Fix a plane drawing \tilde{G} of G. For simplicity we write G for \tilde{G} . If |G| = 3 then theorem ?? is trivial. So assume that $|G| \ge 4$. We inductively construct an isometric-path decomposition $P_1, \ldots, P_k, k \ge 2$ such that:

- (*)
- for any component C of $G \bigcup_{1 \le j \le k} P_j$ the boundary of the region of $R^2 \smallsetminus G[P_1 \cup \ldots \cup P_k]$ containing C is a cycle in G that has its vertices in exactly two paths from P_1, \ldots, P_k .