > > > > > > diff --git a/src/intel/vulkan/anv_blorp.c b/src/intel/vulkan/anv_blorp.c > > > index 3698543..594b0d8 100644 > > > --- a/src/intel/vulkan/anv_blorp.c > > > +++ b/src/intel/vulkan/anv_blorp.c > > > @@ -1757,8 +1757,7 @@ anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer, > > > * particular value and don't care about format or clear value. > > > */ > > > const struct anv_address clear_color_addr = > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > > - aspect, level); > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > aspect); > > > surf.clear_color_addr = anv_to_blorp_address(clear_color_addr); > > > } > > > > > > diff --git a/src/intel/vulkan/anv_image.c b/src/intel/vulkan/anv_image.c > > > index 94b9ecb..d5f8dcf 100644 > > > --- a/src/intel/vulkan/anv_image.c > > > +++ b/src/intel/vulkan/anv_image.c > > > @@ -190,46 +190,54 @@ all_formats_ccs_e_compatible(const struct > > gen_device_info *devinfo, > > > * fast-clear values in non-trivial cases (e.g., outside of a render > > pass in > > > * which a fast clear has occurred). > > > * > > > - * For the purpose of discoverability, the algorithm used to manage > > this buffer > > > - * is described here. A clear value in this buffer is updated when a > > fast clear > > > - * is performed on a subresource. One of two synchronization operations > > is > > > - * performed in order for a following memory access to use the > > fast-clear > > > - * value: > > > - * a. Copy the value from the buffer to the surface state object > > used for > > > - * reading. This is done implicitly when the value is the clear > > value > > > - * predetermined to be the default in other surface state > > objects. This > > > - * is currently only done explicitly for the operation below. > > > - * b. Do (a) and use the surface state object to resolve the > > subresource. > > > - * This is only done during layout transitions for decent > > performance. > > > + * In order to avoid having multiple clear colors for a single plane of > > an > > > + * image (hence a single RENDER_SURFACE_STATE), we only allow > > fast-clears on > > > + * the first slice (level 0, layer 0). At the time of our testing (Jan > > 17, > > > + * 2018), there were known applications which would benefit from > > fast-clearing > > > + * more than just the first slice. > > > * > > > - * With the above scheme, we can fast-clear whenever the hardware > > allows except > > > - * for two cases in which synchronization becomes impossible or > > undesirable: > > > - * * The subresource is in the GENERAL layout and is cleared to a > > value > > > - * other than the special default value. > > > + * The fast clear portion of the image is laid out in the following > > order: > > > * > > > - * Performing a synchronization operation in order to read from the > > > - * subresource is undesirable in this case. Firstly, b) is not an > > option > > > - * because a layout transition isn't required between a write and > > read of > > > - * an image in the GENERAL layout. Secondly, it's undesirable to > > do a) > > > - * explicitly because it would require large infrastructural > > changes. The > > > - * Vulkan API supports us in deciding not to optimize this layout > > by > > > - * stating that using this layout may cause suboptimal > > performance. NOTE: > > > - * the auxiliary buffer must always be enabled to support a) > > implicitly. > > > + * * 1 or 4 dwords (depending on hardware generation) for the clear > > color > > > + * * 1 dword for the anv_fast_clear_type of the clear color > > > + * * On gen9+, 1 dword per level and layer of the image (3D levels > > count as > > > + * having a single layer) in level-major order for compression state. > > > * > > > + * For the purpose of discoverability, the algorithm used to manage > > > + * compression and fast-clears is described here: > > > * > > > - * * For the given miplevel, only some of the layers are cleared at > > once. > > > + * * On a transition from UNDEFINED or PREINITIALIZED to a defined > > layout, > > > + * all of the values in the fast clear portion of the image are > > initialized > > > + * to default