Ladies and gentleman,

I use Lyx 1.1.5fix1 and found some bugs:

- The latex fault: double Superscrips should be prevented!
  (You often get: a^{b}^{b} and don't see it, because the b is written
over b; possible Solution would be ^{b}{}^{b} or better prevent double
superscript)

- It seems to me like Enumerate and Math-Displays don't work together.
An example for this error is line 4707ff /layout Enumerate in the
attached file. (don't look at contents - pre-alpha state!) Simply try it,
my lyx crashes by DVI-Viewing!

Greetings
Georg Wild
#LyX 1.1 created this file. For more info see http://www.lyx.org/
\lyxformat 2.16
\textclass amsart-seq
\begin_preamble
\usepackage {amssymb}
\usepackage {amssymb} 
\usepackage {stmaryrd}
\usepackage {eufrak}
\usepackage [mathcal] {euscript}
\usepackage {floatflt}
\end_preamble
\language german
\inputencoding latin1
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage widemarginsa4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\footskip 
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 2
\paperpagestyle plain

\layout Problem


\begin_inset LatexCommand \label{xTAx}

\end_inset 

Sei 
\begin_inset Formula \( f:\mathbb R^{n}\rightarrow \mathbb R;\, x\mapsto x^{T}Ax \)
\end_inset 

 mit einer 
\begin_inset Formula \( n\times n-Matrix \)
\end_inset 

 A.
 Beweisen Sie, daß f differenzierbar ist und berechnen Sie das Differential
\begin_inset LatexCommand \index{Differential}

\end_inset 

 
\begin_inset Formula \( df\left( a\right)  \)
\end_inset 

 für 
\begin_inset Formula \( a\in \mathbb R^{n}. \)
\end_inset 


\lang american
33
\layout Standard


\begin_inset Formula \( f:x\mapsto Ax\, und\, f:x\mapsto x^{T} \)
\end_inset 

 sind linear.
 
\begin_inset Formula \begin{eqnarray*}
f\left( x+h\right)  & = & \left( x+h\right) ^{T}A\left( x+h\right) 
=x^{T}Ax+h^{T}Ax+h^{T}Ax+h^{T}Ah\\
 & = & \begin{array}{ccccccc}
\underbrace{x^{T}Ax} & + & \underbrace{x^{T}Ah} & + & \underbrace{h^{T}Ax} & + & 
\underbrace{h^{T}Ah}\\
f\left( x\right)  &  & linear &  & \left( x^{T}A^{T}h\right) ^{T} &  & R\left( 
h\right) 
\end{array}\\
 & = & \begin{array}{ccccc}
\underbrace{x^{T}Ax} & + & x^{T}\left( A+A^{T}\right) h & + & h^{T}Ah\\
f\left( x\right)  &  & Df\left( x\right) h &  & R\left( h\right) 
\end{array}
\end{eqnarray*}

\end_inset 


\layout Standard

f ist differenzierbar und es gilt: 
\begin_inset Formula \( df\left( a\right) =a^{T}\left( A+A^{T}\right)  \)
\end_inset 


\layout Problem
\line_top 
Gegeben ist die Funktion 
\begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) 
\mapsto x^{2}y+z. \)
\end_inset 


\layout Enumerate

Finden Sie den Gradienten
\begin_inset LatexCommand \index{Gradient}

\end_inset 

 von f im Punkt 
\begin_inset Formula \( \left( 2,3,5\right)  \)
\end_inset 

 bezüglich des euklidischen Skalarproduktes!
\layout Enumerate

Finden Sie eine lineare Approximation
\begin_inset LatexCommand \index{Approximation}

\end_inset 

 von f im Punkt 
\begin_inset Formula \( \left( 2,3,5\right)  \)
\end_inset 

!
\layout Enumerate

Berechnen Sie die Richtungsableitung 
\begin_inset Formula \( \partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right)  \)
\end_inset 

 zum einen direkt und zum anderem unter Verwendung des Ergebnisses von Teil
 a, d.h.
 verifizieren Sie an diesem Beispiel die bekannte Formel 
\begin_inset Formula \( \partial _{h}f\left( x,y,z\right) =\left\langle h,grad\, 
f\left( x,y,z\right) \right\rangle  \)
\end_inset 

!
\layout Standard


\begin_inset Formula \begin{eqnarray*}
grad\, f\left( 2,3,5\right)  & = & \left( \begin{array}{c}
\partial _{1}f\left( x\right) \\
\partial _{2}f\left( x\right) \\
\partial _{3}f\left( x\right) 
\end{array}\right) =\left( \begin{array}{c}
2xy\\
x^{2}\\
1
\end{array}\right) =\left( \begin{array}{c}
12\\
4\\
1
\end{array}\right) \\
f\left( x+h\right)  & = & f\left( x\right) +\nabla f\left( x\right) \cdot 
h+....=f\left( x\right) +\left( \begin{array}{c}
12\\
4\\
1
\end{array}\right) \cdot h\\
\partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right)  & = & \lim _{t\rightarrow 
0}\frac{f\left( 2+t,3,5-t\right) -f\left( 2,3,5\right) }{t}=\lim _{t\rightarrow 
0}\frac{\left( 2+t\right) ^{2}\cdot 3+\left( 5-t\right) -\left( 2^{2}\cdot 3+5\right) 
}{t}=\\
 & = & \lim _{t\rightarrow 0}\frac{12+12t+3t^{2}+5-t-17}{t}=\lim _{t\rightarrow 
0}\frac{11t+3t^{2}}{t}=11\\
\partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right)  & = & \left\langle \left( 
\begin{array}{c}
1\\
0\\
-1
\end{array}\right) ,\left( \begin{array}{c}
12\\
4\\
1
\end{array}\right) \right\rangle =12-1=11
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Gegeben ist die Funktion 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

 mit 
\begin_inset Formula \( f\left( 0,0\right) =0 \)
\end_inset 

 und 
\layout Standard


\begin_inset Formula \[
f\left( x,y\right) =\frac{x^{3}}{\sqrt{x^{2}+y^{2}}};\left( x,y\right) \neq \left( 
0,0\right) .\]

\end_inset 

 
\layout Standard


\series bold 
\bar under 
Zeigen Sie:
\series default 
\bar default 
 f ist überall differenzierbar.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
Df\left( x,y,z\right) h & = & \lim _{t\rightarrow 0}\frac{f\left( 
x+th_{1},x+th_{2}\right) -f\left( x,y\right) }{t}=\lim _{t\rightarrow 
0}\frac{\frac{\left( x+th_{1}\right) ^{3}}{\sqrt{\left( x+th_{1}\right) ^{2}+\left( 
y+th_{2}\right) ^{2}}}-\frac{x^{3}}{\sqrt{x^{2}+y^{2}}}}{t}\\
Df\left( 0,0,0\right) h & = & \lim _{t\rightarrow 0}\frac{\frac{\left( th_{1}\right) 
^{3}}{\sqrt{\left( th_{1}\right) ^{2}+\left( th_{2}\right) ^{2}}}}{t}=\lim 
_{t\rightarrow 0}\frac{t^{2}h_{1}^{3}}{\sqrt{t^{2}\cdot \left( 
h_{1}^{2}+h_{2}^{2}\right) }}=\lim _{t\rightarrow 0}\frac{th^{3}_{1}}{\left\Vert 
h\right\Vert _{2}}=0
\end{eqnarray*}

\end_inset 

 
\begin_inset Formula \( \Longrightarrow  \)
\end_inset 

Die Richtungs-Ableitung von f in 
\begin_inset Formula \( \left( \begin{array}{c}
0\\
0\\
0
\end{array}\right)  \)
\end_inset 

 ist in jede Richtung 0.
 In den anderen Punkten ist die Ableitung als Komposition differenzierbarer
 Abbildungen differenzierbar.
\layout Problem
\line_top 
Es seien 
\begin_inset Formula \(  \)
\end_inset 

-Funktionen auf einer offenen Teilmenge des 
\begin_inset Formula \( \mathbb R^{n}. \)
\end_inset 

 Dann gilt:
\begin_inset LatexCommand \index{Gradient, Produkt}

\end_inset 

 
\begin_inset Formula \[
\triangle \left( fg\right) =f\cdot \triangle g+2\left\langle grad\, g,grad\, 
g\right\rangle +g\cdot \triangle f\]

\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
\triangle \left( fg\right)  & = & \left( \begin{array}{c}
\partial _{1}^{2}\left( fg\right) \\
\partial _{2}^{2}\left( fg\right) \\
.\\
.\\
\partial _{n}^{2}\left( fg\right) 
\end{array}\right) =\left( \begin{array}{c}
\partial _{1}^{2}f\cdot g+\partial _{1}f\cdot \partial _{1}g+\partial _{1}^{2}g\cdot 
f+\partial _{1}f\cdot \partial _{1}g\\
\partial _{2}^{2}f\cdot g+\partial _{2}f\cdot \partial _{2}g+\partial _{2}^{2}g\cdot 
f+\partial _{2}f\cdot \partial _{2}g\\
.\\
.\\
\partial _{n}^{2}f\cdot g+\partial _{n}f\cdot \partial _{n}g+\partial _{n}^{2}g\cdot 
f+\partial _{n}f\cdot \partial _{n}g
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
\partial _{1}^{2}f\cdot g+2\cdot \partial _{1}f\cdot \partial _{1}g+\partial 
_{1}^{2}g\cdot f\\
\partial _{2}^{2}f\cdot g+2\cdot \partial _{2}f\cdot \partial _{2}g+\partial 
_{2}^{2}g\cdot f\\
.\\
.\\
\partial _{n}^{2}f\cdot g+2\cdot \partial _{n}f\cdot \partial _{n}g+\partial 
_{n}^{2}g\cdot f
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
\partial _{1}^{2}f\\
\partial _{2}^{2}f\\
.\\
.\\
\partial _{n}^{2}f
\end{array}\right) +2\left( \begin{array}{c}
\partial _{1}f\cdot \partial _{1}g\\
\partial _{2}f\cdot \partial _{2}g\\
.\\
.\\
\partial _{n}f\cdot \partial _{n}g
\end{array}\right) +\left( \begin{array}{c}
\partial _{1}^{2}g\\
\partial _{2}^{2}g\\
.\\
.\\
\partial _{n}^{2}g
\end{array}\right) \\
 & = & f\cdot \triangle g+2\left\langle grad\, g,grad\, g\right\rangle +g\cdot 
\triangle f
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Seien 
\begin_inset Formula \( I_{1},...,I_{n}\subset \mathbb R \)
\end_inset 

 offene Intervalle und 
\begin_inset Formula \( Q:=I_{1}\times ...\times I_{n}\subset \mathbb R^{n} \)
\end_inset 

.
 Sei 
\begin_inset Formula \( f:\mathbb K\rightarrow \mathbb R \)
\end_inset 

 eine partiell differenzierbare Funktion mit
\begin_inset LatexCommand \index{Ableitung, beschränkt partielle}

\end_inset 

 beschränkten partiellen Ableitungen: 
\begin_inset Formula \( \left| \partial _{i}f\right| \leqq C\, \forall _{i\in \left\{ 
1..n\right\} } \)
\end_inset 

.
 
\layout Enumerate

Man beweise für beliebige Punkte 
\begin_inset Formula \( x,y\in Q \)
\end_inset 

 die Fehlerabschätzung:
\begin_inset Formula \[
\left| f\left( y\right) -f\left( x\right) \right| \leqq C\cdot \sum _{i=1}^{n}\left| 
y_{i}-x_{i}\right| \]

\end_inset 


\layout Enumerate

Man zeige, daß f stetig ist.
\layout Enumerate

Finden Sie ein Gegenbeispiel zu der Abschätzung in Teil 1, wenn an Stelle
 der Kugel nur noch ein wegzusammenhängender Definitionsbereich vorausgesetzt
 wird.
\layout Proof

Definiere: 
\begin_inset Formula \[
a_{0}:=\left( \begin{array}{c}
x_{1}\\
x_{2}\\
.\\
.\\
x_{n}
\end{array}\right) =x;\, a_{1}:=\left( \begin{array}{c}
y_{1}\\
x_{2}\\
.\\
.\\
x_{n}
\end{array}\right) ;\, ....\, a_{n}:=\left( \begin{array}{c}
y_{1}\\
y_{2}\\
.\\
.\\
y_{n}
\end{array}\right) =y\]

\end_inset 

 
\newline 
Es gilt:
\begin_inset Formula \[
\left\{ a_{i-1}+t\left( a_{i}-a_{i-1}\right) ,t\in \left[ 0,1\right] \right\} \subset 
Q\]

\end_inset 


\newline 

\layout Proof


\begin_inset Formula \begin{eqnarray*}
\left| f\left( a_{i}\right) -f\left( a_{i-1}\right) \right|  & = & \left| f\left( 
y_{1},...,y_{i},x_{i+1},...,x_{n}\right) -f\left( 
y_{1},...,y_{i-1},x_{i},...,x_{n}\right) \right| =\\
 & = & \left| \int _{x_{i}}^{y_{i}}\begin{array}{c}
\underbrace{\partial _{i}f\left( y_{1},...,y_{i-1},t,x_{i+1},...,x_{n}\right) }\\
\leqq C
\end{array}dt\right| \\
 &  & \\
 & \leqq  & C\cdot \left| y_{i}-x_{i}\right| \\
 &  & \\
\Rightarrow \left| \begin{array}{c}
\underbrace{f\left( y\right) }\\
f\left( a_{n}\right) 
\end{array}-\begin{array}{c}
\underbrace{f\left( x\right) }\\
f\left( a_{0}\right) 
\end{array}\right|  & \leqq  & \left| f\left( a_{n}\right) -f\left( a_{n-1}\right) 
+f\left( a_{n-1}\right) -f\left( a_{n-2}\right) +...+f\left( a_{1}\right) -f\left( 
a_{0}\right) \right| \leqq \\
 & \leqq  & \sum _{i=1}^{n}\left| f\left( a_{i}\right) -f\left( a_{i-1}\right) \right| 
\leqq \sum _{i=1}^{n}C\cdot \begin{array}{c}
\underbrace{\left| y_{i}-x_{i}\right| }\\
\left\Vert x-y\right\Vert _{1}
\end{array}
\end{eqnarray*}

\end_inset 


\layout Standard

Wegen 
\begin_inset Formula \( \left| f\left( y\right) -f\left( x\right) \right| \leqq C\cdot 
\left\Vert x-y\right\Vert _{1} \)
\end_inset 

und da auf endlich dimensionalen Vektorräumen alle Normen äquivalent sind,
 ist f Lipschitz-stetig.
\layout Standard

Wird an Stelle einer Kugel nur ein wegzusammenhängendes Gebiet vorausgesetzt,
 so sind die obigen Aussagen nicht mehr gültig; sei etwa:
\newline 

\begin_inset Formula \( K=\mathbb R^{2}\smallsetminus \mathbb R^{-}\times \left\{ 
0\right\}  \)
\end_inset 

 
\newline 

\begin_inset Formula \( f\left( x_{1},x_{2}\right) 
=arccos\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\cdot sgn\, x_{2} \)
\end_inset 


\newline 
Bei Betrachtung der Folgen 
\begin_inset Formula \( x_{n}=\left( -1,-\frac{1}{n}\right) ;\, y_{n}=\left( 
-1,+\frac{1}{n}\right)  \)
\end_inset 

 folgt für 
\begin_inset Formula \( n\rightarrow \infty  \)
\end_inset 

 
\begin_inset Formula \( \left\Vert y-x\right\Vert _{1}\rightarrow 0 \)
\end_inset 

, aber 
\begin_inset Formula \( \left| f\left( x\right) -f\left( y\right) \right| \rightarrow 
2\pi  \)
\end_inset 

.
\layout Problem
\line_top 
Man berechne 
\begin_inset Formula \( d^{\left( 2\right) }f \)
\end_inset 

 und 
\begin_inset Formula \( f'' \)
\end_inset 

 für 
\begin_inset Formula \( f:\mathbb R_{+}\times \mathbb R\rightarrow \mathbb R,\left( 
x,y\right) \mapsto x^{y}. \)
\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
h^{T}d^{\left( 2\right) }f\left( x,y\right) h & = & h^{T}\left( \begin{array}{cc}
\partial _{1}^{2}f(x,y) & \partial _{12}f\left( x,y\right) \\
\partial _{21}f\left( x,y\right)  & \partial _{2}^{2}f(x,y)
\end{array}\right) h=\\
 & = & h^{T}\left( \begin{array}{cc}
y\left( y-1\right) x^{y-2} & x^{y-1}+y\cdot \ln x\cdot x^{y-1}\\
x^{y-1}+y\cdot \ln x\cdot x^{y-1} & ln^{2}x\cdot x^{y}
\end{array}\right) h\\
f''(x,y) & = & \left( \begin{array}{cc}
y\left( y-1\right) x^{y-2} & x^{y-1}+y\cdot \ln x\cdot x^{y-1}\\
x^{y-1}+y\cdot \ln x\cdot x^{y-1} & ln^{2}x\cdot x^{y}
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Gegeben sei die Potenzfunktion 
\begin_inset Formula \( f:\mathbb C\rightarrow \mathbb C;\, z\mapsto z^{k};k\in 
\mathbb N \)
\end_inset 

.
 Man identifiziere den Definitionsbereich mit 
\begin_inset Formula \( \mathbb R^{2} \)
\end_inset 

.
 Man zeige, daß f harmonisch
\begin_inset LatexCommand \index{harmonisch}

\end_inset 

 ist (d.h.
\begin_inset Formula \( \triangle f=0 \)
\end_inset 

)
\layout Enumerate

unter Verwendung von carthesischen Koordinaten x,y
\layout Enumerate

unter Verwendung von Polarkoordinaten
\begin_inset LatexCommand \index{Polarkoordinaten}

\end_inset 

 r,
\begin_inset Formula \( \varphi  \)
\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
\triangle f\left( x,y\right)  & = & \partial _{x}^{2}f\left( x,y\right) +\partial 
_{y}^{2}f\left( x,y\right) =\partial _{x}^{2}\left( x+iy\right) ^{k}+\partial 
_{y}^{2}\left( x+iy\right) ^{k}=\\
 & = & \left[ k\left( k-1\right) +i^{2}\cdot k\left( k+1\right) \right] \left( 
x+iy\right) =0\cdot \left( x+iy\right) =0
\end{eqnarray*}

\end_inset 


\layout Standard

Sei nun 
\begin_inset Formula \( r=\left| z^{k}\right| =\left| z\right| ^{k};\, \varphi 
=arctan\left( \frac{Re\left( \left( x+iy\right) ^{k}\right) }{Im\left( \left( 
x+iy\right) ^{k}\right) }\right) . \)
\end_inset 

 Bekanntlich gilt dann: 
\begin_inset Formula \( \triangle f\left( x,y\right) =\left( 
F_{rr}+\frac{1}{r^{2}}F_{\varphi \varphi }+\frac{1}{r}F_{r}\right) \left( r,\varphi 
\right) ;\, F\left( r,\varphi \right) =f\left( r\, cos\varphi ,r\, sin\varphi \right)  
\)
\end_inset 

.
 
\begin_inset Formula \begin{eqnarray*}
F\left( r,\varphi \right)  & = & f\left( r\, cos\varphi ,r\, sin\varphi \right) 
=\left( r\, cos\varphi +i\, r\, sin\varphi \right) ^{k}=\\
 & = & r^{k}\cdot \left( cos\varphi +i\, sin\varphi \right) ^{k}=r^{k}\cdot 
e^{ik\varphi }\\
F_{rr}\left( r,\varphi \right)  & = & e^{ik\varphi }\cdot k\left( k+1\right) r^{k-2}\\
F_{\varphi \varphi }\left( r,\varphi \right)  & = & r^{k}\cdot \left( ik\right) 
^{2}\cdot e^{ik\varphi }=-r^{k}k^{2}e^{ik\varphi }\\
F_{r}\left( r,\varphi \right)  & = & k\cdot r^{k-1}\cdot e^{ik\varphi }\\
\triangle f\left( x,y\right)  & = & e^{ik\varphi }\cdot k\left( k+1\right) 
r^{k-2}+\frac{1}{r^{2}}\cdot \left( -r^{k}k^{2}e^{ik\varphi }\right) 
+\frac{1}{r}k\cdot r^{k-1}\cdot e^{ik\varphi }=\\
 & = & e^{ik\varphi }\cdot k\cdot r^{k-2}\cdot \left( \left( k+1\right) -k-1\right) =0
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Man ermittle alle rotationssymetrischen, harmonischen Funktionen auf einer
 Kugelschale im 
\begin_inset Formula \( \mathbb R^{n} \)
\end_inset 

 und insbesondere auf einer Kugel.
 
\layout Standard

\SpecialChar ~

\layout Problem
\line_top 
Man untersuche die Funktion 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R;\, f\left( x,y\right) 
=x^{3}+y^{3}+3xy \)
\end_inset 

 auf Extrema
\begin_inset LatexCommand \index{Extrema}

\end_inset 

.
 
