Hi,

I downloaded and built the cvs version last night.  Athough I can
start it up and create new documents, it seems to crash (without
starting up) on almost all my documents from 1.3.5.  I thought you
might want to see this, so I managed to pare one document down
to a single equation as an example, which I attach.  It seems like
it's the multiline equations that it doesn't like.

Thanks
#LyX 1.3 created this file. For more info see http://www.lyx.org/
\lyxformat 221
\textclass article
\begin_preamble
\usepackage{ae,aecompl}
\end_preamble
\language english
\inputencoding auto
\fontscheme default
\graphics default
\paperfontsize 11
\spacing single 
\papersize letterpaper
\paperpackage a4
\use_geometry 1
\use_amsmath 1
\use_natbib 0
\use_numerical_citations 0
\paperorientation portrait
\leftmargin 1in
\rightmargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Standard

This seems to break lyx cvs 1.4.0
\begin_inset Formula \begin{align*}
\int_{V}d^{3}r\,\psi_{n\vec{k}}^{*}(\vec{r})\psi_{m\vec{q}}(\vec{r}) & =\frac{\Omega}{8\pi^{3}}\int_{V}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}},\\
 & =\frac{\Omega}{8\pi^{3}}\sum_{\mbox{unit cells}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r}+\vec{R}_{n})u_{m\vec{q}}(\vec{r}+\vec{R}_{n})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\left(\vec{r}+\vec{R}_{n}\right)},\\
 & =\frac{\Omega}{8\pi^{3}}\sum_{\mbox{unit cells}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\left(\vec{r}+\vec{R}_{n}\right)},\\
 & =\frac{\Omega}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\sum_{\mbox{unit cells}}\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{R}_{n}},\\
 & =\frac{\Omega}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}N\sum_{\vec{K}}\delta_{\vec{K},\vec{q}-\vec{k}},\\
 & =\frac{V}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\sum_{\vec{K}}\delta_{\vec{K},\vec{q}-\vec{k}},\\
 & =\frac{V}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\delta_{\vec{q},\vec{k}},\quad\mbox{where we have limited $\vec{q},$$\vec{k}\in FBZ.$}\\
 & =\frac{V}{8\pi^{3}}\delta_{\vec{q},\vec{k}}\delta_{n,m}.\end{align*}

\end_inset 


\the_end

Reply via email to