Hi Andre et al.,

just in case you have a wheel mouse, could you please check why the cursor
"hangs" in the math formula? Load the attached file, move the cursor to
the beginning of the document and scroll down with the wheel of your
mouse.

Another interesting fact: You cannot exit LyX if you are in mathed.

Michael

-- 
======================================================================
Michael Schmitt                            phone:     +49 451 500 3725
Institute for Telematics                   secretary: +49 451 500 3721
Medical University of Luebeck              fax:       +49 451 500 3722
Ratzeburger Allee 160              eMail: [EMAIL PROTECTED]
D-23538 Luebeck, Germany           WWW:   http://www.itm.mu-luebeck.de
======================================================================
#LyX 1.2 created this file. For more info see http://www.lyx.org/
\lyxformat 220
\textclass article
\begin_preamble
\usepackage{amsfonts}
\end_preamble
\language english
\inputencoding latin1
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 1
\use_natbib 0
\use_numerical_citations 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Title

An Efficient Method for Fully Relativistic Simulations of Coalescing Binary
 Neutron Stars
\layout Author

Walter Landry
\newline 
Physics Dept., University of Utah, SLC, UT 84112
\layout Date

\SpecialChar ~

\layout Standard

These are all the equations from Walter's PhD thesis which he prepared using
 LyX.
\layout Standard


\begin_inset Formula \begin{equation}
ds^{2} =g_{\mu \nu } dx^{\mu } dx^{\nu } =-\alpha ^{2} dt^{2} +\gamma _{ij} (dx^{i} 
+\beta ^{i} dt)(dx^{j} +\beta ^{j} dt).\label{first}\end{equation}

\end_inset 

 
\begin_inset Formula \begin{equation}
\frac{\partial \gamma _{ij} }{\partial t}=-2\alpha K_{ij} +\nabla _{i} \beta _{j} 
+\nabla _{j} \beta _{i} ,\label{g dot}\end{equation}

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray}
\frac{\partial K_{ij} }{\partial t}=-\nabla _{i} \nabla _{j} \alpha +K_{lj} \nabla 
_{i} \beta ^{l} +K_{il} \nabla _{j} \beta ^{l} +\beta ^{l} \nabla _{l} K_{ij}  &  & 
\nonumber  \\
+\alpha \left[ R_{ij} -2K_{il} K^{l}_{j} +KK_{ij} -S_{ij} -\frac{1}{2}\gamma _{ij} 
+(\rho -S)\right] . &  & \label{K dot}\end{eqnarray}

\end_inset 

 
\begin_inset Formula \begin{eqnarray}
R_{ij} =\frac{1}{2}\gamma ^{kl}  & \left[ \gamma _{kj,il} +\gamma _{il,kj} -\gamma 
_{kl,ij} -\gamma _{ij,kl} \right.  & \nonumber  \\
 & \left. +2\left( \Gamma ^{m}_{il} \Gamma _{mkj} -\Gamma ^{m}_{ij} \Gamma _{mkl} 
\right) \right] . & \label{Ricci}\end{eqnarray}

\end_inset 

 
\begin_inset Formula \[
n_{\mu } =(-\alpha ,0,0,0).\]

\end_inset 

 
\begin_inset Formula \begin{eqnarray*}
\rho  & = & 8\pi n_{\mu } n_{\nu } T^{\mu \nu } =8\pi \alpha ^{2} T^{tt} , \\
J^{i}  & = & -8\pi n_{\mu } \gamma ^{i}_{j} T^{\mu j} , \\
S_{ij}  & = & 8\pi \gamma _{ik} \gamma _{jl} T^{kl} ,\end{eqnarray*}

\end_inset 

 
\begin_inset Formula \[
S=\gamma ^{ij} S_{ij} .\]

\end_inset 


\layout Standard


\begin_inset Formula \begin{equation}
R+K^{2} -K_{ij} K^{ij} =2\rho ,\label{Energy}\end{equation}

