Hi, I downloaded and built the cvs version last night. Athough I can start it up and create new documents, it seems to crash (without starting up) on almost all my documents from 1.3.5. I thought you might want to see this, so I managed to pare one document down to a single equation as an example, which I attach. It seems like it's the multiline equations that it doesn't like.
Thanks
#LyX 1.3 created this file. For more info see http://www.lyx.org/ \lyxformat 221 \textclass article \begin_preamble \usepackage{ae,aecompl} \end_preamble \language english \inputencoding auto \fontscheme default \graphics default \paperfontsize 11 \spacing single \papersize letterpaper \paperpackage a4 \use_geometry 1 \use_amsmath 1 \use_natbib 0 \use_numerical_citations 0 \paperorientation portrait \leftmargin 1in \rightmargin 1in \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Standard This seems to break lyx cvs 1.4.0 \begin_inset Formula \begin{align*} \int_{V}d^{3}r\,\psi_{n\vec{k}}^{*}(\vec{r})\psi_{m\vec{q}}(\vec{r}) & =\frac{\Omega}{8\pi^{3}}\int_{V}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}},\\ & =\frac{\Omega}{8\pi^{3}}\sum_{\mbox{unit cells}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r}+\vec{R}_{n})u_{m\vec{q}}(\vec{r}+\vec{R}_{n})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\left(\vec{r}+\vec{R}_{n}\right)},\\ & =\frac{\Omega}{8\pi^{3}}\sum_{\mbox{unit cells}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\left(\vec{r}+\vec{R}_{n}\right)},\\ & =\frac{\Omega}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\sum_{\mbox{unit cells}}\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{R}_{n}},\\ & =\frac{\Omega}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}N\sum_{\vec{K}}\delta_{\vec{K},\vec{q}-\vec{k}},\\ & =\frac{V}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\sum_{\vec{K}}\delta_{\vec{K},\vec{q}-\vec{k}},\\ & =\frac{V}{8\pi^{3}}\int_{\Omega}d^{3}r\, u_{n\vec{k}}^{*}(\vec{r})u_{m\vec{q}}(\vec{r})\mathrm{e}^{\mathrm{i}\left(\vec{q}-\vec{k}\right)\cdot\vec{r}}\delta_{\vec{q},\vec{k}},\quad\mbox{where we have limited $\vec{q},$$\vec{k}\in FBZ.$}\\ & =\frac{V}{8\pi^{3}}\delta_{\vec{q},\vec{k}}\delta_{n,m}.\end{align*} \end_inset \the_end