\layout Standard

Für ein Extrema ist notwendig: 
\begin_inset Formula \begin{eqnarray*}
grad\, f\left( x,y\right)  & = & \left( \begin{array}{c}
\partial _{x}f\left( x,y\right) \\
\partial _{y}f\left( x,y\right) 
\end{array}\right) =\left( \begin{array}{c}
3x^{2}+3y\\
3y^{2}+3x
\end{array}\right) \doteq 0\\
\Longrightarrow  &  & 3x^{2}+3y=3\left( x^{2}+y\right) \doteq 0\Leftrightarrow 
x^{2}+y=0\\
\Longrightarrow  &  & 3y^{2}+3x=3\left( y^{2}+x\right) \doteq 0\Leftrightarrow 
y^{2}+x=0\\
 & \Rightarrow  & \left( x^{2}+y\right) -x\left( y^{2}+x\right) =y-xy^{2}=y\left( 
1-xy\right) \doteq 0\\
L\ddot{o}sung\, 1 & \Rightarrow  & y=0\Rightarrow x=0\\
L\ddot{o}sung\, 2 & \Rightarrow  & 1-xy=0\Rightarrow x=\frac{1}{y}\Rightarrow 
y^{2}+\frac{1}{y}=0\Rightarrow \frac{1}{y}\left( y^{3}+1\right) =0\Rightarrow \\
\left( y\neq 0\right)  & \Rightarrow  & y=-1\Rightarrow x=-1
\end{eqnarray*}

\end_inset 


\layout Standard

Es gibt also 2 stationäre Punkte: 
\begin_inset Formula \( P_{1}\left( 0,0\right) ;\, P_{2}\left( -1,-1\right)  \)
\end_inset 

.
\begin_inset Formula \begin{eqnarray*}
H_{f}\left( x,y\right)  & = & \left( \begin{array}{cc}
6x & 3\\
3 & 6y
\end{array}\right) =3\left( \begin{array}{cc}
2x & 1\\
1 & 2y
\end{array}\right) =\\
det\, H_{f}\left( x,y\right)  & = & 4xy-1\\
det\, H_{f}\left( 0,0\right)  & = & -1<0\Longrightarrow Sattelpunkt\\
det\, H_{f}\left( -1,-1\right)  & = & 3>0\, Maximum,\, da\, H_{f}(-1,-1)_{\nwarrow }<0
\end{eqnarray*}

\end_inset 

 
\layout Note
\line_top 
Kriterien für pos.Definitheit
\begin_inset LatexCommand \index{Definitheit}

\end_inset 

 einer 
\begin_inset Formula \( n\times n \)
\end_inset 

-Matrix:
\layout Enumerate

alle Eigenwerte
\begin_inset LatexCommand \index{Eigenwerte}

\end_inset 

 >0
\layout Enumerate

Hurwitzkriterium
\begin_inset LatexCommand \index{Hurwitzkriterium}

\end_inset 

: 
\begin_inset Formula \( det\, \left( a_{ij}\right) _{1\leqq i,j\leqq k}>0 \)
\end_inset 


\layout Enumerate

Charakteristisches
\begin_inset LatexCommand \index{Charakteristisches Polynom}

\end_inset 

 Polynom hat n pos.
 Nullstellen
\layout Enumerate


\begin_inset Formula \( 2\times 2 \)
\end_inset 

-Matrix Sp>0; det 
\begin_inset Formula \( H_{f} \)
\end_inset 

>0
\newline 

\begin_inset Formula \( Tr\left( SAS^{-1}\right) =Tr\left( A\right) , \)
\end_inset 

 da 
\begin_inset Formula \( Tr\left( AB\right) =Tr(BA) \)
\end_inset 


\newline 

\begin_inset Formula \( det\left( SAS^{-1}\right) =det\left( A\right) , \)
\end_inset 

 da 
\begin_inset Formula \( det\left( AB\right) =det(BA) \)
\end_inset 


\layout Problem
\line_top 
Sei f eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion auf einer Umgebung der Halbebene
\begin_inset LatexCommand \index{Halbebene}

\end_inset 

 
\begin_inset Formula \( \mathbb H:=\mathbb R\times \left[ 0,\infty \right)  \)
\end_inset 

.
 Man zeige: Wenn 
\begin_inset Formula \( f|_{\mathbb H} \)
\end_inset 

 im Randpunkt
\begin_inset LatexCommand \index{Randpunkt}

\end_inset 

 
\begin_inset Formula \( p=\left( \textrm{x},0\right)  \)
\end_inset 

 ein lokales Extremum hat, so ist der Gradient von f im Punkt p senkrecht
\begin_inset LatexCommand \index{senkrecht}

\end_inset 

 zum Rand, d.h.
 parallel zur 
\begin_inset Formula \( x_{2} \)
\end_inset 

-Achse.
\layout Proof

Angenommen 
\begin_inset Formula \( \varphi '\left( 0\right) >0\Longrightarrow \exists \tilde{t} \)
\end_inset 

 zwischen t und 0 mit 
\begin_inset Formula \( \frac{\varphi \left( t\right) -\varphi \left( 0\right) 
}{t-0}=\varphi '\left( \tilde{t}\right)  \)
\end_inset 

 nach MWS.
 Wegen 
\begin_inset Formula \(  \)
\end_inset 

 gilt damit: 
\begin_inset Formula \( \exists \varepsilon >0:\frac{\varphi \left( \xi \right) 
-\varphi \left( 0\right) }{\xi }>0\forall \left| \xi \right| <\varepsilon  \)
\end_inset 

.
 Für 
\begin_inset Formula \( \xi <0 \)
\end_inset 

 folgt damit 
\begin_inset Formula \( \varphi \left( \xi \right) <\varphi \left( 0\right)  \)
\end_inset 

, für 
\begin_inset Formula \( \xi >0 \)
\end_inset 

 folgt damit 
\begin_inset Formula \( \varphi \left( \xi \right) >\varphi \left( 0\right)  \)
\end_inset 

 im Wiederspruch zur Voraussetzung, daß ein Extremum existiert.
 
\begin_inset Formula \( \Longrightarrow \varphi '\left( 0\right) \leqq 0 \)
\end_inset 


\newline 
Ebenso werde 
\begin_inset Formula \( \varphi '\left( 0\right) <0 \)
\end_inset 

 ausgeschlossen.
 
\begin_inset Formula \( \Longrightarrow \varphi '\left( 0\right) =0\Longrightarrow 
\nabla f\left( p\right) =\left( 0,f_{y}\left( p\right) \right)  \)
\end_inset 


\layout Problem
\line_top 
Konstruktion einer Funktion auf 
\begin_inset Formula \( \mathbb R^{2}, \)
\end_inset 

 die im Ursprung in jeder Richtung lokal konstant ist, aber in keiner Umgebung
 des Ursprungs beschränkt:
\newline 
Sei 
\begin_inset Formula \( \varphi :\mathbb R\rightarrow \mathbb R \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion, die im Intervall 
\begin_inset Formula \( \left( -1,1\right)  \)
\end_inset 

 positive Werte besitzt und auf 
\begin_inset Formula \( \mathbb R\smallsetminus \left( -1,1\right)  \)
\end_inset 

 konstant gleich Null ist, z.B.
\begin_inset Formula \[
\varphi \left( t\right) =\{\begin{array}{c}
e^{\frac{-1}{1-t^{2}}}\\
0
\end{array}\begin{array}{l}
f\ddot{u}r\, t\in \left( -1,1\right) \\
sonst
\end{array}\]

\end_inset 

 Definiere
\begin_inset Formula \[
f:\mathbb R^{2}\rightarrow \mathbb R;f\left( x\right) :=\{\begin{array}{c}
\frac{1}{x}\varphi \left( \frac{y}{x^{2}}-2\right) \\
0
\end{array}\begin{array}{l}
f\ddot{u}r\, x\neq 0\\
f\ddot{u}r\, x=0
\end{array}\]

\end_inset 

Zeige:
\begin_deeper 
\layout Enumerate


\begin_inset Formula \( f\equiv 0 \)
\end_inset 

 in den Gebieten 
\begin_inset Formula \( \left\{ \left( x,y\right) \in \mathbb R^{2}:y<x^{2}\right\}  \)
\end_inset 

 und 
\begin_inset Formula \( \left\{ \left( x,y\right) \in \mathbb R^{2}:y>3x^{2}\right\}  
\)
\end_inset 

.
 
\layout Enumerate


\begin_inset Formula \(  \)
\end_inset 

.
\layout Enumerate

f ist in keiner Umgebung von 
\begin_inset Formula \( \left( 0,0\right)  \)
\end_inset 

 beschränkt.
\layout Enumerate

Für jedes 
\begin_inset Formula \( \left( a,b\right) \in \mathbb R^{2} \)
\end_inset 

 gibt es ein 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

 , do daß 
\begin_inset Formula \( f\left( \left( 0,0\right) +t\left( a,b\right) \right) =0 \)
\end_inset 

 für alle 
\begin_inset Formula \( t\in \left( -\varepsilon ,\varepsilon \right)  \)
\end_inset 

.
 (Insbesondere sind alle Richtungsableitungen im Ursprung gleich Null.)
\end_deeper 
\layout Enumerate
\added_space_top 1cm 

\begin_inset LatexCommand \label{Nullstellen}

\end_inset 


\begin_inset Formula \( f\left( x,y\right) =0, \)
\end_inset 

 falls x=0 oder 
\begin_inset Formula \( x\neq 0\wedge \left| \frac{y}{x^{2}}-2\right| >1 \)
\end_inset 

.
\newline 

\begin_inset Formula \( \frac{y}{x^{2}}-2>1\Rightarrow y>3x^{2}\, \wedge \, 
-\frac{y}{x^{2}}+2>1\Rightarrow y<x^{2} \)
\end_inset 


\lang american
 
\layout Enumerate


\begin_inset Formula \(  \)
\end_inset 

 
\newline 

\begin_inset Formula \( x\neq 0: \)
\end_inset 

 f in Umgebung von 
\begin_inset Formula \( \left( x,y\right)  \)
\end_inset 

 Verkettung von 
\begin_inset Formula \( \mathbb C^{\infty } \)
\end_inset 

-Funktionen
\newline 
x=0,\SpecialChar ~
aber\SpecialChar ~

\begin_inset Formula \( y\neq 0 \)
\end_inset 

: aus (
\begin_inset LatexCommand \ref{Nullstellen}

\end_inset 

) folgt, daß f in einer Umgebung von 
\begin_inset Formula \( \left( 0,y\right)  \)
\end_inset 

 gleich 0 ist.
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f\left( t,2t^{2}\right)  & = & \frac{1}{t}\varphi \left( \frac{2t^{2}}{t^{2}}-2\right) 
=\frac{1}{t}\varphi \left( 0\right) =\frac{1}{e^{t}}=e^{-t}\\
 &  & 
\end{eqnarray*}

\end_inset 

Sei V vorg.
 Umgebung von 
\begin_inset Formula \( \left( 0,0\right) ;t_{n}=\frac{1}{n} \)
\end_inset 


\newline 

\begin_inset Formula \[
\left( t_{n},2t_{n}^{2}\right) \begin{array}{c}
\\
\longrightarrow \\
n\rightarrow \infty 
\end{array}\left( 0,0\right) \Longrightarrow \exists N\in \mathbb N:\left( 
t_{n},2t_{n}^{2}\right) \in V\forall n\geqq N;f\left( t_{n},2t_{n}^{2}\right) 
=e^{-t_{n}}\begin{array}{c}
\\
\longrightarrow \\
n\rightarrow \infty 
\end{array}\infty \]

\end_inset 

 
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\left( x,y\right)  & = & \left( 0,0\right) +t\left( a,b\right) =\left( ta,tb\right) \\
a=0 & \Rightarrow  & f\left( ta,tb\right) =f\left( 0,tb\right) =0\forall t\\
a\neq 0 & \Rightarrow  & \Rightarrow \left( x,y\right) =\left( ta,tb\right) 
=\frac{tb}{t^{2}a^{2}}-2=\frac{b}{ta^{2}}-2;\, t\neq 0\\
 & t>0: & \frac{b}{ta^{2}}-2>1\Leftrightarrow t<\frac{b}{3a^{2}}\\
 & t<0: & \frac{b}{ta^{2}}-2<1\\
\Rightarrow f\left( ta,tb\right)  & = & 0\forall \left| t\right| <\varepsilon 
=\frac{b}{3a^{2}}\\
 & 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Unabhängigkeit
\begin_inset LatexCommand \index{Unabhängigkeit}

\end_inset 

 der Integration
\begin_inset LatexCommand \index{Integration}

\end_inset 

 von der Reihenfolge:
\newline 
Es sei 
\begin_inset Formula \( f:\left[ a,b\right] \times \left[ c,d\right] \rightarrow 
\mathbb C \)
\end_inset 

 eine stetige Funktion.
 Dann gilt: 
\begin_inset Formula \[
\int _{c}^{d}\left( \int _{a}^{b}f\left( x,y\right) dx\right) dy=\int _{a}^{b}\left( 
\int _{c}^{d}f\left( x,y\right) dy\right) dx\]

\end_inset 

 Mit Hilfe dieser Vertauschungsregel berechne man das Integral
\layout Problem


\begin_inset Formula \[
\int _{0}^{1}\frac{x^{t}-1}{ln\, x}dx\, f\ddot{u}r\, t\geqq 0.\]

\end_inset 

 
\layout Proof


\begin_inset Formula \begin{eqnarray*}
H_{1}\left( y\right)  & = & \int _{c}^{y}\left( \int _{a}^{b}f\left( x,t\right) 
dx\right) dt\\
H_{2}\left( y\right)  & = & \int _{d}^{b}\left( \int _{c}^{y}f\left( x,t\right) 
dt\right) dx\\
\frac{\partial }{\partial y}H_{1}\left( y\right)  & = & \int _{a}^{b}f\left( 
x,y\right) dx\\
 & 
\end{eqnarray*}

\end_inset 


\begin_float footnote 
\layout Standard

Beweis der glm.
 Stetigkeit:
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\left| \frac{\int _{y_{0}}^{y}f\left( x,t\right) dt-\int _{y_{0}}^{y}f\left( 
x,y_{0}\right) dt}{y-y_{0}}\right|  & = & \left| \frac{\int _{y_{0}}^{y}f\left( 
x,t\right) dt-\left( y-y_{0}\right) f\left( x,y_{0}\right) }{y-y_{0}}\right| =\\
 & = & \left| \frac{\int _{y_{0}}^{y}\left[ f\left( x,t\right) -f\left( x,y_{0}\right) 
\right] dt}{y-y_{0}}\right| \leqq \\
 & \leqq  & \int _{y_{0}}^{y}\left| \frac{f\left( x,t\right) -f\left( x,y_{0}\right) 
}{y-y_{0}}\right| dt\leqq \\
 & \leqq  & \frac{y-y_{0}}{y-y_{0}}\max \left| f\left( x,t\right) -f\left( 
x,y_{0}\right) \right| =\\
 & = & \max \left| f\left( x,t\right) -f\left( x,y_{0}\right) \right| 
\end{eqnarray*}

\end_inset 


\layout Standard


\begin_inset Formula \( \forall y\in \forall \varepsilon >0\exists \delta >0:max\left| 
...\right| \leqq \varepsilon \, falls\, \left| y-y_{0}\right| <\delta  \)
\end_inset 

, da 
\begin_inset Formula \( \left| f\left( x,t\right) -f\left( x,y_{0}\right) \right|  \)
\end_inset 

 stetige Funktion auf Kompaktum 
\begin_inset Formula \( \left[ a,b\right]  \)
\end_inset 

, und jede Funktion auf Kompaktum gleichmäßig stetig.
 
\end_float 

\newline 

\begin_inset Formula \begin{eqnarray*}
\frac{\partial }{\partial y}H_{2}\left( y_{0}\right)  & = & H_{2}'\left( y_{0}\right) 
=\lim _{y\rightarrow y_{0}}\frac{H_{2}\left( y\right) -H_{2}\left( y_{0}\right) 
}{y-y_{0}}=\\
 & = & \lim _{y\rightarrow y_{0}}\frac{1}{y-y_{0}}\left[ \int _{a}^{b}\left( \int 
_{y_{0}}^{y}f\left( x,t\right) dt\right) dx\right] =\\
 & = & \lim _{y\rightarrow y_{0}}\left[ \int _{a}^{b}f\left( x,y_{0}\right) dx\right] 
\end{eqnarray*}

\end_inset 


\layout Proof


\begin_inset Formula \begin{eqnarray*}
F\left( t\right)  & = & \int _{0}^{1}\frac{x^{t}-1}{ln\, x}dx\\
\frac{\partial }{\partial t}\frac{x^{t}}{ln\, x} & = & \frac{\partial }{\partial 
t}\frac{e^{t\, ln\, x}}{ln\, x}=e^{t\, ln\, x}=x^{t}\\
\int _{0}^{t}x^{s}ds & = & \left[ \frac{x^{s}}{ln\, x}\right] 
_{0}^{t}=\frac{x^{t}-1}{ln\, x}\\
F\left( t\right)  & = & \int _{0}^{1}\left( \int _{0}^{t}x^{s}ds\right) dx=\int 
_{0}^{t}\left( \int _{0}^{1}x^{s}dx\right) ds=\int _{0}^{t}\left[ 
\frac{1}{s+1}x^{s+1}\right] _{0}^{1}ds=\\
 & = & \int _{0}^{t}\frac{1}{s+1}ds=\left[ ln\left| s+1\right| \right] 
_{0}^{t}=ln\left| t+1\right| 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Sei 
\begin_inset Formula \( \rho  \)
\end_inset 

 eine stetige Funktion auf dem Rechteck 
\begin_inset Formula \( Q:=\left[ a,b\right] \times \left[ c,d\right] \subset \mathbb 
R^{2} \)
\end_inset 

.
 Man zeige, daß die auf 
\begin_inset Formula \( \mathbb R^{2}\smallsetminus \mathbb Q \)
\end_inset 

 durch 
\begin_inset Formula \[
u\left( x,y\right) :=\int _{a}^{b}\left( \int _{c}^{d}ln\left( \left( x-s\right) 
^{2}+\left( y-t\right) ^{2}\right) \cdot \rho \left( s,t\right) dt\right) ds\]

\end_inset 

 definierte Funktion harmonisch ist.
\layout Standard

Differenziationssatz für Faltung
\begin_inset LatexCommand \index{Faltung, Differentiationssatz}

\end_inset 

:
\begin_inset Formula \[
\triangle U\left( x,y\right) =\int _{a}^{b}\left( \int _{c}^{d}\triangle \left( 
x,y\right) ln\left( \left( x-s\right) ^{2}+\left( y-t\right) ^{2}\right) \zeta \left( 
s,t\right) dt\right) ds\]

\end_inset 


\layout Problem
\line_top 

\begin_inset LatexCommand \label{Lagrange}

\end_inset 

Man ermittle zu der Lagrange-Funktion
\begin_inset Formula \[
L\left( t,y,p\right) =\frac{1}{2}mp^{2}-mgy\, \, \, \, \, \, \left( m,g>0\right) \]

\end_inset 

die Eulersche Differentialgleichung.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\frac{d}{dx}L_{p}\left( x,\varphi \left( x\right) ,\varphi '\left( x\right) \right)  & 
= & L_{y}\left( x,\varphi \left( x\right) ,\varphi '\left( x\right) \right) \\
\frac{d}{dt}\left( m\varphi '\left( t\right) \right)  & = & -mg\\
\varphi ''\left( t\right)  & = & g\\
\varphi '\left( t\right)  & = & gt+v_{0}\\
y\left( t\right)  & = & \frac{1}{2}gt^{2}+v_{0}t+y_{0}\, \, \, \left( 
Wurfparabel\right) 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Man zeige allgemein: Hängt die Lagrange-Funktion L
\begin_inset Formula \( \left( t,y,p\right)  \)
\end_inset 

 nicht von t ab, d.h.
 
\begin_inset Formula \( L\left( t,y,p\right) =\hat{L}\left( y,p\right)  \)
\end_inset 

, so ist für jede Lösung 
\begin_inset Formula \( \varphi  \)
\end_inset 

 der Eulerschen Differentialgleichung
\begin_inset Formula \[
\frac{d}{dt}\hat{L}_{p}\left( \varphi \left( t\right) ,\varphi '\left( t\right) 
\right) =\hat{L}_{y}\left( \varphi \left( t\right) ,\varphi '\left( t\right) \right) \]

\end_inset 

 die Funktion
\begin_inset LatexCommand \index{Lagrange, zeitunabhängig}

\end_inset 

 
\begin_inset Formula \[
E_{\varphi }:=\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '-\hat{L}\left( 
\varphi ,\varphi '\right) \]

\end_inset 

(als Funktion von t) konstant.
 
\newline 
Man berechne 
\begin_inset Formula \( E_{\varphi } \)
\end_inset 

 für den Fall der Lagrangefunktion von (
\begin_inset LatexCommand \ref{Lagrange}

\end_inset 

).
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
E_{\varphi } & = & \hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '-\hat{L}\left( 
\varphi ,\varphi '\right) \\
\frac{d}{dt}E_{\varphi } & = & \frac{d}{dt}\hat{L}_{p}\left( \varphi ,\varphi '\right) 
\varphi '+\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi 
''-\frac{d}{dt}\hat{L}\left( \varphi ,\varphi '\right) =\\
 & = & \hat{L}_{y}\left( \varphi ,\varphi '\right) \varphi '+\hat{L}_{p}\left( \varphi 
,\varphi '\right) \varphi ''-\hat{L}_{y}\left( \varphi ,\varphi '\right) \varphi 
'-\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '=0\\
z.B.\, E_{\varphi } & = & mp^{2}-\frac{1}{2}mp^{2}+mgy=\frac{1}{2}my'^{2}+mgy=\\
 & = & \frac{1}{2}m\left( gt+v_{0}\right) ^{2}+mg\left( 
\frac{1}{2}gt^{2}+v_{0}t+y_{0}\right) =\frac{1}{2}mv_{0}^{2}+mgy_{0}=const
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Man berechne das Differential 
\begin_inset Formula \( df \)
\end_inset 

 für die Abbildung 
\begin_inset Formula \[
f:\mathbb K^{n\times n}\rightarrow \mathbb K^{n\times n},\, f\left( A\right) =A^{T}A\]

\end_inset 

 direkt und unter Verwendung der Produktregel.
\newline 
Man berechne die Differentiale 
\begin_inset Formula \( dg \)
\end_inset 

 und 
\begin_inset Formula \( dh \)
\end_inset 

 für die Abbildungen
\begin_inset Formula \begin{eqnarray*}
g: & \mathbb K^{n\times n}\rightarrow \mathbb K^{n\times n} & f\left( A\right) =A^{3}\\
h: & \mathbb R^{n}\rightarrow \mathbb R & h\left( x\right) =e^{x^{T}Ax};A\in \mathbb 
R^{n\times n}
\end{eqnarray*}

\end_inset 


\begin_inset LatexCommand \label{expXTAx}

\end_inset 


\begin_inset Formula \begin{eqnarray*}
df\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{f\left( A+hk\right) -f\left( 
A\right) }{k}=\lim _{k\rightarrow 0}\frac{\left( A+hk\right) ^{T}\left( A+hk\right) 
-A^{T}A}{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{A^{T}A+A^{T}hk+\left( hk\right) 
^{T}A+(hk)^{T}\left( hk\right) -A^{T}A}{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( hk\right) ^{T}A+(hk)^{T}\left( 
hk\right) }{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( A^{T}\left( hk\right) \right) 
^{T}+(hk)^{T}\left( hk\right) }{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( A^{T}\left( hk\right) \right) 
^{T}+(hk)^{T}\left( hk\right) }{k}=\\
 & = & A^{T}h+\left( A^{T}\left( h\right) \right) ^{T}=A^{T}h+h^{T}A\\
d\left( A^{T}\right) h & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) 
^{T}-A^{T}}{k}=h^{T}\\
d\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) -A}{k}=h\\
df\left( A\right) h & = & d\left( A^{T}\right) h\cdot A+A^{T}d\left( A\right) 
h=h^{T}A+A^{T}h
\end{eqnarray*}

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
dg\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{f\left( A+hk\right) -f\left( 
A\right) }{k}=\lim _{k\rightarrow 0}\frac{\left( A+hk\right) ^{3}-A^{3}}{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) \left( A+hk\right) \left( 
A+hk\right) -A^{3}}{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{1}{k}(A^{3}+AA\left( hk\right) +A\left( hk\right) 
A+A\left( hk\right) ^{2}+\left( hk\right) AA+\\
 &  & +\left( hk\right) A\left( hk\right) +\left( hk\right) ^{2}A+\left( hk\right) 
^{3}-A^{3}=\\
 & = & AAh+Aha+hAA\\
d\left( e^{x}\right) h & = & \lim _{k\rightarrow 0}\frac{e^{x+k}-e^{x}}{k}=\lim 
_{k\rightarrow 0}\frac{e^{x}\left( e^{k}-e^{0}\right) }{k-0}=e^{k}\cdot e^{0}=e^{k}\\
d\left( x^{T}Ax\right) h & = & \lim _{k\rightarrow 0}\frac{\left( x+hk\right) 
^{T}A\left( x+hk\right) -x^{T}Ax}{k}=\\
 & = & \lim _{k\rightarrow 0}\frac{x^{T}A\left( hk\right) +\left( hk\right) 
^{T}Ax+\left( hk\right) ^{T}A\left( hk\right) }{k}=x^{T}Ah+h^{T}Ax\\
dh_{a}\left( B\right) h & = & d\left( e^{x}\right) \left( a^{T}Aa\right) \circ d\left( 
x^{T}Ax\right) \left( a\right) h=e^{a^{T}Aa}\left( a^{T}Ah+h^{T}Aa\right) \\
 & 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Für die Polarkoordinatenabbildung
\begin_inset LatexCommand \index{Polarkoordinaten, Abbildung}

\end_inset 

 
\begin_inset Formula \[
P_{3}:\mathbb R^{3}\rightarrow \mathbb R^{3},\, P_{3}\left( \begin{array}{c}
r\\
\varphi _{1}\\
\varphi _{2}
\end{array}\right) :=\left( \begin{array}{c}
r\, cos\varphi _{1}\, cos\, \varphi _{2}\\
r\, sin\varphi _{1}\, cos\, \varphi _{2}\\
r\, sin\, \varphi _{2}
\end{array}\right) \]

\end_inset 

 berechne man die Ableitung 
\begin_inset Formula \( P_{3}', \)
\end_inset 

 das Differential 
\begin_inset Formula \( dP_{3} \)
\end_inset 

 und die Determinante 
\begin_inset Formula \( det\, P_{3}' \)
\end_inset 

.
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
P_{3}' & = & \left( \begin{array}{ccc}
cos\varphi _{1}\, cos\, \varphi _{2} & -r\, sin\, \varphi _{1}\, cos\, \varphi _{2} & 
-r\, cos\, \varphi _{1}\, sin\, \varphi _{2}\\
sin\varphi _{1}\, cos\, \varphi _{2} & r\, cos\, \varphi _{1}\, cos\, \varphi _{2} & 
-r\, cos\, \varphi _{1}\, sin\, \varphi _{2}\\
sin\, \varphi _{2} & 0 & r\, cos\, \varphi _{2}
\end{array}\right) \\
dP_{3}'h & = & P_{3}'h\\
det\, P_{3}' & = & r^{2}\, cos\, \varphi _{2}
\end{eqnarray*}

\end_inset 


\layout Standard

\begin_float margin 
\layout Standard
\align center \pextra_type 3


\begin_inset Figure size 89 168
file G1.eps
width 3 15.00
height 3 20.00
flags 11

\end_inset 


\layout Standard
\align center \pextra_type 3 \pextra_widthp 50


\begin_inset Figure size 89 168
file G2.eps
width 3 15.00
height 3 20.00
flags 11

\end_inset 


\layout Standard
\noindent \align center \pextra_type 3 \pextra_widthp 40


\begin_inset Figure size 89 168
file G3.eps
width 3 15.00
height 3 20.00
flags 11

\end_inset 


\end_float 
\layout Problem
\line_top 
Gegeben sei die Funktion
\begin_inset Formula \[
f:\mathbb R^{2}\rightarrow \mathbb R^{2};\, \left( x,y\right) \rightarrow \left( 
x^{2}-y^{2},2xy\right) .\]

\end_inset 

 Außerdem seien die Scharen parametrisierter Kurven
\begin_inset Formula \begin{eqnarray*}
\gamma _{1}^{\left( a\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto 
\left( a,t\right) \\
\gamma _{2}^{\left( b\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto 
\left( t,b\right) \, und\\
\gamma _{3}^{\left( r\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto 
\left( r\, cos\, t,r\, sin\, t\right) 
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( \left( a,b,r\in \mathbb R,r>0\right)  \)
\end_inset 

 im Urbildraum von f gegeben.
\begin_deeper 
\layout Enumerate
\pextra_type 3 \pextra_widthp 50

Man skizziere die Bilder der Kurven 
\begin_inset Formula \( f\circ \gamma _{1}^{\left( a\right) },f\circ \gamma 
_{2}^{\left( b\right) }\, und\, f\circ \gamma _{3}^{\left( r\right) } \)
\end_inset 

 für einige Werte a,b,r.
\layout Enumerate
\pextra_type 3 \pextra_widthp 50

Man berechne die Ableitung und das Differential von f im Punkt 
\begin_inset Formula \( \left( a,b\right)  \)
\end_inset 

.
 Man bermerke, daß 
\begin_inset Formula \( f'\left( a,b\right)  \)
\end_inset 

 eine Ähnlichkeitsmatrix (d.h.
 