values. > > > * > > > - * If the user clears each layer to a different value, then tries > > to > > > - * render to multiple layers at once, we have no ability to > > perform a > > > - * synchronization operation in between. a) is not helpful because > > the > > > - * object can only hold one clear value. b) is not an option > > because a > > > - * layout transition isn't required in this case. > > > + * * On fast-clear, the clear value is written into surface state and > > also > > > + * into the buffer and the fast clear type is set appropriately. > > Both > > > + * setting the fast-clear value in the buffer and setting the > > fast-clear > > > + * type happen from the GPU using MI commands. > > > + * > > > + * * On pipeline barrier transitions, the worst-case transition is > > computed > > > + * from the image layouts. The command streamer inspects the fast > > clear > > > + * type and compression state dwords and constructs a predicate. The > > > + * worst-case resolve is performed with the given predicate and the > > fast > > > + * clear and compression state is set accordingly. > > > + * > > > + * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type > > functions for > > > + * details on exactly what is allowed in what layouts. > > > + * > > > + * On gen7-9, we do not have a concept of indirect clear colors in > > hardware. > > > + * In order to deal with this, we have to do some clear color > > management. > > > + * > > > + * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the > > clear > > > + * value from the buffer into the surface state with MI commands. > > > + * > > > + * * For any blorp operations, we pass the address to the clear value > > into > > > + * blorp and it knows to copy the clear color. > > > */ > > > static void > > > -add_fast_clear_state_buffer(struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - uint32_t plane, > > > - const struct anv_device *device) > > > +add_aux_state_tracking_buffer(struct anv_image *image, > > > + VkImageAspectFlagBits aspect, > > > + uint32_t plane, > > > + const struct anv_device *device) > > > { > > > assert(image && device); > > > assert(image->planes[plane].aux_surface.isl.size > 0 && > > > @@ -251,20 +259,20 @@ add_fast_clear_state_buffer(struct anv_image > > *image, > > > (image->planes[plane].offset + image->planes[plane].size)); > > > } > > > > > > - const unsigned entry_size = anv_fast_clear_state_entry_size(device); > > > - /* There's no padding between entries, so ensure that they're always > > a > > > - * multiple of 32 bits in order to enable GPU memcpy operations. > > > - */ > > > - assert(entry_size % 4 == 0); > > > + /* Clear color and fast clear type */ > > > + unsigned state_size = device->isl_dev.ss.clear_value_size + 4; > > > > > > - const unsigned plane_state_size = > > > - entry_size * anv_image_aux_levels(image, aspect); > > > + /* We only need to track compression on CCS_E surfaces. We don't > > consider > > > + * 3D images as actually having multiple array layers. > > > + */ > > > + if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) > > > + state_size += image->levels * image->array_size; > > > > > > image->planes[plane].fast_clear_state_offset = > > > image->planes[plane].offset + image->planes[plane].size; > > > > > > - image->planes[plane].size += plane_state_size; > > > - image->size += plane_state_size; > > > + image->planes[plane].size += state_size; > > > + image->size += state_size; > > > } > > > > > > /** > > > @@ -439,7 +447,7 @@ make_surface(const struct anv_device *dev, > > > } > > > > > > add_surface(image, &image->planes[plane].aux_surface, > > plane); > > > - add_fast_clear_state_buffer(image, aspect, plane, dev); > > > + add_aux_state_tracking_buffer(image, aspect, plane, dev); > > > > > > /* For images created without MUTABLE_FORMAT_BIT set, we > > know that > > > * they will always be used with the original format. In > > > @@ -463,7 +471,7 @@ make_surface(const struct anv_device *dev, > > > &image->planes[plane].aux_ > > surface.isl); > > > if (ok) { > > > add_surface(image, &image->planes[plane].aux_surface, plane); > > > - add_fast_clear_state_buffer(image, aspect, plane, dev); > > > + add_aux_state_tracking_buffer(image, aspect, plane, dev); > > > image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; > > > } > > > } > > > diff --git a/src/intel/vulkan/anv_private.h b/src/intel/vulkan/anv_ > > private.h > > > index f0251e2..3d3a773 100644 > > > --- a/src/intel/vulkan/anv_private.h > > > +++ b/src/intel/vulkan/anv_private.h > > > @@ -2483,50 +2483,51 @@ anv_image_aux_layers(const struct anv_image * > > const image, > > > } > > > } > > > > > > -static inline unsigned > > > -anv_fast_clear_state_entry_size(const struct anv_device *device) > > > -{ > > > - assert(device); > > > - /* Entry contents: > > > - * +--------------------------------------------+ > > > - * | clear value dword(s) | needs resolve dword | > > > - * +--------------------------------------------+ > > > - */ > > > - > > > - /* Ensure that the needs resolve dword is in fact dword-aligned to > > enable > > > - * GPU memcpy operations. > > > - */ > > > - assert(device->isl_dev.ss.clear_value_size % 4 == 0); > > > - return device->isl_dev.ss.clear_value_size + 4; > > > -} > > > - > > > static inline struct anv_address > > > anv_image_get_clear_color_addr(const struct anv_device *device, > > > const struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - unsigned level) > > > + VkImageAspectFlagBits aspect) > > > { > > > + assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > + > > > uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); > > > return (struct anv_address) { > > > .bo = image->planes[plane].bo, > > > .offset = image->planes[plane].bo_offset + > > > - image->planes[plane].fast_clear_state_offset + > > > - anv_fast_clear_state_entry_size(device) * level, > > > + image->planes[plane].fast_clear_state_offset, > > > }; > > > } > > > > > > static inline struct anv_address > > > -anv_image_get_needs_resolve_addr(const struct anv_device *device, > > > - const struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - unsigned level) > > > +anv_image_get_fast_clear_type_addr(const struct anv_device *device, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect) > > > { > > > struct anv_address addr = > > > - anv_image_get_clear_color_addr(device, image, aspect, level); > > > + anv_image_get_clear_color_addr(device, image, aspect); > > > addr.offset += device->isl_dev.ss.clear_value_size; > > > return addr; > > > } > > > > > > +static inline struct anv_address > > > +anv_image_get_compression_state_addr(const struct anv_device *device, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect, > > > + uint32_t level, uint32_t > > array_layer) > > > +{ > > > + assert(level < anv_image_aux_levels(image, aspect)); > > > + assert(array_layer < anv_image_aux_layers(image, aspect, level)); > > > + UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > aspect); > > > + assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E); > > > + > > > + struct anv_address addr = > > > + anv_image_get_fast_clear_type_addr(device, image, aspect); > > > + addr.offset += 4; /* Go past the fast clear type */ > > > + addr.offset += level * image->array_size; > > > + addr.offset += array_layer; > > > + return addr; > > > +} > > > + > > > /* Returns true if a HiZ-enabled depth buffer can be sampled from. */ > > > static inline bool > > > anv_can_sample_with_hiz(const struct gen_device_info * const devinfo, > > > diff --git a/src/intel/vulkan/genX_cmd_buffer.c > > b/src/intel/vulkan/genX_cmd_buffer.c > > > index 15e805f..4c83a5c 100644 > > > --- a/src/intel/vulkan/genX_cmd_buffer.c > > > +++ b/src/intel/vulkan/genX_cmd_buffer.c > > > @@ -407,27 +407,45 @@ transition_depth_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > #define MI_PREDICATE_SRC0 0x2400 > > > #define MI_PREDICATE_SRC1 0x2408 > > > > > > -/* Manages the state of an color image subresource to ensure resolves > > are > > > - * performed properly. > > > - */ > > > static void > > > -genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer, > > > - const struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - unsigned level, bool needs_resolve) > > > +set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect, > > > + enum