\end_inset 

 
\begin_inset Formula \begin{equation}
\nabla _{j} \left( K^{ij} -\gamma ^{ij} K\right) =J^{i} 
.\label{Momentum}\end{equation}

\end_inset 


\layout Standard


\begin_inset Formula \[
K^{ij} =\psi ^{-10} \left( \widetilde{A}^{ij} +\left( lX\right) ^{ij} \right) 
+\frac{1}{3}\psi ^{-4} \widetilde{\gamma }^{ik} \mathrm{T}\mathrm{r}K,\]

\end_inset 

 
\begin_inset Formula \[
\left( lX\right) ^{ij} =\widetilde{\nabla }^{i} X^{j} +\widetilde{\nabla }^{j} X^{i} 
-\frac{2}{3}\widetilde{\gamma }^{ij} \widetilde{\nabla }_{k} X^{k} ,\]

\end_inset 

 
\begin_inset Formula \begin{eqnarray}
-8\widetilde{\nabla }^{2} \psi  & = & -\widetilde{R}\psi -\frac{2}{3}\left( trK\right) 
^{2} \psi ^{5} \nonumber  \\
 &  & +\left( \widetilde{A}^{ij} +\left( lX\right) ^{ij} \right) ^{2} \psi ^{-7} 
+2\rho \psi ^{5} ,\label{phi constraint} \\
\widetilde{\nabla }^{2} X^{i}  & + & \frac{1}{3}\widetilde{\nabla }^{i} 
\widetilde{\nabla }_{j} X^{j} +\widetilde{R}^{i}_{j} X^{j} \nonumber  \\
 & = & J^{i} \psi ^{10} -\widetilde{\nabla }_{j} \widetilde{A}^{ij} +\frac{2}{3}\psi 
^{6} \widetilde{\nabla }^{i} trK,\label{X constraint}\end{eqnarray}

\end_inset 

 
\begin_inset Formula \begin{eqnarray}
-8\widetilde{\nabla }^{2} (\psi _{0} +\delta \psi )=-\widetilde{R}(\psi _{0} +\delta 
\psi )-\frac{2}{3}\left( trK\right) ^{2} \psi ^{4}_{0} (\psi _{0} +5\delta \psi ) &  & 
\nonumber  \\
+\left( \widetilde{A}^{ij} +\left( lX_{0} \right) ^{ij} \right) ^{2} \psi ^{-8}_{0} 
+(\psi _{0} -7\delta \psi )+2\rho \psi ^{4}_{0} (\psi _{0} +5\delta \psi ), &  & 
+\label{phi linear}\end{eqnarray}

\end_inset 


\begin_inset Formula \begin{eqnarray}
\nabla ^{2} (X^{i}_{0} +\delta X^{i} )+\frac{1}{3}\widetilde{\nabla }^{i} 
\widetilde{\nabla }_{j} (X^{j}_{0} +\delta X)+\widetilde{R}^{i}_{j} (X^{j}_{0} +\delta 
X^{i} ) &  & \nonumber  \\
=J^{i} \psi ^{10}_{0} -\widetilde{\nabla }_{j} \widetilde{A}^{ij} +\frac{2}{3}\psi 
^{6}_{0} \widetilde{\nabla }^{i} trK. &  & \label{X linear}\end{eqnarray}

\end_inset 


\layout Standard


\begin_inset Formula \begin{equation}
x^{\mu } \rightarrow x^{\mu } +\xi ^{\mu } .\label{gauge perturbation}\end{equation}

\end_inset 


\layout Standard


\begin_inset Formula \begin{equation}
\Box x^{\mu } =0.\label{gauge}\end{equation}

\end_inset 

 
\begin_inset Formula \begin{equation}
\Box \xi ^{\mu } =0.\label{perturbation}\end{equation}