\begin_inset Formula \( c\cdot A \)
\end_inset 

 mit einer orthogonalen Matrix A und 
\begin_inset Formula \( c\in \mathbb R\smallsetminus \left\{ 0\right\}  \)
\end_inset 

 ) ist.
 
\layout Enumerate
\pextra_type 3 \pextra_widthp 50

Man berechne die Bilder der Tangentialvektoren 
\begin_inset Formula \( v_{1}:=\left( \gamma _{1}^{\left( a\right) }\right) '\left( 
b\right)  \)
\end_inset 

 und 
\begin_inset Formula \( v_{2}:=\left( \gamma _{2}^{\left( b\right) }\right) '\left( 
a\right)  \)
\end_inset 

 im Punkt 
\begin_inset Formula \( \left( a,b\right)  \)
\end_inset 

 unter 
\begin_inset Formula \( df \)
\end_inset 

.
 Welcher Winkel liegt zwischen den Tangentialvektoren?
\layout Enumerate
\pextra_type 3 \pextra_widthp 50

Für zwei Kurven 
\begin_inset Formula \( \alpha \, \beta :\left( -\varepsilon ;\varepsilon \right) 
\rightarrow \mathbb R^{n} \)
\end_inset 

 mit 
\begin_inset Formula \( \alpha \left( 0\right) =\beta \left( 0\right) \neq \left( 
0,0\right)  \)
\end_inset 

 beweise man:
\lang american
 
\lang german

\begin_inset Formula \begin{eqnarray*}
\frac{\left\langle df_{\left( a,b\right) }\alpha '\left( 0\right) ,df_{\left( 
a,b\right) }\beta '\left( 0\right) \right\rangle }{\left\Vert df_{\left( a,b\right) 
}\alpha '\left( 0\right) \right\Vert \cdot \left\Vert df_{\left( a,b\right) }\beta 
'\left( 0\right) \right\Vert } & = & \frac{\left\langle \alpha '\left( 0\right) ,\beta 
'\left( 0\right) \right\rangle }{\left\Vert \alpha '\left( 0\right) \right\Vert \cdot 
\left\Vert \beta '\left( 0\right) \right\Vert },\\
 &  & 
\end{eqnarray*}

\end_inset 

wobei 
\begin_inset Formula \( \left\langle \cdot ,\cdot \right\rangle  \)
\end_inset 

 das euklidsche Skalarprodukt und 
\begin_inset Formula \( \left\Vert \cdot \right\Vert  \)
\end_inset 

 die euklidsche Norm auf 
\begin_inset Formula \(  \)
\end_inset 

 bedeuten.
 
\end_deeper 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
df_{\left( a,b\right) }\left( x,y\right)  & = & \left( \begin{array}{cc}
2a & -2b\\
2b & 2a
\end{array}\right) \left( \begin{array}{c}
x\\
y
\end{array}\right) \\
df_{\left( 1,0\right) }\left( x,y\right)  & = & \left( \begin{array}{cc}
2 & 0\\
0 & 2
\end{array}\right) \left( \begin{array}{c}
x\\
y
\end{array}\right) =2\left( \begin{array}{c}
x\\
y
\end{array}\right) \\
f'(a,b) & = & \left( \begin{array}{cc}
2a & -2b\\
2b & 2a
\end{array}\right) =2\sqrt{a^{2}+b^{2}}\left( \begin{array}{cc}
\frac{a}{\sqrt{a^{2}+b^{2}}} & \frac{-b}{\sqrt{a^{2}+b^{2}}}\\
\frac{b}{\sqrt{a^{2}+b^{2}}} & \frac{a}{\sqrt{a^{2}+b^{2}}}
\end{array}\right) =\\
 & = & 2\sqrt{a^{2}+b^{2}}\left( \begin{array}{cc}
cos\, \varphi  & -sin\, \varphi \\
sin\, \varphi  & cos\, \varphi 
\end{array}\right) \in 2\sqrt{a^{2}+b^{2}}\cdot EO\left( 2\right) \\
 &  & 
\end{eqnarray*}

\end_inset 


\layout Standard


\begin_inset Formula \( f'_{\left( a,b\right) }=A \)
\end_inset 

 hat Eigenschaft 
\begin_inset Formula \( A^{T}A=c\cdot \mathbb 1 \)
\end_inset 

 mit geeignetem 
\begin_inset Formula \( c=4\left( a^{2}+b^{2}\right) >0. \)
\end_inset 

  
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\alpha '\left( 0\right) =:v & ; & \beta '\left( 0\right) =:w\\
\frac{\left\langle Av,Aw\right\rangle }{\left\Vert Av\right\Vert \cdot \left\Vert 
Aw\right\Vert } & \begin{array}{c}
!\\
=\\

\end{array} & \frac{\left\langle v,w\right\rangle }{\left\Vert v\right\Vert \cdot 
\left\Vert w\right\Vert }\Leftrightarrow \\
\Leftrightarrow \frac{v^{T}A^{T}Aw}{\sqrt{v^{T}A^{T}Av}\cdot \sqrt{w^{T}A^{T}Aw}} & = 
& \frac{v^{T}w}{\sqrt{v^{T}v}\sqrt{w^{T}w}}\Leftrightarrow \\
\Leftrightarrow \frac{c\cdot v^{T}w}{c\cdot \sqrt{v^{T}v}\sqrt{w^{T}w}} & = & 
\frac{v^{T}w}{\sqrt{v^{T}v}\sqrt{w^{T}w}}\, \, \, \surd 
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Die Joukowski-Abbildung 
\begin_inset Formula \( f:\mathbb C\smallsetminus \mathbb C,\, z\mapsto 
\frac{1}{2}\left( z+\frac{1}{z}\right)  \)
\end_inset 

 je3des der beiden Gebiete 
\begin_inset Formula \( D_{1}:=\left\{ z\in \mathbb C:\left| z\right| <1\right\}  \)
\end_inset 

 bijektiv und konform auf 
\begin_inset Formula \( G:=\mathbb C\smallsetminus \left\{ t\in \mathbb R:-1\leqq 
t\leqq 1\right\}  \)
\end_inset 

 ab.
 
\newline 
Man zeige: Jede der beiden Einschränkungen 
\begin_inset Formula \( f|_{D_{1}} \)
\end_inset 

 und 
\begin_inset Formula \( f_{D_{2}} \)
\end_inset 

 ist sogar ein Diffeomorphismus von 
\begin_inset Formula \( D_{1} \)
\end_inset 

 bzw.
 
\begin_inset Formula \( D_{2} \)
\end_inset 

 auf G und die inversen Abbildungen sind auch wieder konform.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\frac{1}{2}\left( z+\frac{1}{z}\right)  & = & w\\
z^{2}-2wz+1 & = & 0\\
z_{1|2} & = & w\pm \sqrt{w^{2}-1}
\end{eqnarray*}

\end_inset 

Bekannt: f bijektiv (injektiv würde genügen); konform (stetig würde genügen)
\newline 

\bar under 
Satz von der Diffeomorphie:
\bar default 
f differenzierbar genau dann, wenn 
\begin_inset Formula \( f' \)
\end_inset 

 nicht singulär, d.h.
 kein Eigenwert = 0, d.
 h.
 f' invertierbar.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
f'\left( x,y\right)  & = & \left( \begin{array}{cc}
a & -b\\
b & a
\end{array}\right) \\
a & = & \frac{1}{2}+\frac{y^{2}-x^{2}}{2\left( x^{2}-y^{2}\right) }\\
b & = & \frac{xy}{\left( x^{2}+y^{2}\right) ^{2}}
\end{eqnarray*}

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
f'\left( x,y\right) \, invertierbar & \Leftrightarrow  & det\, f'\left( x,y\right) 
=a^{2}+b^{2}\neq 0\Leftrightarrow \\
\Leftrightarrow \left( a,b\right) \neq \left( 0,0\right)  & \Leftrightarrow  & \left\{ 
nicht\, y=0\left( \rightarrow b=0\right) \, und\, nicht\, a=0\Leftrightarrow 
x^{4}-x^{2}=0\right\} \Leftrightarrow \\
\Leftrightarrow \left\{ nicht\, y=0\, und\, x\in \left\{ -1,0,1\right\} \right\}  & 
\Rightarrow  & f'\, \ddot{u}berall\, auf\, D_{1}\, und\, D_{2}\, invertierbar\\
f' & = & \left( \begin{array}{cc}
a & b\\
-b & a
\end{array}\right) \\
\left( f'\right) ^{-1} & = & \frac{1}{a^{2}+b^{2}}\left( \begin{array}{cc}
a & b\\
-b & a
\end{array}\right) ;f\, konform
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Gegeben sei das Gleichungssystem
\begin_inset Formula \begin{eqnarray*}
f_{1}\left( x,y_{1},y_{2}\right)  & = & x^{3}+y_{1}^{3}+y_{2}^{3}-7=0\\
f_{2}\left( x,y_{1},y_{2}\right)  & = & xy_{1}+y_{1}y_{2}+y_{2}x+2=0
\end{eqnarray*}

\end_inset 

 und die Nullstelle 
\begin_inset Formula \( \left( 2,-1,0\right)  \)
\end_inset 

.
 Man zeige, daß das Gleichungssystem in der Nähe dieser Nullstelle nach
 
\begin_inset Formula \( y_{1} \)
\end_inset 

 und 
\begin_inset Formula \( y_{2} \)
\end_inset 

 aufgelöst werden kann, d.h.
 lokal um 
\begin_inset Formula \( \left( 2,-1,0\right)  \)
\end_inset 

 gilt für alle Lösungen des Gleichungssystems:
\begin_inset Formula \[
\]

\end_inset 

 Man berechne 
\begin_inset Formula \( g'\left( 2\right) . \)
\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
F\left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right)  & = & \left( 
\begin{array}{c}
f_{1}\\
f_{2}
\end{array}\right) \left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) =\\
 & = & \left( \begin{array}{c}
x^{3}+y_{1}^{3}+y_{2}^{3}-7\\
xy_{1}+y_{1}y_{2}+y_{2}x+2
\end{array}\right) \left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) =0\\
 & 
\end{eqnarray*}

\end_inset 

Kurve darf nicht senkrecht auf der y-Achse stehen 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 x-Achse 
\begin_inset Formula \( \in  \)
\end_inset 

 Ebene der beiden Normalenvektoren (=Gradienten).
\begin_inset Formula \begin{eqnarray*}
0=F_{1}'\left( x\right)  & = & \partial _{1}f_{1}\left( x,g_{1}\left( x\right) 
,g_{2}\left( x\right) \right) \cdot 1+\partial _{2}f_{1}\cdot g_{1}'\left( x\right) 
+\partial _{3}f_{2}\cdot g_{2}'\left( x\right) \\
0=F_{2}'\left( x\right)  & = & \partial _{1}f_{2}+d_{2}f_{2}\cdot g_{1}'\left( 
x\right) +\partial _{3}f_{2}\cdot g_{2}'\left( x\right) \\
f\ddot{u}r\, x=2: &  & g_{1}\left( x\right) =-1;\, g_{2}\left( x\right) =0\\
\partial _{1}f_{1}\left( 2,-1,0\right) =12 &  & \partial _{1}f_{2}\left( 2,-1,0\right) 
=-1\\
\partial _{2}f_{1}\left( 2,-1,0\right) =3 & \times  & \partial _{2}f_{2}\left( 
2,-1,0\right) =2\\
\partial _{3}f_{1}\left( 2,-1,0\right) =0 &  & \partial _{3}f_{2}\left( 2,-1,0\right) 
=1\\
F_{1}'\left( 2\right)  & = & 12+3g_{1}'\left( 2\right) +0=0\Rightarrow g_{1}'\left( 
2\right) =-4\\
F_{2}'\left( 2\right)  & = & -1+2g_{1}'\left( 2\right) +g_{2}'\left( 2\right) 
=0\Rightarrow g_{2}\left( 2\right) =9\\
\Rightarrow  &  & g'\left( 2\right) =\left( \begin{array}{c}
-4\\
9
\end{array}\right) 
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Die Gleichung 
\begin_inset Formula \[
z^{3}+z+xy=2\]

\end_inset 

 hat für jedes 
\begin_inset Formula \( \left( x,y\right) \in \mathbb R^{2} \)
\end_inset 

 genau eine reelle Lösung 
\begin_inset Formula \( z=g\left( x,y\right)  \)
\end_inset 

.
 Man zeige, daß 
\begin_inset Formula \( g:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

 differenzierbar ist, und berechne 
\begin_inset Formula \( g'\left( 1,2\right)  \)
\end_inset 

.
 Man untersuche g auf Extrema.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\nabla f & = & \left( \begin{array}{c}
y\\
x\\
1+3z^{2}
\end{array}\right) ;\, z-Komponente>0\\
 &  & \Rightarrow lokal\, differenzierbar\, und\, nach\, z\, aufl\ddot{o}sbar\\
 &  & \, \, \left( Satz\, \ddot{u}ber\, implizite\, Funktionen\right) \\
z & \mapsto  & z^{3}+z\, ist\, bijektiv\\
 & \Rightarrow  & global\, differenzierbar\, h\ddot{a}ngt\, z\, von\, x,y\, ab\\
\left[ d_{\left( x,y\right) }f\right] v & = & \left( y,x\right) \cdot v\, \left( v\in 
\mathbb R^{2}\right) \\
\left[ d_{\left( z\right) }f\right] w & = & \left( 3z^{2}+1\right) \cdot w\, \left( 
v\in \mathbb R\right) \\
 & 
\end{eqnarray*}

\end_inset 

Formel für g'
\begin_inset Formula \( \left( x,y\right)  \)
\end_inset 

:
\begin_inset Formula \begin{eqnarray*}
dg_{\left( x,y\right) }v & = & -\left[ d_{\left( z\right) }f\left( x,y,z\right) 
\right] ^{-1}\cdot \left[ d_{\left( x,y\right) }f\left( x,y,z\right) \right] v=\\
 & = & -\frac{1}{3z^{2}+1}\left( y,x\right) v
\end{eqnarray*}

\end_inset 

Speziell für 
\begin_inset Formula \( \left( x,y\right) =\left( 1,2\right)  \)
\end_inset 

:
\begin_inset Formula \begin{eqnarray*}
z^{3}+z+2 & = & 2\, \Rightarrow z=0\\
dg_{\left( 1,2\right) }v & = & -\frac{1}{3\cdot 0^{2}+1}\left( 2,1\right) v=\left( 
-2,-1\right) v;\, v\in \mathbb R^{2}
\end{eqnarray*}

\end_inset 

Extrema:
\begin_inset Formula \begin{eqnarray*}
\left( x,y\right)  & = & \left( 0,0\right) \, einziger\, Kandidat\\
F\left( x,y\right)  & := & f\left( x,y,g\left( x,y\right) \right) =2\\
0 & = & \partial _{x}F\left( x,y\right) =\partial _{1}f\cdot 1+\partial _{2}f\cdot 
0+\partial _{3}f\cdot g_{x}\left( x,y\right) \\
0 & = & \partial _{y}F\left( x,y\right) =\partial _{1}f\cdot 0+\partial _{2}f\cdot 
1+\partial _{3}f\cdot g_{y}\left( x,y\right) \\
0 & = & 1y+0x+\left( 3z^{2}+1\right) g_{x}\left( x,y\right) \\
0 & = & 0y+1x+\left( 3z^{2}+1\right) g_{y}\left( x,y\right) \\
g_{x} & = & g_{y}=0\Rightarrow x=y=0;\, z^{3}+z+0=0\Rightarrow z=1\\
0 & = & \partial _{x}^{2}F\left( x,y\right) =\\
 & = & \partial _{1}^{2}f+\partial _{2}\partial _{1}f+\partial _{3}\partial _{1}f\cdot 
g_{x}\left( x,y\right) +\partial _{1}\partial _{3}f\cdot g_{x}\left( x,y\right) 
+\partial _{2}\partial _{3}f\cdot 0\cdot g_{x}\left( x,y\right) +\\
 &  & +\partial _{3}\partial _{3}f\cdot \left[ g_{x}\left( x,y\right) \right] 
^{2}+\partial _{3}f\cdot g_{xx}\left( x,y\right) \\
\partial _{xy}f\left( 0,0\right)  & = & 0\\
\partial _{3}f\left( 0,0,1\right)  & = & 4\\
\partial _{1}^{2} & = & 0\\
g_{xx}\left( 0,0\right)  & = & 0\\
aus\, Symmetrie: &  & g_{yy}\left( 0,0\right) =0\\
0 & = & \partial _{y}\partial _{x}F=\\
 & = & \partial _{1}^{2}\cdot 0+\partial _{2}\partial _{1}f+\partial _{3}\partial 
_{1}f\cdot g_{y}+\left[ \partial _{1}\partial _{3}f+\partial _{2}\partial 
_{3}f+\partial _{3}\partial _{3}f\cdot g_{y}\right] g_{x}+\partial _{3}f\cdot g_{xy}\\
0 & = & 4g_{xy}\left( 0,0\right) +1\\
g_{xy}\left( 0,0\right)  & = & -\frac{1}{4}\\
g''\left( 0,0\right)  & = & \left( \begin{array}{cc}
0 & -\frac{1}{4}\\
-\frac{1}{4} & 0
\end{array}\right) \\
det\, g''\left( 0,0\right)  & = & -\frac{1}{16}\Rightarrow g''\, indefinit\Rightarrow 
\left( 0,0\right) \, ist\, Sattelpunkt
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Sei 
\begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion und 
\begin_inset Formula \( A=\left( p_{0},T_{0},V_{0}\right)  \)
\end_inset 

 eine Nullstelle von f mit 
\begin_inset Formula \( \partial _{p}f\left( A\right) \neq 0 \)
\end_inset 

, 
\begin_inset Formula \( \partial _{T}f\left( A\right) \neq 0 \)
\end_inset 

 und 
\begin_inset Formula \( \partial _{V}f\left( A\right) \neq 0. \)
\end_inset 

 Thermodynamiker verwenden die Relation 
\begin_inset Formula \[
\frac{\partial p}{\partial T}\cdot \frac{\partial T}{\partial V}\cdot \frac{\partial 
V}{\partial p}=-1.\]

\end_inset 

Wie ist eine solche Relation zu interpretieren?
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\partial _{p}f\left( p_{0},V_{0},T_{0}\right)  & \neq  & 0\\
 &  & 
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( \Rightarrow  \)
\end_inset 

Man kann f in a lokal nach 
\begin_inset Formula \( p_{1} \)
\end_inset 

 auflösen und 
\begin_inset Formula \( dp\left( T_{0},V_{0}\right) =-\left[ d_{\left( p\right) 
}f\left( p_{0},T_{0},V_{0}\right) \right] ^{-1}\cdot d_{\left( T,V\right) }f\left( 
p_{0},T_{0},V_{0}\right)  \)
\end_inset 

.
\newline 
Hier ist 
\begin_inset Formula \( d_{\left( p\right) }f\left( p_{0},T_{0},V_{0}\right) :\mathbb 
R\rightarrow \mathbb R;\, h\mapsto \partial _{p}f\left( p_{0},T_{0},V_{0}\right) \cdot 
h. \)
\end_inset 


\newline 

\begin_inset Formula \begin{eqnarray*}
d_{\left( T,V\right) }f\left( p_{0},T_{0},V_{0}\right) : & \mathbb R^{2} & \Rightarrow 
\mathbb R\\
 & k & \mapsto \left( \partial _{T}f,\partial _{V}f\right) _{\left( 
p_{0},T_{0},V_{0}\right) }\cdot k
\end{eqnarray*}

\end_inset 

Speziell:
\begin_inset Formula \begin{eqnarray*}
\partial _{T}p\left( T_{0},V_{0}\right)  & = & -\frac{\partial _{V}f\left( 
p_{0},T_{0},V_{0}\right) }{\partial _{p}f\left( p_{0},T_{0},V_{0}\right) }\\
genauso:\partial _{V}p\left( T_{0},V_{0}\right)  & = & -\frac{\partial _{V}f\left( 
p_{0},T_{0},V_{0}\right) }{\partial _{T}f\left( p_{0},T_{0},V_{0}\right) }\\
\partial _{p}p\left( T_{0},V_{0}\right)  & = & -\frac{\partial _{p}f\left( 
p_{0},T_{0},V_{0}\right) }{\partial _{V}f\left( p_{0},T_{0},V_{0}\right) }\\
 & \Rightarrow  & \partial _{T}p\cdot \partial _{V}T\cdot \partial _{p}V=-1
\end{eqnarray*}

\end_inset 

ideales Gas:
\begin_inset Formula \begin{eqnarray*}
f\left( p,T,V\right)  & = & \frac{pV}{T}-c\\
p\left( T,V\right)  & = & \frac{cT}{V};\, \partial _{R}p\left( 
p_{0},T_{0},V_{0}\right) =\frac{c}{V_{0}}
\end{eqnarray*}

\end_inset 

 Tatsächlich ist auch 
\begin_inset Formula \[
-\frac{\partial _{T}f}{\partial 
_{p}f}=-\frac{-\frac{pV_{0}}{T_{0}^{2}}}{\frac{V_{0}}{T}}=\frac{p_{0}}{T_{0}}=\frac{c}{V_{0}}\]

\end_inset 


\layout Problem
\line_top 
Es sei M und N Untermannigfalten des 
\begin_inset Formula \( \mathbb R^{m} \)
\end_inset 

 bzw.
 