anv_fast_clear_type fast_clear) > > > { > > > - assert(cmd_buffer && image); > > > - assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > - > > > - /* The HW docs say that there is no way to guarantee the completion > > of > > > - * the following command. We use it nevertheless because it shows no > > > - * issues in testing is currently being used in the GL driver. > > > - */ > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { > > > - sdi.Address = anv_image_get_needs_resolve_ > > addr(cmd_buffer->device, > > > - image, aspect, > > level); > > > - sdi.ImmediateData = needs_resolve; > > > + sdi.Address = anv_image_get_fast_clear_type_ > > addr(cmd_buffer->device, > > > + image, aspect); > > > + sdi.ImmediateData = fast_clear; > > > + } > > > +} > > > + > > > +static void > > > +set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect, > > > + uint32_t level, > > > + uint32_t base_layer, uint32_t layer_count, > > > + bool compressed) > > > +{ > > > + /* We only have CCS_E on gen9+ */ > > > + if (GEN_GEN < 9) > > > + return; > > > + > > > + uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); > > > + > > > + /* We only have compression tracking for CCS_E */ > > > + if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) > > > + return; > > > + > > > + for (uint32_t a = 0; a < layer_count; a++) { > > > + uint32_t layer = base_layer + a; > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) > > { > > > + sdi.Address = anv_image_get_compression_ > > state_addr(cmd_buffer->device, > > > + image, > > aspect, > > > + level, > > layer); > > > + sdi.ImmediateData = compressed ? UINT32_MAX : 0; > > > + } > > > } > > > } > > > > > > @@ -451,32 +469,172 @@ mi_alu(uint32_t opcode, uint32_t operand1, > > uint32_t operand2) > > > #define CS_GPR(n) (0x2600 + (n) * 8) > > > > > > static void > > > -genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer, > > > - const struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - unsigned level) > > > +anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect, > > > + uint32_t level, uint32_t array_layer, > > > + enum isl_aux_op resolve_op, > > > + enum anv_fast_clear_type > > fast_clear_supported) > > > { > > > - assert(cmd_buffer && image); > > > - assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > + struct anv_address fast_clear_type_addr = > > > + anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, > > aspect); > > > + > > > +#if GEN_GEN >= 9 > > > + const uint32_t plane = anv_image_aspect_to_plane(image->aspects, > > aspect); > > > + const bool decompress = > > > + resolve_op == ISL_AUX_OP_FULL_RESOLVE && > > > + image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E; > > > + > > > + /* This function shouldn't get called if it isn't going to do > > anything */ > > > + assert(decompress || fast_clear_supported < ANV_FAST_CLEAR_ANY); > > > > > > - const struct anv_address resolve_flag_addr = > > > - anv_image_get_needs_resolve_addr(cmd_buffer->device, > > > - image, aspect, level); > > > + if (level == 0 && array_layer == 0) { > > > + /* This is the complex case because we have to worry about > > dealing with > > > + * the fast clear color. Unfortunately, it's also the common > > case. > > > + */ > > > + > > > + /* Poor-man's register allocation */ > > > + int next_reg = MI_ALU_REG0; > > > + int pred_reg = -1; > > > + > > > + /* Needed for ALU operations */ > > > + uint32_t *dw; > > > + > > > + const int image_fc = next_reg++; > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), > > lrm) { > > > + lrm.RegisterAddress = CS_GPR(image_fc); > > > + lrm.MemoryAddress = fast_clear_type_addr; > > > + } > > > + emit_lri(&cmd_buffer->batch, CS_GPR(image_fc) + 4, 0); > > > + > > > + if (fast_clear_supported < ANV_FAST_CLEAR_ANY) { > > > + /* We need to compute (fast_clear_supported < > > image->fast_clear). > > > + * We do this by subtracting and storing the carry bit. > > > + */ > > > + const int fc_imm = next_reg++; > > > + emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm), > > fast_clear_supported); > > > + emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm) + 