\end_inset 

 
\begin_inset Formula \begin{equation}
\frac{\partial g_{tt} }{\partial t}=\left( \gamma ^{ij} \alpha ^{2} -\beta ^{i} \beta 
^{j} \right) \left( -\gamma _{ij,t} +2\beta _{i,j} \right) +2\beta ^{i} g_{tt,i} 
\label{g_{t}t dot}\end{equation}

\end_inset 

 
\begin_inset Formula \begin{eqnarray}
\frac{\partial \beta _{k} }{\partial t} & = & 2\beta ^{i} \left( \gamma _{ki,t} -\beta 
_{i,k} +\beta _{k,i} \right) \nonumber  \\
 &  & -\left( \gamma ^{ij} \alpha ^{2} -\beta ^{i} \beta ^{j} \right) \left( \gamma 
_{ij,k} -2\gamma _{kj,i} \right) +g_{tt,k} .\label{Shift dot}\end{eqnarray}

\end_inset 


\layout Standard


\begin_inset Formula \[
\frac{\partial 
(\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e})}{\partial
 t}+\partial _{i} (\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{x})^{i} 
=(\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}),\]

\end_inset 

 
\begin_inset Formula \[
\frac{\partial Q}{\partial t}=F(Q)\]

\end_inset 

 
\begin_inset Formula \[
Q_{\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}}
 =Q_{t} +\frac{\Delta t}{2}F(Q_{t} ),\]

\end_inset 

 
\begin_inset Formula \[
Q_{t+\Delta t} =Q_{t} +\Delta t\, 
F(Q_{\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}}
 ).\]

\end_inset 

 
\layout Standard


\begin_inset Formula \[
Q(t,r)=\frac{G(\alpha t-(\det \gamma )^{\frac{1}{6}} r)}{r},\]

\end_inset 

 
\begin_inset Formula \begin{equation}
\frac{\partial \gamma _{ij} }{\partial t}=-2\alpha K_{ij} +\nabla _{i} \beta _{j} 
+\nabla _{j} \beta _{i} -q\left( \Delta x\right) ^{3} \nabla ^{4} \gamma _{ij} 
,\label{g diffuse}\end{equation}

\end_inset 

 
\begin_inset Formula \[
\gamma _{\mathrm{n}\mathrm{e}\mathrm{w}} =\gamma _{\mathrm{o}\mathrm{l}\mathrm{d}} 
+\Delta t(RHS),\]

\end_inset 

 
\begin_inset Formula \[
\gamma _{\mathrm{n}\mathrm{e}\mathrm{w}} =\gamma _{\mathrm{o}\mathrm{l}\mathrm{d}} 
+\Delta t\lbrace RHS-q\Delta x^{3} \nabla ^{4} [\gamma 
_{\mathrm{o}\mathrm{l}\mathrm{d}} +\Delta t\left( RHS\right) ]\rbrace .\]

\end_inset 

 
\begin_inset Formula \begin{eqnarray}
h_{+}  & = & \frac{1}{2}\left( \gamma _{xx} -\gamma _{yy} \right) ,\label{h_{p}lus} \\
h_{\times }  & = & \gamma _{xy} .\label{h_{c}ross}\end{eqnarray}

\end_inset 

 
\begin_inset Formula \[
T_{\mu \nu } =\frac{1}{2}\left\langle h_{ij,\mu } h_{ij,\nu } \right\rangle ,\]

\end_inset 

 
\begin_inset Formula \[
L\sim 4\pi \cdot \frac{1}{2}\frac{\left( h^{2}_{+} +h^{2}_{\times } \right) \left( 
4R_{*} \right) ^{2} }{\left( 10R_{*} \right) ^{2} }=2\cdot 10^{-4} .\]

\end_inset 


\layout Standard


\begin_inset Formula \[
L=\frac{32}{5}\frac{\mu ^{3} M^{2} }{a^{5} }\sim 3\cdot 10^{-7} ,\]

\end_inset 

 
\the_end

Reply via email to