\begin_inset Formula \( \mathbb R^{n} \)
\end_inset 

.
 Dann ist das direkte Produkt 
\begin_inset Formula \( M\times N \)
\end_inset 

 eine Untermannigfaltigkeit des 
\begin_inset Formula \( \mathbb R^{m\times n} \)
\end_inset 

 der Dimension 
\begin_inset Formula \( dim\, M+dim\, N \)
\end_inset 

.
\layout Standard

Offenbar 
\begin_inset Formula \( M\times N\subseteq \mathbb R^{m+n} \)
\end_inset 

.
 Bezeichne 
\begin_inset Formula \( d|_{M}:=dim\, M;\, d|_{N}:=dim\, N. \)
\end_inset 

 Sei 
\begin_inset Formula \( \left( a,b\right) \in M\times N\Rightarrow \exists 
Umgebungen\, U\subseteq \mathbb R^{m}\, von\, a;\, V\subseteq \mathbb R^{n}\, von\, b 
\)
\end_inset 

 und Diffeomorphismous 
\begin_inset Formula \( \varphi ,\psi ;\, \varphi :U\rightarrow \hat{U}\in \mathbb 
R^{m};\, \psi :V\rightarrow \hat{V}\in \mathbb R^{n} \)
\end_inset 

 mit 
\begin_inset Formula \( \varphi \left( M\cap U\right) =\mathbb R_{0}^{d_{M}}\cap 
\hat{U} \)
\end_inset 

 und 
\begin_inset Formula \( \varphi \left( N\cap V\right) =\mathbb R_{0}^{d_{N}}\cap 
\hat{V} \)
\end_inset 

.
 Dann ist 
\begin_inset Formula \( \eta :U\times V\rightarrow \hat{U}\times \hat{V};\, \left( 
p,y\right) \mapsto \left( \varphi \left( p\right) ,\psi \left( p\right) \right)  \)
\end_inset 

 ein Diffeomorphismus 
\begin_inset Formula \( \eta '\left( p,q\right) =\left( \begin{array}{cc}
\varphi '_{\left( p\right) }0 & \\
0 & \psi '_{\left( q\right) }
\end{array}\right) ;\, \eta \left( \left( M\times N\right) \cap \left( U\times 
V\right) \right) =\left( \mathbb R_{0}^{d_{M}}\cap \hat{U}\right) \times \left( 
\mathbb R_{0}^{d_{N}}\cap \hat{V}\right) \subset \mathbb R^{m+n} \)
\end_inset 


\layout Problem
\line_top 
Gegeben sei ein Gelenk
\begin_inset LatexCommand \index{Gelenk}

\end_inset 

 in der Ebene, bestehend aus zwei Stangen
\begin_inset LatexCommand \index{Stangen}

\end_inset 

 der Längen 
\begin_inset Formula \( l_{1},l_{2}. \)
\end_inset 

 Man interpretiere die Menge aller möglichen Positionen 
\begin_inset Formula \( \left( a_{1},a_{2},a_{3}\right)  \)
\end_inset 

 der Eckpunkte als eine 4-dimensionale Untermannigfaltigkeit M des 
\begin_inset Formula \( \mathbb R^{6}. \)
\end_inset 

 Man finde eine geeignete Parametrisierung 
\begin_inset Formula \( \mathbb R^{2}\times \mathbb S^{1}\times \mathbb 
S^{1}\rightarrow M \)
\end_inset 

!
\layout Standard

Nullstellengebilde von 
\begin_inset Formula \( f:\mathbb R^{6}\rightarrow \mathbb R^{2};\, \left( 
\begin{array}{c}
x_{1}\\
y_{1}\\
x_{2}\\
y_{2}\\
x_{3}\\
y_{3}
\end{array}\right) \mapsto \left( \begin{array}{c}
\left( x_{1}-x_{2}\right) ^{2}+\left( y_{1}-y_{2}\right) ^{2}-l_{1}^{2}\\
\left( x_{2}-x_{3}\right) ^{2}+\left( y_{2}-y_{3}\right) ^{2}-l_{2}^{2}
\end{array}\right)  \)
\end_inset 

.
 f ist 
\begin_inset Formula \(  \)
\end_inset 

-Funktion.
 
\begin_inset Formula \[
f'\left( x_{1},y_{1},x_{2},y_{2},x_{3},y_{3}\right) ^{T}=2\left( \begin{array}{cccccc}
x_{1}-x_{2} & y_{1}-y_{2} & x_{2}-x_{1} & y_{2}-y_{1} & 0 & 0\\
0 & 0 & x_{2}-x_{3} & y_{2}-y_{3} & x_{3}-x_{2} & y_{3}-y_{2}
\end{array}\right) \]

\end_inset 

 
\begin_inset Formula \( \Rightarrow f'\left( p\right) \, regul\ddot{a}r\, f\ddot{u}r\, 
alle\, p\in M\Rightarrow M\, Mannigfaltigkeit\, der\, Dimension\, 6-2=4. \)
\end_inset 


\layout Problem
\line_top 
Rotationsflächen im 
\begin_inset Formula \( \mathbb R^{3}. \)
\end_inset 


\newline 
Es sei 
\begin_inset Formula \( M=f^{-1}\left( 0\right)  \)
\end_inset 

 eine 1-dimensionale Untermannigfaltigkeit des 
\begin_inset Formula \( \mathbb R^{2} \)
\end_inset 

, wobei 
\begin_inset Formula \( f:\mathbb R_{+}\times \mathbb R\rightarrow \mathbb R \)
\end_inset 

 eine stetig differenzierbare Funktion sei mit 0 als regulärem Wert.
 Man zeige: 
\begin_inset Formula \[
R:=\left\{ \left( x,y,z\right) \in \mathbb R^{3}|f\left( \sqrt{x^{2}-y^{2}},z\right) 
=0\right\} \]

\end_inset 

 ist eine 2-dimensionale Untermannigfaltigkeit des 
\begin_inset Formula \( \mathbb R^{3}. \)
\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
g & : & \mathbb R^{3}\smallsetminus \left\{ \left( 0,0\right) \right\} \times \mathbb 
R\rightarrow \mathbb R^{+}\times \mathbb R\\
\left( \begin{array}{c}
x\\
y\\
z
\end{array}\right)  & \mapsto  & \left( \begin{array}{c}
\sqrt{x^{2}+y^{2}}\\
z
\end{array}\right) 
\end{eqnarray*}

\end_inset 

Dann ist 
\begin_inset Formula \( R=\left( f\circ g\right) ^{-1}\left( 0\right)  \)
\end_inset 

.
 
\newline 
Zu zeigen: 0 ist regulärer Wert von 
\begin_inset Formula \( f\circ g \)
\end_inset 

.
\begin_inset Formula \begin{eqnarray*}
\left( f\circ g\right) '\left( x,y,z\right)  & = & \left( f_{x},f_{y}\right) _{\left( 
\begin{array}{c}
x\\
y\\
z
\end{array}\right) }\circ \left( \begin{array}{ccc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & 0\\
0 & 0 & 1
\end{array}\right) =\\
 & = & \left( 
f_{x}\frac{x}{\sqrt{x^{2}+y^{2}}},f_{x}\frac{y}{\sqrt{x^{2}+y^{2}}},f_{y}\right) 
\end{eqnarray*}

\end_inset 

 
\begin_inset Formula \( f_{x},f_{y} \)
\end_inset 

 nicht beide 0 (regulärer Wert) 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 mindestens ein Eintrag nicht 0 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 für 
\begin_inset Formula \( \left( \begin{array}{c}
x\\
y\\
z
\end{array}\right) \in \mathbb R \)
\end_inset 

 ist 
\begin_inset Formula \( \left( f\circ g\right) '_{\left( \begin{array}{c}
x\\
y\\
z
\end{array}\right) } \)
\end_inset 

 surjektiv 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

R Mannigfaltigkeit der Dimension 3-1=2
\layout Problem
\line_top 
Man zeige, daß jeder Punkt 
\begin_inset Formula \( \left( p,q\right) \in \mathbb R^{2} \)
\end_inset 

 mit 
\begin_inset Formula \( pq\neq 0 \)
\end_inset 

 auf genau zwei Parabeln 
\begin_inset Formula \( P_{a_{1}},P_{a_{2}} \)
\end_inset 

 der Schar 
\begin_inset Formula \[
P_{a}:=\left\{ \left( x,y\right) \in \mathbb R^{2}:ax^{2}-y-\frac{1}{4a}=0\right\} \]

\end_inset 

 liegt und daß sich diese beiden Parabeln im Punkt 
\begin_inset Formula \( \left( p,q\right)  \)
\end_inset 

 senkrecht schneiden.
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
ap^{2}-q-\frac{1}{4a} & = & 0\\
4a^{2}p^{2}-4aq-1 & = & 0\\
a_{1|2} & = & \frac{4q\pm \sqrt{16q^{2}+4\cdot 4p^{2}}}{2\cdot 
4p^{2}}=\frac{q}{2p^{2}}\pm \frac{\sqrt{p^{2}+q^{2}}}{2p^{2}}
\end{eqnarray*}

\end_inset 

Da 
\begin_inset Formula \( pq\neq 0 \)
\end_inset 

 existieren zwei Lösungen.
 Diese Schneiden sich in 
\begin_inset Formula \( \left( p,q\right)  \)
\end_inset 

.
\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man formuliere den Satz vom regulären Wert für den Spezialfall einer Hyperfläche
 (d.h.
 Untermannigfaltigkeit der Dimension n-1) im 
\begin_inset Formula \( \mathbb R^{n} \)
\end_inset 

.
\layout Enumerate

Ist 
\begin_inset Formula \( M:=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}=0\right\} 
 \)
\end_inset 

 eine Untermannigfaltigkeit der 
\begin_inset Formula \( \mathbb R^{2} \)
\end_inset 

?
\layout Enumerate

Die Neilsche Parabel:
\newline 
Es sei 
\begin_inset Formula \( N:=\left\{ \left( x,y\right) \in \mathbb 
R^{2}:x^{3}=y^{2}\right\}  \)
\end_inset 

.
 Man zeige: Für 
\begin_inset Formula \( A\in N,\, a\neq \left( 0,0\right)  \)
\end_inset 

, hat 
\begin_inset Formula \( T_{a}N \)
\end_inset 

 die Dimension 1, dagegen hat 
\begin_inset Formula \( T_{\left( 0,0\right) }N \)
\end_inset 

 die Dimension 0.
 Man folgere, daß N keine Untermannigfaltigkeit des 
\begin_inset Formula \( \mathbb R^{2} \)
\end_inset 

 ist.
 
\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man bestimme alle Extrema der Funktion 
\begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) 
\mapsto xyz \)
\end_inset 

 auf der Sphäre 
\begin_inset Formula \( \mathbb S^{2}. \)
\end_inset 


\layout Enumerate

Gegeben sei die Funktion
\begin_inset Formula \[
f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) \mapsto 
z+\frac{1}{3}\left( x^{2}+y^{2}\right) .\]

\end_inset 

Man zeige, daß f auf der Sphäre 
\begin_inset Formula \( \mathbb S^{2} \)
\end_inset 

 im Punkt p=
\begin_inset Formula \( \left( 0,0,1\right)  \)
\end_inset 

 ein Maximum hat, daß aber die Einschränkung des Differenzials zweiter Ordnung
 auf den Tangentialraum 
\begin_inset Formula \( T_{p}M \)
\end_inset 

 positiv definit ist.
 Die Einschränkung der Hessematrix auf den Tangentialraum liefert also kein
 Kriterium dafür, ob an einem kritischen Punkt ein Maximum oder Minimum
 oder Sattelpunkt vorliegt.
\layout Standard

\SpecialChar ~

\layout Standard


\begin_inset Formula \begin{eqnarray*}
\nabla f\left( x,y,z\right)  & = & \left( \begin{array}{c}
yz\\
xz\\
xy
\end{array}\right) \\
\nabla g_{\mathbb S}\left( x,y,z\right)  & = & 2\left( \begin{array}{c}
x\\
y\\
z
\end{array}\right) \\
Lagrange: &  & \\
Fall\, 1 & : & xyz\neq 0\\
\left( \begin{array}{c}
yz\\
xz\\
xy
\end{array}\right)  & = & \lambda \left( \begin{array}{c}
x\\
y\\
z
\end{array}\right) ;\, \lambda \in \mathbb R\\
\Rightarrow \lambda  & = & \frac{yz}{x}=\frac{xz}{y}=\frac{xy}{z}\Rightarrow \\
\Rightarrow \lambda xyz & = & y^{2}z^{2}=x^{2}z^{2}=x^{2}y^{2}\Rightarrow \\
 & \Rightarrow  & x^{2}=y^{2}=z^{2}=\frac{1}{3}\\
 & \Rightarrow  & \left| x\right| =\left| y\right| =\left| z\right| 
=\frac{\sqrt{3}}{3}\\
Fall\, 2 & : & Sonderf\ddot{a}lle\, xyz=0\\
f\left( 0,0,\pm 1\right)  & = & 0\\
Wegen\, f\left( \varepsilon ,\varepsilon ,\sqrt{1-2\varepsilon ^{2}}\right)  & > & 0\\
und\, f\left( -\varepsilon ,\varepsilon ,\sqrt{1-2\varepsilon ^{2}}\right)  & < & 0\, 
liegt\, kein\, Extrema\, vor.\\
 &  & (andere\, Sonderf\ddot{a}lle\, werden\, durch\, Symmetrie\, ausgeschlossen)\\
Da\, \mathbb S^{2}\, kompakt: &  & \\
f\left( x,y,z\right)  &  & Extemum\, falls\, \left| x\right| =\left| y\right| =\left| 
z\right| =\frac{\sqrt{3}}{3}\\
Minimum &  & falls\, sgn\left( xyz\right) <0\\
Maximum &  & falls\, sgn\left( xyz\right) >0
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Man skizziere das Geschwindigkeitsfeld 
\begin_inset Formula \( v:\mathbb R^{3}\rightarrow \mathbb R^{3},x\mapsto w\times x \)
\end_inset 

 einer starren Drehung im 
\begin_inset Formula \( \mathbb R^{3} \)
\end_inset 

 mit der verktoriellen Drehgeschwindigkeit 
\begin_inset Formula \( \omega \in \mathbb R^{3} \)
\end_inset 

 und berechne die Divergenz 
\begin_inset Formula \[
div\, v:=\sum ^{3}_{i=1}\frac{\partial v_{i}}{\partial x_{i}}.\]

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
v\left( x\right)  & = & \left( \begin{array}{c}
w_{1}\\
w_{2}\\
w_{3}
\end{array}\right) \times \left( \begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}
\end{array}\right) =\left( \begin{array}{c}
w_{2}x_{3}-w_{3}x_{2}\\
w_{3}x_{1}-w_{1}x_{3}\\
w_{1}x_{2}-w_{2}x_{1}
\end{array}\right) \\
div\, v & = & \sum ^{3}_{i=1}\frac{\partial v_{i}}{\partial x_{i}}=0
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Man löse das Anfangswertproblem 
\begin_inset Formula \[
\left( \begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right) =\left( \begin{array}{c}
-y\\
x
\end{array}\right) ;\, \left( \begin{array}{c}
x\left( 0\right) \\
y\left( 0\right) 
\end{array}\right) =\left( \begin{array}{c}
1\\
0
\end{array}\right) \]

\end_inset 

 mittels Picard-Lindelöf-Iteration.
\layout Standard


\begin_inset Formula \[
F\left( \left( x,y\right) ,t\right) =\left( \begin{array}{c}
-y\\
x
\end{array}\right) \, Lipschitzstetig\, bzgl\, \left( x,y\right) \]

\end_inset 

 
\begin_inset Formula \begin{eqnarray*}
\varphi _{0}(t) & = & \left( \begin{array}{c}
x_{0}\left( t\right) \\
y_{0}\left( t\right) 
\end{array}\right) =\left( \begin{array}{c}
1\\
0
\end{array}\right) \\
\varphi _{k+1}(t) & = & \left( \begin{array}{c}
x_{k+1}\left( t\right) \\
y_{k+1}\left( t\right) 
\end{array}\right) =\int _{0}^{t}\left( \begin{array}{c}
-y_{k}\left( s\right) \\
x_{k}\left( s\right) 
\end{array}\right) ds+\left( \begin{array}{c}
x_{0}\\
y_{0}
\end{array}\right) \\
\varphi _{1}(t) & = & \int _{0}^{t}\left( \begin{array}{c}
-0\\
1
\end{array}\right) ds+\left( \begin{array}{c}
1\\
0
\end{array}\right) =\left( \begin{array}{c}
1\\
t
\end{array}\right) \\
\varphi _{2}(t) & = & \int _{0}^{t}\left( \begin{array}{c}
-t\\
1
\end{array}\right) ds+\left( \begin{array}{c}
1\\
0
\end{array}\right) =\left( \begin{array}{c}
1-\frac{1}{2}t^{2}\\
t
\end{array}\right) \\
\varphi _{3}(t) & = & \int _{0}^{t}\left( \begin{array}{c}
-t\\
1-\frac{1}{2}t^{2}
\end{array}\right) ds+\left( \begin{array}{c}
1\\
0
\end{array}\right) =\left( \begin{array}{c}
1-\frac{1}{2}t^{2}\\
t-\frac{1}{6}t^{3}
\end{array}\right) \\
\varphi _{2n}(t) & = & \left( \begin{array}{c}
1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+...\pm \frac{1}{\left( 2n\right) 
!}t^{2n}\\
t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+...\pm \frac{1}{\left( 
2n-1\right) !}t^{2n-1}
\end{array}\right) \\
\lim _{n\rightarrow \infty }\varphi _{2n}(t) & = & \left( \begin{array}{c}
cos\, t\\
sin\, t
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 

\noun on 
Das Lemma von Morse
\noun default 

\begin_inset LatexCommand \index{Morse}

\end_inset 


\newline 
Sei f eine reelle 
\begin_inset Formula \(  \)
\end_inset 

-Funktion in einer Umgebung U von 
\begin_inset Formula \( 0\in \mathbb R^{n} \)
\end_inset 

 mit 
\begin_inset Formula \( f\left( 0\right) =0,f'\left( 0\right) =0 \)
\end_inset 

 und nicht ausgearteter Hessematrix 
\begin_inset Formula \( f''\left( 0\right) . \)
\end_inset 

 Dann existiert ein Diffeomorphismus 
\begin_inset Formula \( \phi :U_{0}\rightarrow V \)
\end_inset 

 einer Umgebung 
\begin_inset Formula \( U_{0}\subset U \)
\end_inset 

 von 0 auf eine Umgebung V von 0 so, daß 
\begin_inset Formula \[
f\circ \phi ^{-1}\left( y\right) =\left( y_{1}^{2}+...+y_{k}^{2}\right) -\left( 
y_{k+1}^{2}+...+y_{n}^{2}\right) .\]

\end_inset 


\layout Enumerate

Worin besteht der Unterschied zur Taylor-Formel?
\layout Enumerate

Man veranschauliche und beweise die Aussage am Beispiel n=1.
\layout Enumerate

Man beweise das Lemma von Morse:
\newline 
Zunächst zeige man, daß es eine Nullumgebung Û und eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion 
\begin_inset Formula \( A:\hat{U}\rightarrow \mathbb R^{n\times n} \)
\end_inset 

 gibt mit 
\begin_inset Formula \[
f\left( x\right) =x^{T}A\left( x\right) x.\]

\end_inset 

 
\layout Enumerate

Wie sehen im Fall einer positiv definiten Hessematrix die Niveauflächen
 in der Nähe von 
\begin_inset Formula \( 0\in U \)
\end_inset 

 aus?
\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f\left( 0\right)  & = & 0\in \mathbb R\\
f'\left( 0\right)  & = & 0\in \mathbb R^{n\times n}\\
f\left( x\right)  & = & x^{T}Ax+R\left( x\right) 
\end{eqnarray*}

\end_inset 

Durch Diagonalisierung und Normierung wird 
\begin_inset Formula \( x^{T}Ax=\left( x_{1}^{2}+...+x_{k}^{2}\right) -\left( 
x_{k+1}^{2}+...+x_{n}^{2}\right)  \)
\end_inset 

 (lineare Koordinatentransformation!).
\newline 

\bar under 
Unterschied:
\bar default 
Man läßt nicht nur lineare Koordinatentransformationen zu, sondern auch
 einen Diffeomorphismus 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 R
\begin_inset Formula \( \left( x\right)  \)
\end_inset 

 fällt weg.
\newline 

\layout Enumerate


\bar under 
Spezialfall n=1: 
\newline 

\bar default 
Taylor: 
\begin_inset Formula \( f\left( x\right) =ax^{2}+R\left( x\right) =\pm \left( 
\sqrt{\left| a\right| }\times \sqrt{1+\frac{R\left( x\right) }{ax^{2}}}\right) 
^{2}=\pm \phi ^{2}\left( x\right)  \)
\end_inset 


\newline 

\bar under 
Behauptung
\bar default 
:
\begin_inset Formula \( \phi \left( x\right)  \)
\end_inset 

 ist Diffeomorphismus
\newline 

\begin_inset Formula \begin{eqnarray*}
\phi \left( x\right)  & = & \sqrt{\left| a\right| }x\cdot \sqrt{1+\frac{R\left( 
x\right) }{ax^{2}}}\, differenzierbar\, \forall x\neq 0\\
\phi '\left( 0\right)  & = & \lim _{x\rightarrow 0}\frac{\phi \left( x\right) -\phi 
\left( 0\right) }{x-0}=\lim _{x\rightarrow 0}\sqrt{\left| a\right| }\cdot 
\sqrt{1+\frac{R\left( x\right) }{ax^{2}}}=\sqrt{\left| a\right| }\, existiert\, in\, 
\mathbb R\\
\phi '\left( x\right)  &  & stetig\, f\ddot{u}r\, x\neq 0\\
 &  & Stetigkeit\, in\, x=0\\
R\left( x\right)  & = & \frac{1}{2}\int _{0}^{y}\left( x-t\right) ^{2}f^{\left( 
3\right) }\left( t\right) dt\\
F\left( x,y\right)  & := & \frac{1}{2}\int _{0}^{y}\left( x-t\right) ^{2}f^{\left( 
3\right) }\left( t\right) dt\\
\partial _{y}F & = & \frac{1}{2}\left( x-y\right) ^{2}f^{\left( 3\right) }\left( 
y\right) \\
\partial _{x}F & = & \int _{0}^{y}\left( x-t\right) f^{\left( 3\right) }\left( 
t\right) dt\\
R\left( x\right)  & = & F\left( x,x\right) \\
R'\left( x_{0}\right)  & = & \partial _{x}F\left( x_{0},x_{0}\right) +\partial 
_{y}F\left( x_{0},x_{0}\right) =\int _{0}^{x_{0}}\left( x-t\right) f^{\left( 3\right) 
}\left( t\right) dt\\
\lim _{x\rightarrow 0}\frac{R\left( x\right) }{x^{2}} & = & 0\, (Taylor)\\
\lim _{x\rightarrow 0}\frac{R'\left( x\right) }{x} & = & \lim _{x\rightarrow 0}\int 
_{0}^{x}\frac{x-t}{x}f^{\left( 3\right) }\left( t\right) dt=0\\
 &  & Damit\, durch\, Rechnung\\
\lim _{x\rightarrow 0}\phi '\left( x\right)  & = & \sqrt{\left| a\right| }=\phi 
'\left( 0\right) \\
f\circ \phi ^{-1}\left( x\right)  & = & \pm x^{2}
\end{eqnarray*}