4, 0); > > > + > > > + assert(pred_reg == -1); > > > + pred_reg = next_reg++; > > > + > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm); > > > + dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc); > > > + dw[3] = mi_alu(MI_ALU_SUB, 0, 0); > > > + dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF); > > > + } > > > + > > > + if (decompress) { > > > + /* If we're doing a full resolve so we need the compression > > state */ > > > + struct anv_address compression_state_addr = > > > + anv_image_get_compression_state_addr(cmd_buffer->device, > > image, > > > + aspect, level, > > array_layer); > > > + if (pred_reg == -1) { > > > + pred_reg = next_reg++; > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_LOAD_REGISTER_MEM), lrm) { > > > + lrm.RegisterAddress = CS_GPR(pred_reg); > > > + lrm.MemoryAddress = compression_state_addr; > > > + } > > > + } else { > > > + /* OR the compression state into the predicate. The > > compression > > > + * state is already in 0/~0 form. > > > + */ > > > + const int image_comp = next_reg++; > > > + anv_batch_emit(&cmd_buffer->batch, > > GENX(MI_LOAD_REGISTER_MEM), lrm) { > > > + lrm.RegisterAddress = CS_GPR(image_comp); > > > + lrm.MemoryAddress = compression_state_addr; > > > + } > > > > > > - /* Make the pending predicated resolve a no-op if one is not needed. > > > - * predicate = do_resolve = resolve_flag != 0; > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, pred_reg); > > > + dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_comp); > > > + dw[3] = mi_alu(MI_ALU_OR, 0, 0); > > > + dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_ACCU); > > > + } > > > + > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), > > sdi) { > > > + sdi.Address = compression_state_addr; > > > + sdi.ImmediateData = 0; > > > + } > > > + } > > > + > > > + /* Store the predicate */ > > > + assert(pred_reg != -1); > > > + emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg)); > > > + > > > + /* If the predicate is true, we want to write 0 to the fast clear > > type > > > + * and, if it's false, leave it alone. We can do this by writing > > > + * > > > + * clear_type = clear_type & ~predicate; > > > + */ > > > + dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH)); > > > + dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc); > > > + dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg); > > > + dw[3] = mi_alu(MI_ALU_AND, 0, 0); > > > + dw[4] = mi_alu(MI_ALU_STORE, image_fc, MI_ALU_ACCU); > > > + > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), > > srm) { > > > + srm.RegisterAddress = CS_GPR(image_fc); > > > + srm.MemoryAddress = fast_clear_type_addr; > > > + } > > > + } else if (decompress) { > > > + /* We're trying to get rid of compression but we don't care about > > fast > > > + * clears so all we need is the compression predicate. > > > + */ > > > + assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); > > > + struct anv_address compression_state_addr = > > > + anv_image_get_compression_state_addr(cmd_buffer->device, > > image, > > > + aspect, level, > > array_layer); > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), > > lrm) { > > > + lrm.RegisterAddress = MI_PREDICATE_SRC0; > > > + lrm.MemoryAddress = compression_state_addr; > > > + } > > > + anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) > > { > > > + sdi.Address = compression_state_addr; > > > + sdi.ImmediateData = 0; > > > + } > > > + } else { > > > + /* In this case, we're trying to do a partial resolve on a slice > > that > > > + * doesn't have clear color. There's nothing to do. > > > + */ > > > + return; > > > + } > > > + > > > +#else /* GEN_GEN <= 8 */ > > > + assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE); > > > + assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); > > > + > > > + /* On gen8, we don't have a concept of default clear colors because > > we > > > + * can't sample from CCS surfaces. It's enough to just load the > > fast clear > > > + * state into the predicate register. > > > + */ > > > + emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0, > > > + fast_clear_type_addr.bo, fast_clear_type_addr.offset); > > > +#endif > > > + > > > + /* We use the first half of src0 for the actual predicate. Set the > > second > > > + * half of src0 and all of src1 to 0 as the predicate operation will > > be > > > + * doing an implicit src0 != src1. > > > */ > > > + emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0); > > > emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0); > > > emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0); > > > - emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0); > > > - emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, > > > - resolve_flag_addr.bo, resolve_flag_addr.offset); > > > + > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { > > > mip.LoadOperation = LOAD_LOADINV; > > > mip.CombineOperation = COMBINE_SET; > > > mip.CompareOperation = COMPARE_SRCS_EQUAL; > > > } > > > + > > > + if (image->type == VK_IMAGE_TYPE_3D) { > > > + anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > + 0, anv_minify(image->extent.depth, level), > > > + resolve_op, true); > > > + } else { > > > + anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > + array_layer, 1, resolve_op, true); > > > + } > > > } > > > > > > void > > > @@ -490,17 +648,35 @@ genX(cmd_buffer_mark_image_written)(struct > > anv_cmd_buffer *cmd_buffer, > > > { > > > /* The aspect must be exactly one of the image aspects. */ > > > assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects)); > > > + > > > + /* The only compression types with more than just fast-clears are > > MCS, > > > + * CCS_E, and HiZ. With HiZ we just trust the layout and don't > > actually > > > + * track the current fast-clear and compression state. This leaves > > us > > > + * with just MCS and CCS_E. > > > + */ > > > + if (aux_usage != ISL_AUX_USAGE_CCS_E && > > > + aux_usage != ISL_AUX_USAGE_MCS) > > > + return; > > > + > > > + if (image->type == VK_IMAGE_TYPE_3D) { > > > + base_layer = 0; > > > + layer_count = 1; > > > + } > > > + > > > + set_image_compressed_bit(cmd_buffer, image, aspect, > > > + level, base_layer, layer_count, true); > > > } > > > > > > static void > > > -init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer, > > > - const struct anv_image *image, > > > - VkImageAspectFlagBits aspect, > > > - unsigned level) > > > +init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, > > > + const struct anv_image *image, > > > + VkImageAspectFlagBits aspect) > > > { > > > assert(cmd_buffer && image); > > > assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > + > > > + set_image_fast_clear_state(cmd_buffer, image, aspect, > > > + ANV_FAST_CLEAR_NONE); > > > > > > uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); > > > enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; > > > @@ -517,7 +693,7 @@ init_fast_clear_state_entry(struct anv_cmd_buffer > > *cmd_buffer, > > > * values in the clear value dword(s). > > > */ > > > struct anv_address addr = > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > aspect, level); > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > aspect); > > > unsigned i = 0; > > > for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) > > { > > > anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) > > { > > > @@ -558,19 +734,17 @@ genX(copy_fast_clear_dwords)(struct > > anv_cmd_buffer *cmd_buffer, > > > struct anv_state surface_state, > > > const struct anv_image *image, > > > VkImageAspectFlagBits aspect, > > > - unsigned level, > > > bool copy_from_surface_state) > > > { > > > assert(cmd_buffer && image); > > > assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); > > > - assert(level < anv_image_aux_levels(image, aspect)); > > > > > > struct anv_bo *ss_bo = > > > &cmd_buffer->device->surface_state_pool.block_pool.bo; > > > uint32_t ss_clear_offset = surface_state.offset + > > > cmd_buffer->device->isl_dev.ss.clear_value_offset; > > > const struct anv_address entry_addr = > > > - anv_image_get_clear_color_addr(cmd_buffer->device, image, > > aspect, level); > > > + anv_image_get_clear_color_addr(cmd_buffer->device, image, > > aspect); > > > unsigned copy_size = cmd_buffer->device->isl_dev. > > ss.clear_value_size; > > > > > > if (copy_from_surface_state) { > > > @@ -657,20 +831,11 @@ transition_color_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > base_layer, layer_count); > > > } > > > > > > - if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) > > > - return; > > > - > > > - /* A transition of a 3D subresource works on all slices at a time. */ > > > - if (image->type == VK_IMAGE_TYPE_3D) { > > > + if (image->type == VK_IMAGE_TYPE_3D) > > > base_layer = 0; > > > - layer_count = anv_minify(image->extent.depth, base_level); > > > - } > > > > > > - /* We're interested in the subresource range subset that has aux > > data. */ > > > - level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) > > - base_level); > > > > By deleting this line, we lose some flexibility. If we later choose to > > enable CCS_D on gen7 for the first level of a mipmapped surface, > > > But are we ever going to do that? This function is complex enough without > having to worry about cases we don't yet support but might some day. > >
I think I've placed all the necessary bits to make it a reality in the driver and tested it back when we were landing color buffer transitions. On the other hand: it does complicate this function, the HW docs that say it isn't supported for mip-mapped render targets (not sure why), and the no-one is asking for this. I'm fine with letting it go. -Nanley > > we'll > > start asserting in the ambiguation pass later on in this function. > > > > That's a very easy bug to fix. > > > > > - layer_count = MIN2(layer_count, > > > - anv_image_aux_layers(image, aspect, base_level) - > > base_layer); > > > - last_level_num = base_level + level_count; > > > > I have to think more about these deletions as well. > > > > -Nanley > > > > > + if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) > > > + return; > > > > > > assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); > > > > > > @@ -684,8 +849,8 @@ transition_color_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > * > > > * Initialize the relevant clear buffer entries. > > > */ > > > - for (unsigned level = base_level; level < last_level_num; level++) > > > - init_fast_clear_state_entry(cmd_buffer, image, aspect, level); > > > + if (base_level == 0 && base_layer == 0) > > > + init_fast_clear_color(cmd_buffer, image, aspect); > > > > > > /* Initialize the aux buffers to enable correct rendering. In > > order to > > > * ensure that things such as storage images work correctly, aux > > buffers > > > @@ -701,16 +866,26 @@ transition_color_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > * We don't have any data to show that this is a problem, but we > > want to > > > * avoid causing difficult-to-debug problems. > > > */ > > > + > > > if (image->samples == 1) { > > > for (uint32_t l = 0; l < level_count; l++) { > > > const uint32_t level = base_level + l; > > > - const uint32_t level_layer_count = > > > + uint32_t level_layer_count = > > > MIN2(layer_count, anv_image_aux_layers(image, aspect, > > level)); > > > + > > > + /* A transition of a 3D subresource works on all slices. */ > > > + if (image->type == VK_IMAGE_TYPE_3D) > > > + level_layer_count = anv_minify(image->extent.depth, > > level); > > > + > > > anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > base_layer, level_layer_count, > > > ISL_AUX_OP_AMBIGUATE, false); > > > - genX(set_image_needs_resolve)(cmd_buffer, image, > > > - aspect, level, false); > > > + > > > + if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) > > { > > > + set_image_compressed_bit(cmd_buffer, image, aspect, > > > + level, base_layer, > > level_layer_count, > > > + false); > > > + } > > > } > > > } else { > > > if (image->samples == 4 || image->samples == 16) { > > > @@ -723,10 +898,6 @@ transition_color_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > anv_image_mcs_op(cmd_buffer, image, aspect, > > > base_layer, layer_count, > > > ISL_AUX_OP_FAST_CLEAR, false); > > > - for (unsigned level = base_level; level < last_level_num; > > level++) { > > > - genX(set_image_needs_resolve)(cmd_buffer, image, > > > - aspect, level, true); > > > - } > > > } > > > return; > > > } > > > @@ -793,19 +964,14 @@ transition_color_buffer(struct anv_cmd_buffer > > *cmd_buffer, > > > cmd_buffer->state.pending_pipe_bits |= > > > ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT; > > > > > > - for (uint32_t level = base_level; level < last_level_num; level++) { > > > - > > > - /* The number of layers changes at each 3D miplevel. */ > > > - if (image->type == VK_IMAGE_TYPE_3D) { > > > - layer_count = MIN2(layer_count, anv_image_aux_layers(image, > > aspect, level)); > > > + for (uint32_t l = 0; l < level_count; l++) { > > > + uint32_t level = base_level + l; > > > + for (uint32_t a = 0; a < layer_count; a++) { > > > + uint32_t array_layer = base_layer + a; > > > + anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect, > > > + level, array_layer, resolve_op, > > > + final_fast_clear); > > > } > > > - > > > - genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, > > level); > > > - > > > - anv_image_ccs_op(cmd_buffer, image, aspect, level, > > > - base_layer, layer_count, resolve_op, true); > > > - > > > - genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, > > false); > > > } > > > > > > cmd_buffer->state.pending_pipe_bits |= > > > @@ -3132,28 +3298,26 @@ cmd_buffer_subpass_sync_fast_clear_values(struct > > anv_cmd_buffer *cmd_buffer) > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > att_state->color.state, > > > iview->image, > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > - iview->planes[0].isl.base_level, > > > true /* copy from ss */); > > > > > > /* Fast-clears impact whether or not a resolve will be > > necessary. */ > > > - if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E > > && > > > - att_state->clear_color_is_zero) { > > > + if (att_state->clear_color_is_zero) { > > > /* This image always has the auxiliary buffer enabled. We > > can mark > > > * the subresource as not needing a resolve because the > > clear color > > > * will match what's in every RENDER_SURFACE_STATE object > > when it's > > > * being used for sampling. > > > */ > > > - genX(set_image_needs_resolve)(cmd_buffer, iview->image, > > > - VK_IMAGE_ASPECT_COLOR_BIT, > > > - iview->planes[0].isl.base_ > > level, > > > - false); > > > + set_image_fast_clear_state(cmd_buffer, iview->image, > > > + VK_IMAGE_ASPECT_COLOR_BIT, > > > + ANV_FAST_CLEAR_ZERO_ONLY); > > > } else { > > > - genX(set_image_needs_resolve)(cmd_buffer, iview->image, > > > - VK_IMAGE_ASPECT_COLOR_BIT, > > > - iview->planes[0].isl.base_ > > level, > > > - true); > > > + set_image_fast_clear_state(cmd_buffer, iview->image, > > > + VK_IMAGE_ASPECT_COLOR_BIT, > > > + ANV_FAST_CLEAR_ANY); > > > } > > > - } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { > > > + } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD && > > > + iview->planes[0].isl.base_level == 0 && > > > + iview->planes[0].isl.base_array_layer == 0) { > > > /* The attachment may have been fast-cleared in a previous > > render > > > * pass and the value is needed now. Update the surface > > state(s). > > > * > > > @@ -3162,7 +3326,6 @@ cmd_buffer_subpass_sync_fast_clear_values(struct > > anv_cmd_buffer *cmd_buffer) > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > att_state->color.state, > > > iview->image, > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > - iview->planes[0].isl.base_level, > > > false /* copy to ss */); > > > > > > if (need_input_attachment_state(rp_att) && > > > @@ -3170,7 +3333,6 @@ cmd_buffer_subpass_sync_fast_clear_values(struct > > anv_cmd_buffer *cmd_buffer) > > > genX(copy_fast_clear_dwords)(cmd_buffer, > > att_state->input.state, > > > iview->image, > > > VK_IMAGE_ASPECT_COLOR_BIT, > > > - iview->planes[0].isl.base_ > > level, > > > false /* copy to ss */); > > > } > > > } > > > -- > > > 2.5.0.400.gff86faf > > > > > > _______________________________________________ > > > mesa-dev mailing list > > > mesa-dev@lists.freedesktop.org > > > https://lists.freedesktop.org/mailman/listinfo/mesa-dev > > _______________________________________________ mesa-dev mailing list mesa-dev@lists.freedesktop.org https://lists.freedesktop.org/mailman/listinfo/mesa-dev