\end_inset 

 
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f\left( x\right)  & = & \sum _{i=1}^{n}a_{i}\left( x\right) x_{i}+f\left( 0\right) \\
a_{i}\left( x\right)  & = & \int _{0}^{1}\partial _{i}f\left( tx\right) dt\leftarrow 
a_{i}\left( 0\right) =\partial _{i}f\left( 0\right) =0;\, \partial _{j}a_{i}\left( 
0\right) =\partial _{j}\partial _{i}f\left( 0\right) \\
a_{i}\left( x\right)  & = & \sum _{j=1}^{n}a_{ij}\left( x\right) x_{j}+a_{i}\left( 
0\right) =\sum ^{n}_{j=1}a_{ij}\left( x\right) x_{j}\\
f\left( x\right)  & = & \sum ^{n}_{i,j=1}a_{ij}\left( x\right) x_{i}x_{j}=x^{T}A\left( 
x\right) \cdot x=\frac{1}{2}x^{T}\left( A\left( x\right) +A\left( x\right) ^{T}\right) 
\cdot x\, \, \, \left( oBdA\, symmetrisch\right) \\
 & 
\end{eqnarray*}

\end_inset 


\layout Enumerate

Eigenwerte positiv
\newline 

\begin_inset Formula \( f\left( x\right) =x_{1}^{2}+...+x_{n}^{2} \)
\end_inset 

 
\hfill 
Paraboilid
\hfill 

\layout Standard
\pagebreak_top 
\SpecialChar ~

\layout Note
\line_top 

\bar under 
Exponentialfunktion:
\layout Note


\begin_inset Formula \begin{eqnarray*}
\Lambda  & = & \left( \begin{array}{ccc}
\lambda _{1} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & \lambda _{n}
\end{array}\right) \\
\Lambda ^{k} & = & \left( \begin{array}{ccc}
\lambda _{1}^{k} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & \lambda _{n}^{k}
\end{array}\right) \\
e^{\left( \begin{array}{ccc}
\lambda _{1} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & \lambda _{n}
\end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\Lambda ^{k}}{k!}=\left( 
\begin{array}{ccc}
\sum _{k=0}^{\infty }\frac{1}{k!}\lambda _{1}^{k} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & \sum _{k=0}^{\infty }\frac{1}{k!}\lambda _{n}^{k}
\end{array}\right) =\left( \begin{array}{ccc}
e^{\lambda _{1}} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & e^{\lambda _{n}}
\end{array}\right) \\
\mathbb I & = & \left( \begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right) \\
\mathbb I^{2} & = & \left( \begin{array}{cc}
-1 & 0\\
0 & -1
\end{array}\right) =-1\cdot \mathbb E\\
\left( \mathbb I^{2}\right) ^{k} & = & I^{2k}=\left( -1\right) ^{k}\mathbb E\\
e^{t\mathbb I} & = & \sum _{k=0}^{\infty }\frac{\left( t\mathbb I\right) 
^{k}}{k!}=E+\mathbb I+\frac{t^{2}\left( -1\right) ^{2}}{2!}\mathbb E+\frac{t^{3}\left( 
-1\right) ^{3}}{3!}\mathbb I+....=\\
 & = & \left( \sum _{k=0}^{\infty }\left( -1\right) ^{k}\frac{t^{2k}}{\left( 2k\right) 
!}\right) E+\left( \sum _{k=0}^{\infty }\left( -1\right) ^{k}\frac{t^{2k-1}}{\left( 
2k-1\right) !}\right) I=\left( \begin{array}{c}
cos\, t\\
sin\, t
\end{array}\right) \\
\mathbb I^{*} & = & \left( \begin{array}{ccc}
0 & 1 & 0\\
0 & 0 & 1\\
0 & 0 & 0
\end{array}\right) \\
\mathbb I^{*}\, ^{2} & = & \left( \begin{array}{ccc}
0 & 0 & 1\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right) \\
e^{\mathbb I^{*}} & = & \mathbb E+t\left( \begin{array}{ccc}
0 & 1 & 0\\
0 & 0 & 1\\
0 & 0 & 0
\end{array}\right) +\frac{t^{2}}{2!}\left( \begin{array}{ccc}
0 & 0 & 1\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right) 
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man berechne 
\begin_inset Formula \( e^{At} \)
\end_inset 

 aufgrund der Potenzreihe für 
\begin_inset Formula \( A_{1}:=\left( \begin{array}{cc}
a & -b\\
b & a
\end{array}\right)  \)
\end_inset 

 und 
\begin_inset Formula \( A_{2}:=\left( \begin{array}{ccc}
\lambda  & 1 & 0\\
0 & \lambda  & 1\\
0 & 0 & \lambda 
\end{array}\right)  \)
\end_inset 

.
\layout Enumerate

Man ermittle ein Fundamentalsystem für die Lösungen von 
\begin_inset Formula \( \dot{x}=Ax \)
\end_inset 

 mit den Matrizen aus Teil (1).
\layout Enumerate

Man zeige: Das Additionstheorem
\begin_inset LatexCommand \index{Additionstheorem}

\end_inset 

 für die Exponentialfunktion
\begin_inset LatexCommand \index{Exponentialfunktion}

\end_inset 

 von Matrizen gilt nicht allgemein: Berechne 
\begin_inset Formula \( e^{A}\cdot e^{B} \)
\end_inset 

 und 
\begin_inset Formula \( e^{A+B} \)
\end_inset 

 für die Matrizen 
\begin_inset Formula \( A:=\left( \begin{array}{cc}
0 & 1\\
0 & 0
\end{array}\right)  \)
\end_inset 

 und 
\begin_inset Formula \( B:=\left( \begin{array}{cc}
1 & 0\\
0 & 0
\end{array}\right)  \)
\end_inset 

.
\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
A_{1} & = & \left( \begin{array}{cc}
a & -b\\
b & a
\end{array}\right) =a\mathbb E+b\mathbb I\\
e^{tA_{1}} & = & e^{ta\mathbb E+tb\mathbb I}=\left( \begin{array}{ccc}
e^{t_{a}} & \cdots  & 0\\
\vdots  & \ddots  & \vdots \\
0 & \cdots  & e^{t_{a}}
\end{array}\right) \left( \begin{array}{cc}
cos\, tb & -sin\, tb\\
sin\, tb & cos\, tb
\end{array}\right) =e^{t_{a}}\left( \begin{array}{cc}
cos\, tb & -sin\, tb\\
sin\, tb & cos\, tb
\end{array}\right) \\
A_{2} & = & \left( \begin{array}{ccc}
\lambda  & 1 & 0\\
0 & \lambda  & 1\\
0 & 0 & \lambda 
\end{array}\right) \\
e^{tA_{2}} & = & e^{t\lambda \mathbb E}\cdot e^{t\mathbb I}=e^{t\lambda }\mathbb 
E\left( \mathbb E+t\left( \begin{array}{ccc}
0 & 1 & 0\\
0 & 0 & 1\\
0 & 0 & 0
\end{array}\right) +\frac{t^{2}}{2!}\left( \begin{array}{ccc}
0 & 0 & 1\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right) \right) =e^{t\lambda }\left( \begin{array}{ccc}
1 & t & \frac{t^{2}}{2}\\
0 & 1 & t\\
0 & 0 & 1
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\phi _{1}\left( t\right)  & = & k_{1}e^{at}\left( \begin{array}{c}
cos\, bt\\
sin\, bt
\end{array}\right) +k_{2}e^{at}\left( \begin{array}{c}
-sin\, bt\\
cos\, bt
\end{array}\right) \, \, f\ddot{u}r\, A_{1}\\
\phi _{2}\left( t\right)  & = & k_{1}e^{\lambda t}+k_{2}e^{\lambda t}\left( 
\begin{array}{c}
t\\
1\\
0
\end{array}\right) +k_{3}e^{\lambda t}\left( \begin{array}{c}
\frac{1}{2}t^{2}\\
t\\
1
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
e^{A}=e^{\left( \begin{array}{cc}
0 & 1\\
0 & 0
\end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc}
0 & 1\\
0 & 0
\end{array}\right) ^{k}}{k!}=\mathbb E+\left( \begin{array}{cc}
0 & 1\\
0 & 0
\end{array}\right) +0=\left( \begin{array}{cc}
1 & 1\\
0 & 1
\end{array}\right) \\
e^{B}=e^{\left( \begin{array}{cc}
1 & 0\\
0 & 0
\end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc}
1 & 0\\
0 & 0
\end{array}\right) ^{k}}{k!}=\mathbb E+\left( \begin{array}{cc}
1 & 0\\
0 & 0
\end{array}\right) \sum _{k=1}^{\infty }\frac{1}{k!}=\left( \begin{array}{cc}
e^{1} & 0\\
0 & 1
\end{array}\right) \\
e^{A}\cdot e^{B} & = & \left( \begin{array}{cc}
e & 1\\
0 & 1
\end{array}\right) \\
e^{B}\cdot e^{A} & = & \left( \begin{array}{cc}
e & e\\
0 & 1
\end{array}\right) \\
e^{A+B} & = & e^{\left( \begin{array}{cc}
1 & 1\\
0 & 0
\end{array}\right) }=\sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc}
1 & 1\\
0 & 0
\end{array}\right) ^{k}}{k!}=\left( \begin{array}{cc}
e & e-1\\
0 & 1
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Man zeige: Das früher definierte charakteristische
\begin_inset LatexCommand \index{Polynom,  charakteristisches}

\end_inset 

 Polynom einer lienearen Differentialgleichung n-ter Ordnung mit konstanten
 Koeffizienten 
\begin_inset Formula \[
x^{\left( n\right) }+a_{n-1}x^{\left( n-1\right) }+...+a_{1}x'+a_{0}x=0\]

\end_inset 

 ist bis auf einen konstanten Faktor das charakteristische Polynom der Matrix
 des assoziierten Systems erster Ordnung.
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\left( \begin{array}{c}
x\\
x'\\
\vdots \\
\vdots \\
\vdots \\
x^{\left( n-1\right) }
\end{array}\right)  & = & \left( \begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & 0\\
0 & 0 & 0 & \ddots  & 0 & 0\\
0 & 0 & 0 & \ddots  & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 1\\
-a_{0} & -a_{1} & -a_{2} & 0 & -a_{n-2} & -a_{n-1}
\end{array}\right) \left( \begin{array}{c}
x\\
x'\\
\vdots \\
\vdots \\
\vdots \\
x^{\left( n-1\right) }
\end{array}\right) \\
det\left( A-\lambda \mathbb E\right)  & = & \left( \begin{array}{cccccc}
-\lambda  & 1 & 0 & 0 & 0 & 0\\
0 & -\lambda  & 1 & 0 & 0 & 0\\
0 & 0 & -\lambda  & \ddots  & 0 & 0\\
0 & 0 & 0 & \ddots  & 1 & 0\\
0 & 0 & 0 & 0 & -\lambda  & 1\\
-a_{0} & -a_{1} & -a_{2} & 0 & -a_{n-2} & -a_{n-1}-\lambda 
\end{array}\right) =\\
 & = & \left( -\lambda \right) ^{n-1}\left( -a_{n-1}-\lambda \right) +a_{n-2}\left( 
-\lambda \right) ^{n-2}+a_{n-3}\left( -\lambda \right) ^{n-3}+...=\\
 & = & \left( -1\right) ^{n}\left[ \left( a_{n-1}+\lambda \right) \lambda 
^{n-1}+a_{n-2}\lambda ^{n-2}+...+a_{1}\lambda +a_{0}\right] 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Set 
\begin_inset Formula \( v:\mathbb R^{n}\rightarrow \mathbb R^{n} \)
\end_inset 

 ein 
\begin_inset Formula \(  \)
\end_inset 

-Vektorfeld.
 Man zeige:
\layout Enumerate

Ist 
\begin_inset Formula \( x_{0} \)
\end_inset 

 eine Nullstelle von 
\begin_inset Formula \( v \)
\end_inset 

 und 
\begin_inset Formula \( \varphi  \)
\end_inset 

 eine maximale Integralkurve von v mit 
\begin_inset Formula \( \varphi \left( t_{0}\right) =x_{0} \)
\end_inset 

, so ist 
\begin_inset Formula \( \varphi  \)
\end_inset 

 auf ganz 
\begin_inset Formula \( \mathbb R \)
\end_inset 

 definiert und 
\begin_inset Formula \( \varphi \left( t\right) =x_{0} \)
\end_inset 

 für alle 
\begin_inset Formula \( t\in \mathbb R \)
\end_inset 

.
 
\layout Enumerate

Jede maximale Integralkurve zu 
\begin_inset Formula \( \tilde{v}:\mathbb R^{n}\rightarrow \mathbb R^{n},\, 
\tilde{v}\left( x\right) :=sin\left( \left\Vert x\right\Vert _{2}^{2}\right) \cdot 
v\left( x\right)  \)
\end_inset 

 ist auf ganz 
\begin_inset Formula \( \mathbb R \)
\end_inset 

 definiert.
 Wo verläuft sie?
\layout Standard

Lösung:
\layout Enumerate

ist Lösung des AWP.
 Da 
\begin_inset Formula \( \varphi  \)
\end_inset 

 auf ganz 
\begin_inset Formula \( \mathbb R \)
\end_inset 

 definiert ist, ist es bereits die maximale Lösung.
 
\layout Enumerate


\begin_inset Formula \[
\tilde{v}\left( x\right) :=sin\left( \left\Vert x\right\Vert _{2}^{2}\right) \cdot 
v\left( x\right) \]

\end_inset 

Maximale Lösung
\begin_inset LatexCommand \index{Lösung, maximale}

\end_inset 

 örtlich
\begin_inset LatexCommand \index{örtlich}

\end_inset 

 beschränkt 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 zeitlich
\begin_inset LatexCommand \index{zeitlich}

\end_inset 

 auf ganz 
\begin_inset Formula \( \mathbb R \)
\end_inset 

 unbeschränkt
\begin_inset LatexCommand \index{unbeschränkt}

\end_inset 

!
\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man zeige: Der Tangentialraum 
\begin_inset Formula \( T_{\mathbb 1}O\left( n\right)  \)
\end_inset 

 besteht aus allen schiefsymmetrischen reellen 
\begin_inset Formula \( n\times n \)
\end_inset 

-Matritzen.
\layout Enumerate

Man zeige: Sei 
\begin_inset Formula \( H\in T_{\mathbb 1}O\left( n\right)  \)
\end_inset 

.
 Dann ist 
\begin_inset Formula \[
\gamma :\mathbb R\rightarrow O\left( n\right) ,\, t\mapsto e^{Ht}\]

\end_inset 

 eine differenzierbare Kurve in 
\begin_inset Formula \( O\left( n\right)  \)
\end_inset 

 mit 
\begin_inset Formula \(  \)
\end_inset 


\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f & : & \mathbb R^{n\times n}\rightarrow R^{n\times n}\\
 &  & A\mapsto A^{T}A\\
O\left( n\right)  & = & f^{-1}\left( \mathbb 1\right) 
\end{eqnarray*}

\end_inset 

 
\begin_inset Formula \( \mathfrak 1 \)
\end_inset 

 ist regulärer Wert: 
\newline 
Sei 
\begin_inset Formula \( A\in f^{-1}\left( \mathfrak 1\right)  \)
\end_inset 

, d.h.
 
\begin_inset Formula \( A^{T}A=1 \)
\end_inset 

.
 
\begin_inset Formula \( df_{A}H=A^{T}H+H^{T}A\, \forall H\in T_{A}\mathbb R^{n\times 
n} \)
\end_inset 

.
 Sei 
\begin_inset Formula \( y\in T_{\mathbb 1}\mathbb R_{s}^{n\times n}\approxeq 
R_{s}^{n\times n} \)
\end_inset 

.
 
\newline 
Wähle: 
\begin_inset Formula \begin{eqnarray*}
H & := & \frac{1}{2}\left( A^{T}\right) ^{-1}Y=\frac{1}{2}AY\\
df_{A}H & = & \frac{1}{2}\left( A^{T}AY+Y^{T}A^{T}A\right) =\frac{1}{2}\left( 
Y+Y^{T}\right) =Y
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( \Rightarrow df_{A} \)
\end_inset 

 surjektiv 
\begin_inset Formula \( \Rightarrow  \)
\end_inset 

 Satz über implizite
\begin_inset LatexCommand \index{implizite}

\end_inset 

 Funktionen
\newline 

\begin_inset Formula \( O\left( n\right)  \)
\end_inset 

 ist Mannigfaltigkeit der Dimension 
\begin_inset Formula \( n^{2}-\frac{n\left( n+1\right) }{2} \)
\end_inset 

.
\newline 

\begin_inset Formula \( T_{\mathbb 1}O\left( n\right) =Kern\, df_{\mathbb 1}\mathbb 
R^{n\times n}=\left\{ X\in \mathbb R^{n\times n}:\mathbb 1^{T}x+x^{T}\mathbb 
1=0\right\} =\left\{ X\in \mathbb R^{n\times n}:x+x^{T}=0\right\}  \)
\end_inset 


\layout Enumerate

Sei 
\begin_inset Formula \( H\in \left\{ X\in \mathbb R^{n\times n}:x+x^{T}=0\right\}  \)
\end_inset 

.
\newline 

\begin_inset Formula \begin{eqnarray*}
f_{1} & : & \mathbb R\rightarrow \mathbb R^{n\times n};\, t\mapsto e^{Ht}\, 
differenzierbar\\
f_{1}\left( 0\right)  & = & e^{0H}=\mathfrak 1;\, \gamma _{1}'\left( t\right) 
=He^{Ht}\\
\gamma _{1}'\left( 0\right)  & = & He^{0H}=H
\end{eqnarray*}

\end_inset 

Behauptung: 
\begin_inset Formula \( e^{Ht}\in O\left( n\right) \, \forall t. \)
\end_inset 

 
\newline 
zu Zeigen: 
\begin_inset Formula \( \left( e^{Ht}\right) ^{T}e^{Ht}=\mathfrak 1 \)
\end_inset 


\newline 

\begin_inset Formula \( \left( e^{Ht}\right) ^{T}e^{Ht}=e^{-Ht}e^{Ht}=e^{\mathfrak 
0}=\mathfrak 1 \)
\end_inset 


\layout Problem
\line_top 
Man bestimme durch Reihenentwicklung zwei unabhängige Lösungen von 
\begin_inset Formula \( \ddot{x}=tx \)
\end_inset 

.
 Sind die Reihen für numerische Zwecke gut geeignet?
\layout Standard


\begin_inset Formula \begin{eqnarray*}
x\left( t\right)  & = & tx=a_{0}+a_{1}t+a_{2}t^{2}+a_{3}t^{3}+...\\
\dot{x}\left( t\right)  & = & a_{1}+2a_{2}t+3a_{3}t^{2}+4a_{4}t^{3}+....\\
\ddot{x}\left( t\right) =tx\left( t\right)  & = & 0+2a_{2}+6a_{2}t+12a_{4}t^{2}\\
\Rightarrow a_{2} & = & 0\\
a_{n+3} & = & \frac{1}{\left( n+3\right) \left( n+2\right) }a_{n}\forall n\in \mathbb 
N\\
a_{2} & = & a_{5}=a_{8}=...=0\\
x\left( t\right)  & = & a_{0}\left( 1+\frac{t^{3}}{3\cdot 2}+\frac{t^{6}}{\left( 
6\cdot 5\right) \left( 3\cdot 2\right) }+...\right) +\\
 &  & +a_{1}\left( t+\frac{t^{4}}{3\cdot 4}+\frac{t^{7}}{\left( 6\cdot 7\right) \left( 
3\cdot 4\right) }+...\right) 
\end{eqnarray*}

\end_inset 

 Vergleich mit Potenzreihe
\begin_inset LatexCommand \index{Potenzreihe}

\end_inset 

: Konvergenz sehr gut, besonders für kleine t.
 
\newline 
Für negative T: Leipnitzkriterium: 
\begin_inset Formula \( \sum _{n=0}^{\infty }\left( -1\right) ^{n}a_{n};\, a_{n}\geq 
a_{n+1}\rightarrow 0;\, \left| R_{n}\right| =\left| \sum _{i=n+1}^{\infty }\left( 
-1\right) ^{i}a_{i}\right| \leq a_{n+1};\, sgn\, R_{n}=\left( -1\right) ^{n+1}. \)
\end_inset 

 
\begin_inset Formula \begin{eqnarray*}
x_{1}\left( t\right)  & = & 1+\frac{t^{3}}{3\cdot 2}+\frac{t^{6}}{\left( 6\cdot 
5\right) \left( 3\cdot 2\right) }+...\\
x_{2}\left( t\right)  & = & 1+\frac{t^{4}}{3\cdot 4}+\frac{t^{7}}{\left( 6\cdot 
7\right) \left( 3\cdot 4\right) }+...
\end{eqnarray*}

\end_inset 

Zwei linear unabhängige Lsg.
 bilden eine Basis.
\begin_inset Formula \begin{eqnarray*}
x\left( t\right)  & = & a_{0}x_{1}\left( t\right) +a_{1}x_{2}\left( t\right) \\
 &  & \forall a_{0},a_{1}\in \mathbb R
\end{eqnarray*}

\end_inset 


\layout Note
\line_top 
Ist 
\begin_inset Formula \( \phi  \)
\end_inset 

 eine Fundamentalmatrix
\begin_inset LatexCommand \index{Fundamentalmatrix}

\end_inset 

 der homogenen
\begin_inset LatexCommand \index{homogenen}

\end_inset 

 Gleichung 
\begin_inset Formula \( \dot{x}=Ax, \)
\end_inset 

 so ist 
\begin_inset Formula \[
x_{p}\left( t\right) :=\phi \left( t\right) \cdot c\left( t\right) \, mit\, c:=\int 
\phi \left( s\right) ^{-1}b\left( s\right) ds\]

\end_inset 

 eine Lösung der inhomogenen
\begin_inset LatexCommand \index{inhomogenen}

\end_inset 

 Gleichung 
\begin_inset Formula \( \dot{x}=Ax+b \)
\end_inset 

.
\layout Problem
\line_top 
Man bestimme die Lösung des Anfangswertproblems
\begin_inset LatexCommand \index{Anfangswertproblems}

\end_inset 

:
\begin_inset Formula \begin{eqnarray*}
\left( \begin{array}{c}
x\\
y
\end{array}\right) ^{*} & = & \left( \begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right) \cdot \left( \begin{array}{c}
x\\
y
\end{array}\right) +\left( \begin{array}{c}
0\\
3t+1
\end{array}\right) \\
\left( \begin{array}{c}
x\\
y
\end{array}\right) \left( 0\right)  & = & \left( \begin{array}{c}
0\\
3
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Standard

Fundamentalmatrix
\begin_inset LatexCommand \index{Fundamentalmatrix}

\end_inset 

:
\begin_inset Formula \begin{eqnarray*}
\phi \left( t\right)  & = & e^{t\left( \begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right) }=\left( \begin{array}{cc}
cos\, t & -sin\, t\\
sin\, t & cos\, t
\end{array}\right) \\
c & = & \int _{0}^{s}\left( \begin{array}{cc}
cos\, t & sin\, t\\
-sin\, t & cos\, t
\end{array}\right) \left( \begin{array}{c}
0\\
3t+1
\end{array}\right) dt=\int _{0}^{s}\left( 3t+1\right) \left( \begin{array}{c}
sin\, t\\
cos\, t
\end{array}\right) dt=\\
 & = & 3\int _{0}^{s}\left( \begin{array}{c}
t\, sin\, t\\
t\, cos\, t
\end{array}\right) dt+\int _{0}^{s}\left( \begin{array}{c}
sin\, t\\
cos\, t
\end{array}\right) dt=3\left[ \left( \begin{array}{c}
sin\, t-t\, cos\, t\\
cos\, t+t\, sin\, t
\end{array}\right) \right] _{0}^{s}+\left[ \left( \begin{array}{c}
-cos\, t\\
sin\, t
\end{array}\right) \right] _{0}^{s}=\\
 & = & 3\left( \begin{array}{c}
sin\, s-s\, cos\, s\\
cos\, s+s\, sin\, s-1
\end{array}\right) +\left( \begin{array}{c}
-cos\, s+1\\
sin\, s
\end{array}\right) =\left( \begin{array}{c}
3sin\, s-3s\, cos\, s-cos\, s+1\\
3cos\, s+3s\, sin\, s+sin\, s-3
\end{array}\right) =\\
 & = & \left( 3s+1\right) \left( \begin{array}{c}
-cos\, s\\
sin\, s
\end{array}\right) +\left( \begin{array}{c}
3sin\, s+1\\
3cos\, s-3
\end{array}\right) \\
x_{p}\left( t\right)  & = & \left( \begin{array}{cc}
cos\, s & -sin\, s\\
sin\, s & cos\, s
\end{array}\right) \left( \begin{array}{c}
3sin\, s-3s\, cos\, s-cos\, s+1\\
3cos\, s+3s\, sin\, s+sin\, s-3
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
3sin\, s\, cos\, s-3s\, cos^{2}s-cos^{2}s+cos\, s-3sin\, s\, cos\, s-3s\, 
sin^{2}s-sin^{2}s+3sin\, s\\
3sin^{2}s-3s\, sin\, s\, cos\, s-sin\, s\, cos\, s+sin\, s+3cos^{2}s+3s\, sin\, s\, 
cos\, s+sin\, s\, cos\, s-3cos\, s
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
+cos\, s-3s+3sin\, s-1\\
+sin\, s-3cos\, s+3
\end{array}\right) 
\end{eqnarray*}

\end_inset 

Die allgemeine Lösung des AWP ist
\begin_inset Formula \begin{eqnarray*}
\left( \begin{array}{c}
x\\
y
\end{array}\right)  & = & x_{p}+\phi \left( t\right) \left( \begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
cos\, s-3s+3sin\, s-1\\
sin\, s-3cos\, s+3
\end{array}\right) +c_{1}\left( \begin{array}{c}
cos\, s\\
sin\, s
\end{array}\right) +c_{2}\left( \begin{array}{c}
-sin\, s\\
cos\, s
\end{array}\right) =\\
 & = & \left( \begin{array}{c}
cos\, s-3s+3sin\, s-1\\
sin\, s-3cos\, s+3
\end{array}\right) +3\left( \begin{array}{c}
-sin\, s\\
cos\, s
\end{array}\right) =\left( \begin{array}{c}
cos\, s-3s-1\\
sin\, s+3
\end{array}\right) =\\
\left( \begin{array}{c}
x\\
y
\end{array}\right) \left( 0\right)  & = & \left( \begin{array}{c}
0\\
3
\end{array}\right) \, \surd \\
\left( \begin{array}{c}
cos\, s-3s-1\\
sin\, s+3
\end{array}\right) ^{*} & = & \left( \begin{array}{cc}
0 & -1\\
1 & 0
\end{array}\right) \cdot \left( \begin{array}{c}
cos\, s-3s-1\\
sin\, s+3
\end{array}\right) +\left( \begin{array}{c}
0\\
3t+1
\end{array}\right) \, \surd 
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Sei 
\begin_inset Formula \( A\in \mathbb C^{n\times n} \)
\end_inset 

 und 
\begin_inset Formula \(  \)
\end_inset 

.
 Man zeige:
\newline 
Falls 
\begin_inset Formula \( \alpha  \)
\end_inset 

 kein Eigenwert von A ist, hat die Differentialgleichung 
\begin_inset Formula \[
\dot{x}=Ax+e^{at}\cdot c\]

\end_inset 

 genau eine Lösung der Form 
\begin_inset Formula \( x\left( t\right) =e^{at}\cdot d \)
\end_inset 

 mit 
\begin_inset Formula \( d\in \mathbb C^{n} \)
\end_inset 

.
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
e^{at}d & = & ae^{at}\cdot d\\
A\left( e^{at}d\right) +e^{at}\cdot c & = & e^{at}\left( Ad-c\right) \\
e^{at}ad & = & e^{at}\left( Ad-c\right) \\
ad & = & Ad+c,\, da\, e^{at}\left( Ad+c\right) \\
-c & = & Ad-qd\\
-c & = & \left( A-a\mathbb E\right) d
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( \alpha  \)
\end_inset 

 kein Eigenwert
\begin_inset Formula \( \Rightarrow d:=\left( A-a\mathbb E\right) ^{-1}\cdot c \)
\end_inset 

 eindeutig.
 
\newline 

\begin_inset Formula \( \alpha  \)
\end_inset 

 ein Eigenwert
\layout Problem
\line_top 
Man diskutiere die Gleichung zweiter Ordnung 
\begin_inset Formula \[
\ddot{x}=-\left( x-\frac{1}{2}x^{2}\right) .\]

\end_inset 


\layout Enumerate

Wie lautet das assoziierte
\begin_inset LatexCommand \index{assoziierte}

\end_inset 

 System erster Ordnung?
\layout Enumerate

Man ermittle dazu ein erstes Integral und diskutiere qualitativ dessen Niveaulin
ien in der nähe der kritischen Stellen.
\layout Enumerate

Man berechne explizit die Niveaulinien.
\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\left\{ \begin{array}{c}
x_{0}:=x\\
x_{1}:=\dot{x}
\end{array}\right\}  & \Rightarrow  & \left( \begin{array}{c}
x_{0}\\
x_{1}
\end{array}\right) ^{*}=\left( \begin{array}{c}
\dot{x}_{0}\\
\dot{x}_{1}
\end{array}\right) =\left( \begin{array}{c}
\dot{x}_{1}\\
-\left( x-\frac{1}{2}x^{2}\right) 
\end{array}\right) \\
bezeichne:\, \left( \begin{array}{c}
x_{0}\\
x_{1}
\end{array}\right) =\left( \begin{array}{c}
x\\
y
\end{array}\right)  & \Rightarrow  & \left( \begin{array}{c}
x\\
y
\end{array}\right) ^{*}=\left( \begin{array}{c}
y\\
-\left( x-\frac{1}{2}x^{2}\right) 
\end{array}\right) 
\end{eqnarray*}

\end_inset 


\layout Enumerate

E sei erstes Integral 
\begin_inset Formula \( E\left( x\left( t\right) ,y\left( t\right) \right) =const \)
\end_inset 

.
\begin_inset Formula \begin{eqnarray*}
\frac{d}{dt}E & \Rightarrow  & Ex\dot{x}+Ey\dot{y}=0\\
grad\, E\cdot \left( \begin{array}{c}
x\\
y
\end{array}\right)  & = & 0\\
\nabla E & \perp  & \left( \begin{array}{c}
y\\
-\left( x-\frac{1}{2}x^{2}\right) 
\end{array}\right) \\
Ansatz:\, E_{x} & = & \left( x-\frac{1}{2}x^{2}\right) \\
E_{y} & = & y
\end{eqnarray*}

\end_inset 

kritischer Punkt für E; 
\begin_inset Formula \( grad\, E=0 \)
\end_inset 


\hfill 

\begin_inset Formula \( E\left( x,y\right) 
=\frac{1}{2}x^{2}-\frac{1}{6}x^{3}+\frac{1}{2}y^{2} \)
\end_inset 


\begin_inset Formula \begin{eqnarray*}
E_{y} & = & y=0\\
E_{x} & = & x\frac{1}{2}x^{2}=0\\
\Rightarrow 2\, krit.\, Punkte &  & \left( x,y\right) =\{\begin{array}{c}
\left( 0,0\right) \\
\left( 2,0\right) 
\end{array}
\end{eqnarray*}

\end_inset 

Lösungskurven verlaufen in den Niveumengen 
\begin_inset Formula \( E^{-1}\left( \left\{ \left( 0,0\right) \right\} \right)  \)
\end_inset 

 und 
\begin_inset Formula \( E^{-1}\left( \left\{ \left( 2,0\right) \right\} \right)  \)
\end_inset 

.
 Mit dem Lemma von Morse folgt wegen 
\begin_inset Formula \begin{eqnarray*}
\left( x,y\right)  & = & \left( \begin{array}{cc}
1-x & 0\\
0 & 1
\end{array}\right) \, \, \, \, \, \, \, \, Hessematrix\\
E''\left( 0,0\right)  & = & \left( \begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right) \, \, \, \, \, \, positiv\, definit,
\end{eqnarray*}

\end_inset 

 daß die Lösungskurven in einer Umgebung von 
\begin_inset Formula \( \left( 0,0\right)  \)
\end_inset 

 auf 
\begin_inset Formula \(  \)
\end_inset 

-Deformierten Kreisen verlaufen.
 E ist äquivalent zu 
\begin_inset Formula \( \tilde{E}\left( u,v\right) =u^{2}+v^{2} \)
\end_inset 

 in Umgebung von 
\begin_inset Formula \( \left( 0,0\right) . \)
\end_inset 

 
\begin_inset Formula \begin{eqnarray*}
E''\left( 2,0\right)  & = & \left( \begin{array}{cc}
-1 & 0\\
0 & 1
\end{array}\right) \\
\tilde{E}\left( u,v\right)  & = & u^{2}+v^{2}
\end{eqnarray*}

\end_inset 

Niveaulinie heißt nicht Lösungskurve!, denn die Lösung läuft in unendlich
 langer Zeit zu 
\begin_inset Formula \( \left( 2,0\right)  \)
\end_inset 

.
 In 
\begin_inset Formula \( \left( 2,0\right)  \)
\end_inset 

 steht konstante Lösung.
 
\begin_inset Formula \begin{eqnarray*}
E\left( x,y\right)  & = & \frac{1}{2}x^{2}-\frac{1}{6}x^{3}+\frac{1}{2}y^{2}\\
E^{-1}\left( \left\{ \left( 0,0\right) \right\} \right)  & = & \left\{ \left( 
x,y\right) :y=\pm \sqrt{\frac{1}{3}x^{3}-x^{2}}\right\} \\
E^{-1}\left( \left\{ \left( 2,0\right) \right\} \right)  & = & \left\{ \left( 
x,y\right) :y=\pm \sqrt{\frac{4}{3}+\frac{1}{3}x^{3}-x^{2}}\right\} 
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \[
y=\pm \left| x\right| \sqrt{\frac{1}{3}x-1}\]

\end_inset 


\layout Problem
\line_top 
Sei A eine reelle 
\begin_inset Formula \( 3\times 3 \)
\end_inset 

-Matrix mit Eigenwerten 
\begin_inset Formula \( -\lambda \pm i\mu  \)
\end_inset 

 und 
\begin_inset Formula \( -\lambda  \)
\end_inset 

, wobei 
\begin_inset Formula \( \lambda ,\gamma ,\mu \in \mathbb R_{+}. \)
\end_inset 

 Man skizziere die Integralkurven des Vektorfeldes 
\begin_inset Formula \( v:\mathbb R^{3}\rightarrow \mathbb R^{3},\, v\left( x\right) 
=Ax \)
\end_inset 

, und untersuche sie für 
\begin_inset Formula \( t\rightarrow \infty  \)
\end_inset 

.
\layout Standard

\SpecialChar ~

\layout Problem
\line_top 
Man zeige für 
\begin_inset Formula \( A\in \mathbb C^{n\times n} \)
\end_inset 

:
\begin_inset Formula \[
det\, e^{A}=e^{Spur\, A}\]

\end_inset 


\layout Enumerate

direkt unter Verwendung der Beziehung 
\begin_inset Formula \( e^{T^{-1}AT}=T^{-1}e^{A}T \)
\end_inset 

.
\layout Enumerate

mit Hilfe der Formel von Liouville
\begin_inset LatexCommand \index{Liouville}

\end_inset 

.
\layout Standard

\SpecialChar ~

\layout Enumerate

Wähle 
\begin_inset Formula \( T\in \mathbb C^{n\times n} \)
\end_inset 

 invertierbar, so daß 
\begin_inset Formula \( T^{-1}AT \)
\end_inset 

 Jordan-Normalform.
\begin_inset Formula \begin{eqnarray*}
T^{-1}AT & = & \left( \begin{array}{ccc}
\lambda _{1} &  & *\\
 & \ddots  & \\
0 &  & \lambda _{n}
\end{array}\right) =X\\
X^{2} & = & \left( \begin{array}{ccc}
\lambda _{1}^{2} &  & *\\
 & \ddots  & \\
0 &  & \lambda _{n}^{2}
\end{array}\right) \\
e^{X} & = & \left( \begin{array}{ccc}
e^{\lambda _{1}} &  & *\\
 & \ddots  & \\
0 &  & e^{\lambda _{n}}
\end{array}\right) \\
det\, e^{A} & = & det\, e^{X}=\prod _{k=1}^{n}e^{\lambda _{k}}=e^{\sum 
_{k=0}^{n}\lambda _{k}}=e^{tr\, X}=e^{tr\, A}
\end{eqnarray*}

\end_inset 

 
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\frac{d}{dt}vol_{n}\left( \phi _{t}\left( M\right) \right)  & = & \int _{M}div\, 
v\left( \phi _{t}\left( x\right) \right) \left[ det\, \phi '\left( x\right) \right] 
dx\\
 &  & 
\end{eqnarray*}

\end_inset 

Wähle v so, daß 
\begin_inset Formula \( \phi _{t}\left( x\right) =e^{At}x, \)
\end_inset 

 d.h.
 wähle 
\begin_inset Formula \( v\left( x\right) =Ax \)
\end_inset 

.
\begin_inset Formula \begin{eqnarray*}
\frac{d}{dt}vol_{M}\left( e^{At}M\right)  & = & \int _{M}div\, v\left( e^{At}x\right) 
\cdot det\left( e^{At}\cdot \mathbb 1\right) dx\\
\frac{d}{dt}\left( det\, e^{At}\cdot vol\left( M\right) \right)  & = & \int 
_{M}tr\left( A\right) \cdot det\, e^{At}dx\\
\frac{d}{dt}\left( det\, e^{At}\right) \cdot vol\left( M\right)  & = & tr\, A\, det\, 
e^{At}\int _{M}dx\\
\frac{d}{dt}det\, e^{At} & = & tr\, A\, det\, e^{At}\\
\Rightarrow f\left( t\right)  & = & const\cdot e^{tr\, A\cdot t}
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man beschreibe die Zustandsabbildung 
\begin_inset Formula \( \phi _{t} \)
\end_inset 

 für das Vektorfeld 
\begin_inset Formula \( v\left( \begin{array}{c}
x\\
y
\end{array}\right) =\left( \begin{array}{cc}
1 & -1\\
1 & 1
\end{array}\right) \left( \begin{array}{c}
x\\
y
\end{array}\right) . \)
\end_inset 

 
\layout Enumerate

Wie sehen die Bildmengen des Quadrates 
\begin_inset Formula \( Q=\left\{ \left( x,y\right) :\left| x-2\right| \leq 1,\left| 
y\right| \leq 1\right\}  \)
\end_inset 

 unter 
\begin_inset Formula \( \phi _{1} \)
\end_inset 

 und 
\begin_inset Formula \( \phi _{2} \)
\end_inset 

 aus?
\layout Enumerate

Verifizieren Sie, daß die Divergenz des Vektorfeldes v konstant ist.
 Was folgt daraus für die Flächeninhalte von 
\begin_inset Formula \( \phi _{t}\left( A\right)  \)
\end_inset 

 für eine Teilmenge 
\begin_inset Formula \( a\subset \mathbb R^{2} \)
\end_inset 

? Verifizieren Sie Ihr Ergebnis am Beispiel des obigen Quadrats Q.
\layout Problem
\line_top 
Sei 
\begin_inset Formula \( \alpha :I\rightarrow \mathbb R \)
\end_inset 

 eine stetige Funktion ohne Nullstelle auf einem Intervall 
\begin_inset Formula \( I\subset \left[ 0,\infty \right)  \)
\end_inset 

.
 Man ermittle für das Vektorfeld 
\begin_inset Formula \[
v\left( \begin{array}{c}
x\\
y
\end{array}\right) =\alpha \left( r\right) \cdot \left( \begin{array}{c}
-y\\
x
\end{array}\right) \, mit\, r:=\sqrt{x^{2}+y^{2}}\]

\end_inset 

 auf dem Kreisring 
\begin_inset Formula \( K_{1}:=\left\{ \left( x,y\right) \in \mathbb 
R^{2}:\sqrt{x^{2}+y^{2}}\in I\right\}  \)
\end_inset 

 einen globalen Fluß 
\begin_inset Formula \( \phi :\mathbb R\times K_{I}\rightarrow \mathbb R^{2}. \)
\end_inset 

 
\layout Standard

\SpecialChar ~

\layout Problem
\line_top 
Seien 
\begin_inset Formula \( \omega ,\omega _{1},\omega _{2} \)
\end_inset 

 1-Formen und f eine Funktion auf 
\begin_inset Formula \( U\subset \mathbb R^{n}. \)
\end_inset 

 Man definiert 1-Formen auf 
\begin_inset Formula \( \omega _{1}+\omega _{2}\, und\, f\omega  \)
\end_inset 

 durch
\begin_inset Formula \begin{eqnarray*}
\left( \omega _{1}+\omega _{2}\right)  & := & \omega _{1}\left( x\right) h+\omega 
_{2}\left( x\right) h\\
\left( f\omega \right) \left( x\right) h & := & f\left( x\right) \omega \left( 
x\right) h.
\end{eqnarray*}

\end_inset 


\layout Enumerate

Wie erhält man aus den Koordinatendarstellungen von 
\begin_inset Formula \( \omega ,\omega _{1}\, und\, \omega _{2} \)
\end_inset 

 diejenigen von 
\begin_inset Formula \( \omega _{1}+\omega _{2} \)
\end_inset 

 und 
\begin_inset Formula \( f\omega  \)
\end_inset 

?
\layout Enumerate

Wenn 
\begin_inset Formula \( \omega _{1} \)
\end_inset 

 und 
\begin_inset Formula \( \omega _{2} \)
\end_inset 

 exakt sind, dann ist es auch 
\begin_inset Formula \( \omega _{1}+\omega _{2} \)
\end_inset 

.
 Gilt analoges für das Produkt 
\begin_inset Formula \( f\omega  \)
\end_inset 

 ?
\layout Problem
\line_top 

\series bold 
Techniken zur Berechnung von Stammfunktionen
\begin_inset LatexCommand \index{Stammfunktionen}

\end_inset 


\layout Enumerate

Durch Integration längs radialer Wege ermittle man eine Stammfunktion zu
 
\begin_inset Formula \[
\omega =\left( x^{2}-yz\right) dx+\left( y^{2}-xz\right) dy-xy\, dz.\]

\end_inset 

 
\layout Enumerate

Es sei 
\begin_inset Formula \( \omega =f_{1}dx_{1}+f_{2}dx_{2} \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

 auf einem Rechteck 
\begin_inset Formula \( R=I\times J. \)
\end_inset 

 Man zeige: 
\begin_inset Formula \( \omega  \)
\end_inset 

 besitzt höchsten dann eine Stammfunktion auf R, wenn die sogenannte Integrabili
tätsbedingung 
\begin_inset Formula \( \partial _{1}f_{2}=\partial _{2}f_{1} \)
\end_inset 

 ist.
 Gegebenenfalls ermittle man eine Kandidatin f für eine Stammfunktion durch
 achsenparallele Integration und zeige, daß 
\begin_inset Formula \( df=\omega . \)
\end_inset 


\layout Enumerate

Anwendung: Man verifiziere, daß die Windungsform 
\begin_inset Formula \( \omega _{W}=\frac{-y\, dx+x\, dy}{x^{2}+y^{2}} \)
\end_inset 

 die Integrabilitätsbedingung auf 
\begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\}  \)
\end_inset 

 erfüllt und berechne eine Stammfunktion in der rechten Halbebene.
\newline 
Warum kann 
\begin_inset Formula \( \omega _{W} \)
\end_inset 

 auf 
\begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\}  \)
\end_inset 

 keine Stammfunktion haben?
\layout Enumerate

Man berechne eine Stammfunktion auf der längs der negativen x-Achse geschlitzen
 Ebenen 
\begin_inset Formula \( \mathbb R^{2}\smallsetminus S,\, S=\left\{ \left( x,0\right) 
:x\leq 0\right\}  \)
\end_inset 

, durch Integration.
\layout Problem
\line_top 
Für eine 1-Form 
\begin_inset Formula \( \omega =\sum _{i=1}^{n}a_{i}dx_{i} \)
\end_inset 

 definiere man 
\begin_inset Formula \( \left\Vert \omega \left( x\right) \right\Vert _{2}:=\sqrt{\sum 
_{i=1}^{n}\left| a_{i}\left( x\right) \right| ^{2}} \)
\end_inset 

.
 Man zeige: Ist 
\begin_inset Formula \( \omega  \)
\end_inset 

 eine stetige 1-Form auf U und 
\begin_inset Formula \( \gamma :\left[ a,b\right] \rightarrow U \)
\end_inset 

 ein Integrationsweg, so gilt:
\begin_inset Formula \[
\left| \int _{\gamma }\omega \right| \leq \max _{t\in \left[ a,b\right] }\left\Vert 
\omega \left( \gamma \left( t\right) \right) \right\Vert _{2}\cdot L\left( \gamma 
\right) ,\]

\end_inset 

wobei 
\begin_inset Formula \( L\left( \gamma \right)  \)
\end_inset 

 die Bogenlänge\SpecialChar \@.
 von 
\begin_inset Formula \( \gamma  \)
\end_inset 

 bezeichnet.
\layout Standard

\SpecialChar ~

\layout Problem
\line_top 
Es sei F ein 
\begin_inset Formula \(  \)
\end_inset 

- bzw.
 
\begin_inset Formula \(  \)
\end_inset 

-Vertorfeld auf einer offenen Menge 
\begin_inset Formula \( U\subset \mathbb R^{3} \)
\end_inset 

.
 Man zeige:
\layout Enumerate

Für jeden Vektor 
\begin_inset Formula \( v\in \mathbb R^{3} \)
\end_inset 

 gilt 
\begin_inset Formula \( rot\left( F\times v\right) =\partial _{v}F-div\, F\cdot v \)
\end_inset 

.
\layout Enumerate


\begin_inset Formula \( div\, rot\, F=0 \)
\end_inset 


\layout Problem
\line_top 
Berchnen Sie das Differential und die Ableitung von 
\begin_inset Formula \( f:\mathbb R^{n}\smallsetminus \left\{ 0\right\} \rightarrow 
\mathbb R \)
\end_inset 

 für 
\layout Enumerate


\begin_inset Formula \[
f\left( x\right) =\frac{x^{T}Ax}{\left\Vert x\right\Vert _{2}}\]

\end_inset 


\layout Enumerate


\begin_inset Formula \[
f\left( x\right) =e^{-1/\left\Vert x\right\Vert _{2}^{2}}\]

\end_inset 


\layout Standard

\SpecialChar ~

\layout Enumerate

Siehe auch Problem 
\begin_inset LatexCommand \ref{xTAx}

\end_inset 

!
\begin_inset Formula \begin{eqnarray*}
\partial _{k}\frac{1}{\left\Vert x\right\Vert _{2}} & = & \partial 
_{k}\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+..+x_{n}^{2}}}=-\frac{x_{k}}{\left\Vert
 x\right\Vert _{2}^{3}}\\
\left( \frac{1}{\left\Vert x\right\Vert _{2}}\right) '\left( x\right)  & = & 
-\frac{x^{T}}{\left\Vert x\right\Vert _{2}}\\
df\left( x\right) h & = & d\left( x^{T}Ax\cdot \frac{1}{\left\Vert x\right\Vert 
_{2}}\right) \left( x\right) h=d\left( x^{T}Ax\right) h\cdot \frac{1}{\left\Vert 
x\right\Vert _{2}}-x^{T}Ax\cdot \frac{x^{T}}{\left\Vert x\right\Vert _{2}^{3}}h=\\
 & = & x^{T}\left( A+A^{T}\right) h\cdot \frac{1}{\left\Vert x\right\Vert 
_{2}}+x^{T}Ax\cdot \frac{x^{T}}{\left\Vert x\right\Vert _{2}}h=\frac{1}{\left\Vert 
x\right\Vert _{2}}\left( x^{T}Ah+x^{T}A^{T}h-\frac{x^{T}Axx^{T}}{\left\Vert 
x\right\Vert _{2}^{2}}h\right) =\\
 & = & \frac{x^{T}}{\left\Vert x\right\Vert _{2}}\left( 
A+A^{T}-\frac{Axx^{T}}{\left\Vert x\right\Vert _{2}^{2}}\right) h\\
f'\left( x\right)  & = & \frac{x^{T}}{\left\Vert x\right\Vert _{2}}\left( 
A+A^{T}-\frac{Axx^{T}}{\left\Vert x\right\Vert _{2}^{2}}\right) 
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f\left( x\right)  & = & e^{-1/\left\Vert x\right\Vert _{2}^{2}}\\
df\left( x\right) h & = & e^{-1/\left\Vert x\right\Vert _{2}^{2}}\cdot \left( 
-\frac{2}{\left\Vert x\right\Vert _{2}^{3}}\right) \cdot \frac{x^{T}}{\left\Vert 
x\right\Vert _{2}}h=\left( -2e^{-1/\left\Vert x\right\Vert _{2}^{2}}\right) 
\frac{x^{T}}{\left\Vert x\right\Vert _{2}^{4}}h\\
f''\left( x\right)  & = & \left( -2e^{-1/\left\Vert x\right\Vert _{2}^{2}}\right) 
\frac{x^{T}}{\left\Vert x\right\Vert _{2}^{4}}h
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Die Funtionen 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

 mit 
\begin_inset Formula \( f\left( 0,0\right) =0 \)
\end_inset 

 und 
\begin_inset Formula \[
f\left( x,y\right) =\frac{xy^{2}}{x^{2}+y^{4}}\]

\end_inset 

 ist im Nullpunkt unstetig, hat dort aber Ableitungen in jeder Richtung.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\partial _{h}f\left( 0,0\right)  & = & \lim _{t\rightarrow 0}\frac{f\left( \left( 
0,0\right) +t\left( h_{1},h_{2}\right) \right) -f\left( \left( 0,0\right) \right) 
}{t}=\lim _{t\rightarrow 0}\frac{\left( th_{1}\right) \left( th_{2}\right) 
^{2}}{\left[ \left( \left( th_{1}\right) ^{2}+\left( th_{2}\right) ^{4}\right) \right] 
t}=\\
 & = & \lim _{t\rightarrow 0}\frac{t^{3}h_{1}h_{2}^{2}}{\left[ 
h_{1}^{2}+t^{2}h_{2}^{4}\right] t^{3}}=\lim _{t\rightarrow 
0}\frac{h_{1}h_{2}^{2}}{\left[ h_{1}^{2}+t^{2}h_{2}^{4}\right] 
}=\frac{h_{1}h_{2}^{2}}{h_{1}^{2}}=\frac{h^{2}}{h_{1}}\, falls\, h_{2}\neq 0\\
 & = & \lim _{t\rightarrow 0}h_{1}\cdot \frac{h_{2}^{2}}{\left[ t^{2}h_{2}^{4}\right] 
}=0\, falls\, h_{2}=0\\
 & = & 0\, f\ddot{u}r\, h=\left( 0,0\right) \, nV
\end{eqnarray*}

\end_inset 

f ist unstetig bei 
\begin_inset Formula \( \left( 0,0\right)  \)
\end_inset 

:
\begin_inset Formula \begin{eqnarray*}
\left( \varepsilon ^{2},\varepsilon \right)  & \mapsto  & f\left( \varepsilon 
^{2},\varepsilon \right) =\frac{\left( \varepsilon ^{2}\right) ^{2}}{2\varepsilon 
^{4}}=\frac{1}{2}\\
\lim _{\varepsilon \rightarrow 0}\left( \varepsilon ^{2},\varepsilon \right)  & = & 
\left( 0,0\right) \\
\lim _{\varepsilon \rightarrow 0}f\left( \varepsilon ^{2},\varepsilon \right)  & = & 
\frac{1}{2}
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Bestimmen Sie den Gradienten der Funktion 
\begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R,\, \left( x,y,z\right) 
\mapsto x^{2}y+z \)
\end_inset 

 im Punkt 
\begin_inset Formula \( \left( 2,3,5\right)  \)
\end_inset 

 bezüglich des Skalarproduktes 
\begin_inset Formula \[
\left\langle v,w\right\rangle :=v^{T}\left( \begin{array}{ccc}
1 & 0 & 0\\
0 & 3 & 0\\
0 & 0 & 2
\end{array}\right) w.\]

\end_inset 

 
\layout Enumerate

Sei 
\begin_inset Formula \( \left( G_{ij}\right)  \)
\end_inset 

 eine positiv definite, symmetrische 
\begin_inset Formula \( n\times n \)
\end_inset 

-Matrix.
 Dann definiert 
\begin_inset Formula \( \left\langle v,w\right\rangle _{G}:=v^{T}\cdot G\cdot w \)
\end_inset 

 ein Skalarprodukt auf 
\begin_inset Formula \( \mathbb R^{n} \)
\end_inset 

.
 Bestimmen Sie für eine allgemeine Funktion 
\begin_inset Formula \( g\in \mathbb C^{1}\left( \mathbb R^{n},\mathbb R\right)  \)
\end_inset 

 den Gradienten 
\begin_inset Formula \( grad_{G}g\left( a\right)  \)
\end_inset 

 in einem Punkt a bezüglich dieses Skalarproduktes!
\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\partial _{x}f\left( 2,3,5\right)  & = & 12\\
\partial _{y}f\left( 2,3,5\right)  & = & 4\\
\partial _{z}f\left( 2,3,5\right)  & = & 1\\
df\left( a\right) h=12h_{1}+4h_{2}+h_{3} & = & \left\langle grad\, f\left( a\right) 
,h\right\rangle =\left( \alpha ,\beta ,\gamma \right) \left( \begin{array}{ccc}
1 & 0 & 0\\
0 & 3 & 0\\
0 & 0 & 2
\end{array}\right) \left( \begin{array}{c}
h_{1}\\
h_{2}\\
h_{3}
\end{array}\right) =\\
 & = & \alpha h_{1}+3\beta h_{2}+2\gamma h_{3}\\
\Rightarrow  &  & \alpha =12;\, \beta =\frac{4}{3};\, \gamma =\frac{1}{2}\\
\Rightarrow  &  & grad\, f\left( a\right) =\left( \begin{array}{c}
12\\
\frac{4}{3}\\
\frac{1}{2}
\end{array}\right) 
\end{eqnarray*}

\end_inset 

 
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\left\langle grad\, g\left( a\right) ,h\right\rangle  & = & dg\left( a\right) \cdot h\\
\left[ grad\, g\left( a\right) \right] ^{T}Gh & = & dg\left( a\right) h=\left( 
\partial _{1}g,\partial _{2}g,...,\partial _{n}g\right) h\\
\left[ grad\, g\left( a\right) \right] ^{T}G & = & \left( \partial _{1}g,\partial 
_{2}g,...,\partial _{n}g\right) \left( a\right) \\
\left[ grad\, g\left( a\right) \right] ^{T} & = & \left( \partial _{1}g,\partial 
_{2}g,...,\partial _{n}g\right) G^{-1}=g'\left( a\right) \cdot G^{-1}\\
grad\, g\left( a\right)  & = & \left( G^{-1}\right) ^{T}\left( g'\left( a\right) 
\right) ^{T}
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Es sei 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion.
 Durch Komposition mit einer Polarkoordinatenabbildung 
\begin_inset Formula \( P_{2} \)
\end_inset 

 bilde man 
\begin_inset Formula \( F:=f\circ P_{2}, \)
\end_inset 

 
\begin_inset Formula \[
F\left( r,\varphi \right) =f\left( r\, cos\, \varphi ,r\, sin\, \varphi \right) .\]

\end_inset 

 Man zeige: In jedem Punkt 
\begin_inset Formula \( \left( x,y\right) :=\left( r\, cos\, \varphi ,r\, sin\, 
\varphi \right)  \)
\end_inset 

 mit 
\begin_inset Formula \( r\neq 0 \)
\end_inset 

 gilt: 
\begin_inset Formula \[
\nabla f\left( x,y\right) =\left( F_{rr}+\frac{1}{r^{2}}F_{\varphi \varphi 
}+\frac{1}{r}F_{r}\right) \left( r,\varphi \right) \]

\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
F_{r}\left( r,\varphi \right)  & = & \frac{\partial }{\partial r}f\left( r\, cos\, 
\varphi ,r\, sin\, \varphi \right) =\frac{\partial f}{\partial x}\frac{\partial 
x}{\partial v}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial v}=f_{x}cos\, 
\varphi +f_{y}sin\, \varphi \\
F_{rr}\left( r,\varphi \right)  & = & f_{xx}cos^{2}\varphi +f_{xy}sin\, \varphi \, 
cos\, \varphi +f_{yx}sin\, \varphi \, cos\, \varphi +f_{yy}sin^{2}\varphi =\\
 & = & f_{xx}cos^{2}\varphi +2f_{xy}sin\, \varphi \, cos\, \varphi 
+f_{yy}sin^{2}\varphi \\
F_{\varphi }\left( r,\varphi \right)  & = & -f_{x}r\, sin\, \varphi +f_{y}r\, cos\, 
\varphi \\
F_{\varphi \varphi }\left( r,\varphi \right)  & = & \left[ f_{xx}\left( -r\, sin\, 
\varphi \right) +f_{xy}r\, cos\, \varphi \right] \left( -r\, sin\, \varphi \right) 
-f_{x}r\, cos\, \varphi +\\
 &  & +\left[ f_{yx}\left( -r\, sin\, \varphi \right) +f_{yy}r\, cos\, \varphi \right] 
\left( r\, cos\, \varphi \right) -f_{y}r\, sin\, \varphi \\
F_{rr}+\frac{1}{r}F_{r}+\frac{1}{r^{2}}F_{\varphi \varphi } & = & ...=f_{xx}\left( 
cos^{2}\varphi +sin^{2}\varphi \right) +f_{yy}\left( sin^{2}\varphi +cos^{2}\varphi 
\right) =\nabla f
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Sei 
\begin_inset Formula \(  \)
\end_inset 

 Dann ist 
\begin_inset Formula \( \psi :\mathbb R^{n}\times \mathbb R\rightarrow \mathbb R, \)
\end_inset 

 
\begin_inset Formula \[
\psi \left( x,t\right) :=f\left( \left\langle v,x\right\rangle -c\left\Vert 
v\right\Vert _{2}t\right) \]

\end_inset 

 eine Lösung der Wellengleichung 
\begin_inset Formula \[
\triangle _{x}\psi =\frac{1}{c^{2}}\psi _{tt}.\]

\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
\frac{\partial }{\partial x_{i}}\psi  & = & f'\cdot v_{i}\qquad \triangle _{x}\psi 
=f''\left( ...\right) \left\Vert v\right\Vert _{2}^{2}\\
\frac{\partial ^{2}}{\partial x_{i}^{2}}\psi  & = & f''\cdot v_{i}^{2}\\
\frac{\partial }{\partial t}\psi  & = & f'\cdot \left( -c\left\Vert v\right\Vert 
_{2}\right) \\
\frac{\partial ^{2}}{\partial t^{2}}\psi  & = & f''\cdot c^{2}\left\Vert v\right\Vert 
_{2}^{2}=\psi _{tt}=c^{2}\triangle _{x}\psi 
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
Beispiel für 
\begin_inset Formula \( \partial _{ij}\neq \partial _{ji}: \)
\end_inset 


\newline 
Es sei 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

 gegeben durch 
\begin_inset Formula \( f\left( 0,0\right) =0 \)
\end_inset 

 und 
\begin_inset Formula \[
f\left( x,y\right) :=\frac{x^{3}y-xy^{3}}{x^{2}+y^{2}}\, f\ddot{u}r\, \left( 
x,y\right) \neq \left( 0,0\right) .\]

\end_inset 

 Man zeige: 
\layout Enumerate

f ist eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion auf 
\begin_inset Formula \(  \)
\end_inset 


\layout Enumerate


\begin_inset Formula \( \partial _{xy}f \)
\end_inset 

 und 
\begin_inset Formula \( \partial _{yx}f \)
\end_inset 

 existieren auf 
\begin_inset Formula \(  \)
\end_inset 

 und sind stetig auf 
\begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\}  \)
\end_inset 

.
\layout Enumerate


\begin_inset Formula \( \partial _{xy}f\left( 0,0\right) =1 \)
\end_inset 

 und 
\begin_inset Formula \( \partial _{yx}\left( 0,0\right) =-1 \)
\end_inset 

.
 
\layout Standard

\SpecialChar ~

\layout Standard


\begin_inset Formula \begin{eqnarray*}
\partial _{x}f\left( x,y\right)  & = & \frac{x^{4}y+4x^{2}y^{3}-y^{4}}{\left( 
x^{2}+y^{2}\right) ^{2}}\, f\ddot{u}r\, \left( x,y\right) \neq \left( 0,0\right) \\
\partial _{x}f\left( 0,0\right)  & = & 0\, f\ddot{u}r\, x=\left( 0,0\right) \\
\partial _{y}f\left( x,y\right)  & = & \frac{x\left( x^{4}-4x^{2}y^{2}-y^{4}\right) 
}{\left( x^{2}+y^{2}\right) ^{2}}
\end{eqnarray*}

\end_inset 

für Stetigkeit von 
\begin_inset Formula \( \partial _{x}f \)
\end_inset 

 verwende man 
\begin_inset Formula \( \frac{x^{2}}{x^{2}+y^{2}}\leq 1,\frac{y^{2}}{x^{2}+y^{2}}\leq 
1 \)
\end_inset 

 für 
\begin_inset Formula \( \left( x,y\right) \neq 0 \)
\end_inset 

.
 
\begin_inset Formula \( \left| \partial _{x}f\left( x,y\right) -\partial _{x}f\left( 
0,0\right) \right| =\frac{\left| x^{4}y\right| +\left| 4x^{2}y^{2}y\right| +\left| 
y^{4}y\right| }{\left( x^{2}+y^{2}\right) ^{2}}\leq \left| y\right| +4\left| y\right| 
+\left| y\right| =6\left| y\right| \leq 6\left\Vert \left( x,y\right) \right\Vert  \)
\end_inset 

.
 Sei 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

.
 Wähle: 
\begin_inset Formula \( \delta =\frac{\varepsilon }{6}\Rightarrow \forall \left( 
x,y\right) \in \mathbb R^{2}:\left\Vert \left( x,y\right) -\left( 0,0\right) 
\right\Vert <\delta  \)
\end_inset 

.
\begin_inset Formula \begin{eqnarray*}
\left\Vert \partial _{x}f\left( x,y\right) -\partial _{x}f\left( 0,0\right) 
\right\Vert  & < & \varepsilon \\
\partial _{y}\partial _{x}f & = & \frac{x^{6}+9x^{4}y^{2}-9x^{2}y^{4}-y^{6}}{\left( 
x^{2}+y^{2}\right) ^{3}}\, f\ddot{u}r\, \left( x,y\right) \neq \left( 0,0\right) \\
\left( \partial _{x}f\right) \left( 0,y\right)  & = & -y\, f\ddot{u}r\, y\neq 0\, 
und\, auch\, \partial _{x}f\left( 0,0\right) =0\\
\partial _{y}\partial _{x}f\left( 0,0\right)  & = & -1,\, analog\, \partial 
_{x}\partial _{y}f=1
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Man beweise die folgende Version einer allgemeinen Kettenregel: Seien 
\begin_inset Formula \( f:U\rightarrow \mathbb R,\, U\subset \mathbb R^{n} \)
\end_inset 

 und 
\begin_inset Formula \(  \)
\end_inset 

-Funktionen.
 Dann ist auch 
\begin_inset Formula \( g\circ f \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion und es gilt: 
\begin_inset Formula \[
\left( g\circ f\right) '=\left( g'\circ f\right) \cdot f'.\]

\end_inset 

 
\layout Enumerate

Man zeige, daß 
\begin_inset Formula \( f:K\rightarrow \mathbb R,\, x\mapsto e^{\frac{-1}{1-\left\Vert 
x\right\Vert _{2}^{2}}} \)
\end_inset 

 eine 
\begin_inset Formula \(  \)
\end_inset 

-Funktion ist, wobei 
\begin_inset Formula \( K:=\left\{ x\in \mathbb R^{N}:\left\Vert x\right\Vert 
_{2}<1\right\}  \)
\end_inset 

.
 
\layout Standard

\SpecialChar ~

\layout Enumerate

Induktion nach k:
\newline 

\begin_inset Formula \begin{eqnarray*}
k=1 & : & \widehat{f_{i}}\left( t\right) =f\left( a+te_{i}\right) \textrm{ 
differenzierbar}\\
 &  & \partial _{i}\left( g\circ f\right) \left( a\right) =\frac{d}{dt}\left( g\circ 
\widehat{f_{i}}\right) \left( a\right) =g'\left( \widehat{f_{i}}\left( a\right) 
\right) \cdot \widehat{f_{i}}'\left( a\right) =g'\left( f\left( a\right) \right) 
\partial _{i}f\left( a\right) \in \mathcal C^{1}\\
 &  & \left( g\circ f\right) \left( a\right) =\left( g'\circ f\right) \left( a\right) 
\cdot f'\left( a\right) \textrm{ stetig partiell differenzierbar }\Rightarrow \mathcal 
C^{1}\\
k\rightarrow k+1 & : & \textrm{Seien }f,g\in \mathcal C^{k+1}\textrm{ und die 
Behauptung bewiesen f}\ddot{\textrm{u}}\textrm{r k}.\\
 &  & \textrm{Zun}\ddot{\textrm{a}}\textrm{chst f},g\in \mathcal C^{1}\\
 &  & \Rightarrow \partial _{1}\left( g\circ f\right) =\left( g'\circ f\right) 
\partial _{i}f\in \mathcal C^{k}\\
 &  & \Rightarrow \textrm{jedes }\partial _{i_{1}},...,\partial _{i_{k}}f\textrm{ 
stetig partiell differenzierbar }\Rightarrow \\
 &  & \Rightarrow \textrm{stetig differenzierbar}\Rightarrow f\in \mathcal C^{k+1}
\end{eqnarray*}

\end_inset 

 
\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
f:\mathbb R^{n}\rightarrow \mathbb R & ; & x\mapsto \left\Vert x\right\Vert _{2}\\
g:\mathbb R\rightarrow \mathbb R & ; & x\mapsto \left\{ \begin{array}{c}
e^{\frac{-1}{1-x}}\\
0
\end{array}\begin{array}{c}
\textrm{auf }\left( -1,1\right) \\
sonst
\end{array}\right\} \\
\hat{f}:\mathbb R^{n}\rightarrow \mathbb R & ; & x\mapsto \left\Vert x\right\Vert 
_{2}^{2}\\
\hat{g}:\mathbb R\rightarrow \mathbb R & ; & x\mapsto \left\{ \begin{array}{c}
e^{\frac{-1}{1-x}}\\
0
\end{array}\begin{array}{c}
\textrm{auf }\left( -\infty ,1\right) \\
sonst
\end{array}\right\} \\
\left( g\circ \hat{f}\right)  & \in  & \mathcal C^{\infty }
\end{eqnarray*}

\end_inset 


\layout Problem
\line_top 
\SpecialChar ~

\layout Enumerate

Bestimmen Sie die Differentiale 
\begin_inset Formula \( d^{\left( 2\right) }\left( f\right) ,d^{\left( 3\right) 
}\left( f\right)  \)
\end_inset 

 und die zweiten Ableitungen 
\begin_inset Formula \( f'' \)
\end_inset 

 für die Funktionen 
\begin_inset Formula \begin{eqnarray*}
f:\mathbb R^{2}\rightarrow \mathbb R & ; & \left( x,y\right) \mapsto sin\left( 
xy\right) \textrm{ im Punkt }\left( \pi ,1\right) \\
g:\mathbb R^{3}\times \mathbb R_{+}\rightarrow \mathbb R & ; & \left( x,y,z\right) 
\mapsto xy\, ln\left( x\right) \textrm{ im Punkt }\left( 2,-3,1\right) 
\end{eqnarray*}

\end_inset 


\layout Enumerate

Berechnen Sie das Taylorpolynom dritter Ordnung für die Funktion
\begin_inset Formula \[
\]

\end_inset 

 um den Entwicklungspunkt 
\begin_inset Formula \( \left( \frac{\pi }{8},\frac{\pi }{16}\right)  \)
\end_inset 

.
\layout Standard

\SpecialChar ~
 
\layout Enumerate

\SpecialChar ~

\layout Enumerate

\SpecialChar ~

\layout Problem
\line_top 
Charakterisierung des Laplace-Operators durch die Drehinvarianz:
\newline 
Der Differentialoperator 
\begin_inset Formula \(  \)
\end_inset 

, 
\begin_inset Formula \[
P\left( D\right) f:=\sum _{i,j=1}^{n}c_{ik}\partial _{i}\partial _{k}f\]

\end_inset 

 mit 
\begin_inset Formula \( c_{ik}\in \mathbb R \)
\end_inset 

 habe die folgende Eigenschaft:
\newline 
Für jede 
\begin_inset Formula \(  \)
\end_inset 

-Funktion f auf 
\begin_inset Formula \( \mathbb R^{n} \)
\end_inset 

 und jede orthogonale Matrix 
\begin_inset Formula \( A\in \mathbb R^{n\times n} \)
\end_inset 

 gilt mit der durch 
\begin_inset Formula \( x\mapsto f\left( Ax\right)  \)
\end_inset 

 erklärten Funktion 
\begin_inset Formula \( f_{A}: \)
\end_inset 

 
\begin_inset Formula \[
\left( P\left( D\right) f_{A}\right) \left( x\right) =\left( P\left( D\right) f\right) 
\left( Ax\right) \]

\end_inset 

 Man zeige: 
\begin_inset Formula \( P\left( D\right) =c\triangle  \)
\end_inset 

 mit einer Konstanten 
\begin_inset Formula \(  \)
\end_inset 

.
\layout Proof

oBdA 
\begin_inset Formula \( c_{ij}=c_{ji} \)
\end_inset 

 für alle i,j, sonst ersetze beide durch 
\begin_inset Formula \( \frac{c_{ij}+cji}{2}. \)
\end_inset 


\newline 
Seien nun 
\begin_inset Formula \( i,j\in \left\{ 1..n\right\} ;\, i\neq j \)
\end_inset 

.
 Wähle 
\begin_inset Formula \( f\left( x\right) =x_{i}x_{j} \)
\end_inset 

; 
\begin_inset Formula \[
A:=\left( \begin{array}{ccccc}
1 &  &  &  & 0\\
 & \ddots  &  &  & \\
 &  & \left( -1\right)  &  & \\
 &  &  & \ddots  & \\
0 &  &  &  & 1
\end{array}\right) \]

\end_inset 


\begin_inset Formula \( \partial _{ij}f=\partial _{ji}f=1 \)
\end_inset 

 auf 
\begin_inset Formula \( \mathbb R^{n},\, \partial _{k,l}f=0\, sonst \)
\end_inset 

 
\newline 

\begin_inset Formula \( P\left( D\right) f=2c_{ij} \)
\end_inset 

 auf ganz 
\begin_inset Formula \(  \)
\end_inset 


\newline 
Andererseits gilt für 
\begin_inset Formula \( f_{A}\left( x\right) =f\left( Ax\right) =\left( Ax\right) 
_{i}\left( Ax\right) _{j}=-x_{i}x_{j} \)
\end_inset 

.
 
\begin_inset Formula \( P\left( D\right) f_{A}=-2c_{ij} \)
\end_inset 

 auf ganz 
\begin_inset Formula \( \mathbb R^{n}. \)
\end_inset 

 Insbesondere 
\begin_inset Formula \begin{eqnarray*}
\left( P\left( D\right) f\right) \left( Ax\right)  & = & 2c_{ij}\\
\left( P\left( D\right) f_{A}\right) \left( x\right)  & = & -2c_{ij}\qquad 
\Longrightarrow c_{ij}=0
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( P\left( D\right) f=\sum _{i=1}^{n}c_{ii}\partial _{ii}f \)
\end_inset 


\newline 
Wähle 
\begin_inset Formula \( f\left( x\right) =x_{1}^{2};\, A\left( x\right) =\left( 
\begin{array}{ccccc}
0 &  & 1 &  & \\
 & 1 &  &  & \\
1 &  & 0 &  & \\
 &  &  & \ddots  & \\
 &  &  &  & 1
\end{array}\right) \, \left( i-te\, Zeile\right)  \)
\end_inset 


\newline 

\begin_inset Formula \( \partial _{1}\partial _{1}f=2\textrm{ auf ganz }\mathbb R;\, 
\partial _{i}\partial _{j}f=0\textrm{ f}\ddot{\textrm{u}}\textrm{r j}\neq 1 \)
\end_inset 

 
\newline 

\begin_inset Formula \( P\left( D\right) f=2c_{11} \)
\end_inset 

 insbesondere 
\begin_inset Formula \( \left( P\left( D\right) f\right) \left( Ax\right) =2c_{11} \)
\end_inset 


\newline 

\begin_inset Formula \( f_{A}\left( x\right) =f\left( Ax\right) =\left[ \left( 
Ax\right) _{1}\right] ^{2}=x_{i}^{2} \)
\end_inset 

 
\newline 

\begin_inset Formula \( \left( P\left( D\right) f_{A}\right) \left( x\right) =2c_{ii} 
\)
\end_inset 


\newline 

\begin_inset Formula \( \left( P\left( D\right) \left( f_{A}\right) \right) \left( 
x\right) =2c_{ii}=2c_{11} \)
\end_inset 


\newline 

\begin_inset Formula \( \Rightarrow c_{ii}=c\, \forall i\in \left\{ 1..n\right\} 
\Rightarrow P\left( D\right) =c\triangle  \)
\end_inset 


\layout Problem
\line_top 
Man zeige: Wenn 
\begin_inset Formula \( f:\mathbb R^{2}\smallsetminus \left\{ 0\right\} \rightarrow 
\mathbb R \)
\end_inset 

 harmonisch ist, dann auch 
\begin_inset Formula \( g:\mathbb R^{2}\smallsetminus \left\{ 0\right\} \rightarrow 
\mathbb R,x\mapsto f\left( \frac{x}{\left\Vert x\right\Vert _{2}^{2}}\right)  \)
\end_inset 

.
 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
g\left( x\right)  & = & f\left( h\left( x\right) \right) \textrm{ mit h}\left( 
\textrm{x}\right) =\frac{x}{\left\Vert x\right\Vert _{2}^{2}}=\frac{\left( 
x_{1},x_{2}\right) ^{T}}{x_{1}^{2}+x_{2}^{2}}\\
h_{1} & = & \frac{\left( 1,0\right) \left( x_{1}^{2}+x_{2}^{2}\right) -\left( 
x_{1},x_{2}\right) \cdot 2x_{1}}{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}=\frac{\left( 
x_{2}^{2}-x_{1}^{2},-2x_{1}x_{2}\right) }{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}\\
h_{2} & = & \frac{\left( -2x_{1}x_{2},-x_{2}^{2}+x_{1}^{2}\right) }{\left( 
x_{1}^{2}+x_{2}^{2}\right) ^{2}}\, \textrm{aus Symmetrie }\\
h_{11} & = & \frac{\left( -2x_{1},-2x_{2}\right) \left( x_{1}^{2}+x_{2}^{2}\right) 
^{2}-\left( x_{2}^{2}-x_{1}^{2},-2x_{1}x_{2}\right) 2\left( x_{1}^{2}+x_{2}^{2}\right) 
\cdot 2x_{1}}{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}=\\
 & = & \frac{\left( 2x_{1}^{3}-6x_{1}x_{2}^{2},-2x_{2}^{3}+6x_{1}^{2}x_{2}\right) 
}{\left( x_{1}^{2}+x_{2}^{2}\right) ^{3}}\\
h_{22} & = & \frac{\left( 
-2x_{1}^{3}+6x_{1}x_{2}^{2},2x_{2}^{3}-6x_{1}^{2}x_{2}\right) }{\left( 
x_{1}^{2}+x_{2}^{2}\right) ^{3}}\\
\Rightarrow  &  & Ah=h_{11}+h_{22}=0\Rightarrow \textrm{ h ist harmonisch}
\end{eqnarray*}

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\triangle g & = & g_{11}+g_{22}\\
g_{1} & = & f_{1}h_{1}+f_{2}h_{2}\\
g_{11} & = & 
f_{11}h_{1}^{2}+h_{12}h_{1}^{2}+f_{1}h_{11}+f_{12}h_{1}^{2}+f_{22}h_{1}^{2}+f_{2}h_{11}\\
g_{22} & = & 
f_{22}h_{2}^{2}+f_{12}h_{2}^{2}+f_{2}h_{22}+f_{12}h_{2}^{2}+f_{11}h_{2}^{2}+f_{1}h_{22}\\
\triangle g & = & 
g_{11}+g_{22}=f_{11}h_{1}^{2}+h_{12}h_{1}^{2}+f_{1}h_{11}+f_{12}h_{1}^{2}+f_{22}h_{1}^{2}+f_{2}h_{11}+\\
 &  & 
+f_{22}h_{2}^{2}+f_{12}h_{2}^{2}+f_{2}h_{22}+f_{12}h_{2}^{2}+f_{11}h_{2}^{2}+f_{1}h_{22}=\\
 & = & \left( f_{11}+f_{22}\right) \left( h_{1}^{2}+h_{2}^{2}\right) +\left( 
f_{1}+f_{2}\right) \left( h_{11}^{2}+h_{22}^{2}\right) +2f_{12}\left( 
h_{1}^{2}+h_{2}^{2}\right) =\\
 & = & 2f_{12}\left( h_{1}^{2}+h_{2}^{2}\right) 
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( \Rightarrow g \)
\end_inset 

 harmonisch
\layout Problem
\line_top 
Man untersuche Folgende Funktion auf Extrema:
\begin_inset Formula \[
f\left( x,y,z\right) =x^{2}+y^{2}+z^{2}-2xyz\textrm{ auf }\mathbb R^{3}\]

\end_inset 

 
\layout Standard


\begin_inset Formula \begin{eqnarray*}
\partial _{x}f\left( x,y,z\right)  & = & 2x-2yz\\
\partial _{y}f\left( x,y,z\right)  & = & 2y-2xz\\
\partial _{z}f\left( x,y,z\right)  & = & 2z-2xy\\
grad\, f & = & 0\, \Leftrightarrow \left( \begin{array}{c}
2x-2yz\\
2y-2xz\\
2z-2xy
\end{array}\right) =0\Leftrightarrow \left\{ \begin{array}{c}
x=yz\\
y=xz\\
z=xy
\end{array}\right\} \Rightarrow \left\{ \begin{array}{c}
y^{2}=1\\
x^{2}=1\\
z^{2}=1
\end{array}\right\} \\
Extrema & : & P\left( x,y,z\right) \, mit\, \left| x\right| =\left| y\right| =\left| 
z\right| =1;\, xyz=1\\
 &  & P\left( 0,0,0\right) \\
f''\left( x,y,z\right)  & = & \left( \begin{array}{ccc}
2 & -2z & -2y\\
-2z & 2 & -2x\\
-2y & -2x & 2
\end{array}\right) \\
f''\left( 0,0,0\right)  & = & \left( \begin{array}{ccc}
2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 2
\end{array}\right) \textrm{ positiv definit }\Rightarrow Minimum\, \left( 0,0,0\right) 
\\
f''\left( 1,1,1\right)  & = & \left( \begin{array}{ccc}
2 & -2 & -2\\
-2 & 2 & -2\\
-2 & -2 & 2
\end{array}\right) \\
 &  & 
\end{eqnarray*}

\end_inset 


\layout Standard

Eigenwerte:
\begin_inset Formula \begin{eqnarray*}
det\left( f''\left( 1,1,1\right) -\lambda \mathbb E\right)  & = & \left( 2-\lambda 
\right) ^{3}-8\cdot 2-4\left( 2-\lambda \right) \cdot 3=\\
 & = & 8-12\lambda +6\lambda ^{2}-\lambda ^{3}-16-24+12\lambda =\lambda ^{3}+6\lambda 
^{2}-32=0\\
\Rightarrow \lambda _{1} & = & -2\\
\lambda _{2|3} & = & 4\\
 & \Rightarrow  & Sattelpunkt\, in\, \left( 1,1,1\right) \\
f''\left( -1,-1,1\right)  & = & \left( \begin{array}{ccc}
2 & -2 & 2\\
-2 & 2 & 2\\
2 & 2 & 2
\end{array}\right) \\
det\left( f''\left( 1,1,1\right) -\lambda \mathbb E\right)  & = & \left( 2-\lambda 
\right) ^{3}-16-12\left( 2-\lambda \right) =0\\
\Rightarrow \lambda _{1} & = & -2\\
\lambda _{2|3} & = & 4\\
 & \Rightarrow  & Sattelpunkt\, in\, \left( 1,1,1\right) 
\end{eqnarray*}

\end_inset 

Da jede der drei Koordinaten in der exakt gleichen Form auftreten, gilt
 analog: 
\newline 

\begin_inset Formula \( \left( -1,1,-1\right)  \)
\end_inset 

 und 
\begin_inset Formula \( \left( 1,-1,-1\right)  \)
\end_inset 

 usw.
 sind Sattelpunkte.
\layout Problem
\line_top 
Man zeige, daß die Funktion 
\begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \)
\end_inset 

,
\begin_inset Formula \[
f\left( x,y\right) =\left( y-x^{2}\right) \left( y-3x^{2}\right) \]

\end_inset 

 in 
\begin_inset Formula \( \left( 0,0\right)  \)
\end_inset 

 kein lokales Minimum hat, daß aber ihre sämtlichen Beschränkungen auf die
 Geraden durch 
\begin_inset Formula \( \left( 0,0\right)  \)
\end_inset 

 dort isolierte lokale Minima haben.
\layout Standard


\begin_inset Formula \begin{eqnarray*}
f\left( x,y\right)  & = & \left( y-x^{2}\right) \left( y-3x^{2}\right) 
=y^{2}-4x^{2}y+3x^{4}\\
f_{x}\left( x,y\right)  & = & -8xy+12x^{3};\, f_{xx}=-8y+36x^{2}\\
f_{y}\left( x,y\right)  & = & 2y-4x^{2};\, f_{yy}=2\\
f_{xy}\left( x,y\right)  & = & f_{yx}\left( x,y\right) =-8x\\
\nabla f\left( 0,0\right)  & = & \left( 0,0\right) \\
f''\left( 0,0\right)  & = & \left( \begin{array}{cc}
0 & 0\\
0 & 2
\end{array}\right) \Rightarrow Eigenwerte\, \lambda _{1}=2;\lambda _{2}=0\Rightarrow 
\textrm{keine Aussage}\\
f\left( \varepsilon ,\varepsilon ^{2}\right)  & = & \left( \varepsilon 
^{2}-\varepsilon ^{2}\right) \left( \varepsilon ^{2}-3\varepsilon ^{2}\right) =0;\, 
f\left( 0,0\right) =0\\
\Rightarrow  &  & \textrm{bez}\ddot{\textrm{u}}\textrm{glich Parabel besitzt f in 
}\left( 0,0\right) \textrm{ kein lokales Minimum}\\
f\left( x,ax\right)  & = & a^{2}x^{2}-4ax^{3}+3x^{4}\\
f_{x}\left( x,ax\right)  & = & 2a^{2}x-12ax^{2}+12x^{3}=0\, in\, \left( 0,0\right) \\
f_{xx}\left( x,ax\right)  & = & 2a^{2}-24ax+36x^{2}>0\, \forall a\neq 0\, in\, \left( 
0,0\right) \\
f\left( x,0\right)  & = & 3x^{4}\textrm{ besitzt in }\left( 0,0\right) \textrm{ 
Minimum}\\
\Rightarrow  &  & \textrm{ f hat in }\left( 0,0\right) \textrm{ zu jeder Geraden ein 
Minimum}
\end{eqnarray*}

\end_inset 

 
\layout Problem
\line_top 
Man untersuche folgende Funktionen auf Extrema (auch Randextrema): 
\begin_inset Formula \[
g\left( x,y\right) =y\left( x-1\right) e^{-\left( x^{2}-y^{2}\right) }\textrm{ auf 
}\left[ 0;\infty \right) \times \mathbb R\]

\end_inset 


\layout Standard


\begin_inset Formula \begin{eqnarray*}
g\left( x,y\right)  & = & yxe^{-\left( x^{2}+y^{2}\right) }-ye^{-x^{2}+y^{2}}\\
\partial _{x}g\left( x,y\right)  & = & ye^{-\left( x^{2}+y^{2}\right) 
}-2x^{2}ye^{-\left( x^{2}+y^{2}\right) }+2xye^{-\left( x^{2}+y^{2}\right) }=\left( 
-2x^{2}y+2xy+y\right) e^{-\left( x^{2}+y^{2}\right) }\\
\partial _{y}g\left( x,y\right)  & = & xe^{-\left( x^{2}+y^{2}\right) 
}-2xy^{2}e^{-\left( x^{2}+y^{2}\right) }-e^{-\left( x^{2}+y^{2}\right) 
}+2y^{2}e^{-\left( x^{2}+y^{2}\right) }=\\
 &  & =\left( -2xy^{2}+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) }\\
\partial _{xx}g\left( x,y\right)  & = & \left( -4xy+2y\right) e^{-\left( 
x^{2}+y^{2}\right) }-2x\left( -2x^{2}y+2xy+y\right) e^{-\left( x^{2}+y^{2}\right) }=\\
 & = & 2y\left( 1+2x^{3}-2x^{2}-3x\right) e^{-\left( x^{2}+y^{2}\right) }\\
\partial _{yy}g\left( x,y\right)  & = & \left( -4xy+4y\right) e^{-\left( 
x^{2}+y^{2}\right) }-2y\left( -2xy^{2}+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) 
}=\\
 & = & 2y\left( 3+2xy^{2}-2y^{2}-3x\right) e^{-\left( x^{2}+y^{2}\right) }\\
\partial _{xy}g\left( x,y\right)  & = & \left( -2y^{2}+1\right) e^{-\left( 
x^{2}+y^{2}\right) }-2x\left( -2xy+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) }=\\
 & = & \left( 1-2x^{2}-2y^{2}-4xy+2x+4x^{2}y^{2}\right) e^{-\left( x^{2}+y^{2}\right) 
}=\partial _{yx}g\left( x,y\right) 
\end{eqnarray*}

\end_inset 

Nullstellen der 1.
 Ableitung:
\begin_inset Formula \begin{eqnarray*}
-2x^{2}y+2xy+y & = & 0\\
-2xy^{2}+2y^{2}+x-1 & = & 0
\end{eqnarray*}

\end_inset 


\begin_inset Formula \begin{eqnarray*}
 &  & \Rightarrow P_{1}=\left( 1,0\right) \\
\textrm{aus }1: & y\left( -2x^{2}+2x+1\right) =0 & \Rightarrow x_{1|2}=\frac{-2\pm 
\sqrt{4+8}}{-4}=\frac{1\pm \sqrt{3}}{2}\\
\textrm{aus }2: & y^{2}\left( -2x^{2}+2\right) +x-1=0 & \Rightarrow y^{2}=\frac{1}{2}\\
 &  & \Rightarrow P_{2}=\left( \frac{1+\sqrt{3}}{2},\frac{\sqrt{2}}{2}\right) \\
 &  & \Rightarrow P_{3}=\left( \frac{1+\sqrt{3}}{2},-\frac{\sqrt{2}}{2}\right) \\
 &  & \Rightarrow P_{4}=\left( \frac{1-\sqrt{3}}{2},\frac{\sqrt{2}}{2}\right) \\
 &  & \Rightarrow P_{5}=\left( \frac{1-\sqrt{3}}{2},-\frac{\sqrt{2}}{2}\right) 
\end{eqnarray*}

\end_inset 


\begin_inset Formula \begin{eqnarray*}
\partial _{xx}g\left( P_{2}\right)  & = & \sqrt{2}e^{-\left( \frac{1}{4}\left( 
1+2\sqrt{3}\right) +\frac{1}{2}\right) }\left( 1-\frac{3}{2}\left( 1+\sqrt{3}\right) 
-\frac{1}{2}\left( 4+2\sqrt{3}+\frac{1}{4}\left( 1+3+3+3+3\sqrt{3}\right) \right) 
\right) =\\
 & = & -\sqrt{6}e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\
\partial _{yy}g\left( P_{2}\right)  & = & \sqrt{2}e^{-\frac{1}{2}\left( 
3+\sqrt{3}\right) }\left( 
3+\frac{1}{2}+\frac{1}{2}\sqrt{3}+\frac{1}{2}+\frac{1}{2}\sqrt{3}-1\right) 
=\sqrt{2}\left( 1-\sqrt{3}\right) e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\
\partial _{xy}g\left( P_{2}\right)  & = & \\
\partial _{yx}g\left( P_{2}\right)  & = & e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) 
}\left( 1-1-\frac{1}{2}\left( 4+2\sqrt{3}\right) +1\left( 1+\sqrt{3}\right) 
+\frac{1}{2}\left( 4+2\sqrt{3}\right) -\left( 1+\sqrt{3}\right) \right) =0\\
g''\left( P_{2}\right)  & = & \left( \begin{array}{cc}
-\sqrt{6} & 0\\
0 & \sqrt{2}\left( 1-\sqrt{3}\right) 
\end{array}\right) e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\
det\, g''\left( P_{2}\right)  & = & \left( e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) 
}\right) ^{2}det\, \left( \begin{array}{cc}
\sqrt{6} & 0\\
0 & \sqrt{2}\left( 1-\sqrt{3}\right) 
\end{array}\right) =e^{-\left( 3+\sqrt{3}\right) }\left( 6-2\sqrt{3}\right) >0\\
 & \Rightarrow  & Maximum\, P_{2}\\
 &  & \textrm{weil g}\left( \textrm{x},-y\right) =-g\left( x,y\right) \textrm{ ist 
}P_{3}\textrm{ Minimum}
\end{eqnarray*}

\end_inset 

Randextrema:
\begin_inset Formula \begin{eqnarray*}
 &  & x=0\, und\, \partial _{y}g=0\\
e^{-\left( x^{2}+y^{2}\right) }\left( x-1-2y^{2}x+2y^{2}\right)  & = & 0\, mit\, x=0\\
-1+2y^{2} & = & 0\Rightarrow 2y^{2}=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\\
g\left( 0,\sqrt{\frac{1}{2}}\right)  & = & \sqrt{\frac{1}{2}}\left( -1\right) 
e^{-\frac{1}{2}}=-\sqrt{\frac{1}{2}}e^{-\frac{1}{2}}\\
 &  & \textrm{wegen Symmetrie }g\left( x,-y\right) =-g\left( x,y\right) \\
 & \Rightarrow  & g\left( 0,-\sqrt{\frac{1}{2}}\right) 
=\frac{1}{2}\sqrt{2}e^{-\frac{1}{2}}\\
 & \Rightarrow  & \textrm{Randmaximum bei }\left( 0,-\frac{1}{2}\sqrt{2}\right) \\
 &  & \textrm{Randmaximum bei }\left( 0,\frac{1}{2}\sqrt{2}\right) 
\end{eqnarray*}

\end_inset 


\begin_inset Formula \( P_{1}\left( 1,0\right)  \)
\end_inset 

 ist Sattelpunkt! 
\layout Problem
\line_top 
Eine Funktion 
\begin_inset Formula \( f\in \mathcal C^{2}\left( \mathbb R^{2}\right)  \)
\end_inset 

 genüge der partiellen Differentialgleichung 
\begin_inset Formula \[
\triangle f=c\cdot f\textrm{ mit der Konstanten }c>0\]

\end_inset 

in einer Umgebung der abgeschlossenen Kreisscheibe 
\begin_inset Formula \( D:=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}+y^{2}\leq 
1\right\} . \)
\end_inset 

 Ferner erfülle f die Randbedingung 
\begin_inset Formula \[
f\left( x,y\right) =0\textrm{ f}\ddot{\textrm{u}}\textrm{r alle x}\in \partial 
D=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}+y^{2}=0\right\} .\]

\end_inset 

Man zeige: 
\begin_inset Formula \( f\equiv 0 \)
\end_inset 

 auf ganz D.
\newline 
Hinweis: Welches Vorzeichen hat 
\begin_inset Formula \( \triangle f \)
\end_inset 

 an der Stelle eines Maximums/Minimums?
\layout Standard

\SpecialChar ~

\layout Problem
\line_top 
Eine Möglichkeit zur Berechnung von 
\begin_inset Formula \( \int _{\mathbb R}e^{-x^{2}}dx: \)
\end_inset 


\layout Enumerate

Man zeige, daß durch 
\begin_inset Formula \[
F\left( t\right) =\int _{0}^{1}\frac{e^{-\left( 1+x^{2}\right) t^{2}}}{1+x^{2}}dx\]

\end_inset 

 eine diefferenzierbare Funktion 
\begin_inset Formula \( F:\mathbb R\rightarrow \mathbb R \)
\end_inset 

 erklärt wird mit 
\begin_inset Formula \( F'\left( t\right) =-2e^{-t^{2}}\cdot \int 
_{0}^{t}e^{-u^{2}}du. \)
\end_inset 

  
\layout Enumerate

Man folgere daraus: 
\begin_inset Formula \( F\left( t\right) =-\left( \int _{0}^{t}e^{-u^{2}}du\right) 
^{2}+\frac{\pi }{4}. \)
\end_inset 


\newline 
Hinweis: 
\begin_inset Formula \( F' \)
\end_inset 

 hat die Form 
\begin_inset Formula \( F'\left( t\right) =-2f'\left( t\right) \cdot f\left( t\right)  
\)
\end_inset 

.
\layout Enumerate

Man zeige: 
\begin_inset Formula \( \int _{\mathbb R}e^{-u^{2}}du=\sqrt{\pi } \)
\end_inset 

.
\layout Standard

\SpecialChar ~

\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
F\left( t\right)  & = & \int _{0}^{1}\frac{e^{-\left( 1+x^{2}\right) 
t^{2}}}{1+x^{2}}dx\textrm{ ist stetig auf }\left[ 0,1\right] \times \mathbb R\\
 &  & \Rightarrow \textrm{F stetig partiell differenzierbar }\Rightarrow F\textrm{ 
stetig differenzierbar}\\
 &  & 
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
F'\left( t\right)  & = & \int _{0}^{1}\frac{\partial }{\partial t}\frac{e^{-\left( 
1+x^{2}\right) t^{2}}}{1+x^{2}}dx=\int _{0}^{1}-2te^{-\left( 1+x^{2}\right) 
t^{2}}dx=-2e^{-t^{2}}\int _{0}^{1}e^{-x^{2}t^{2}}t\, dx=\\
 & = & -2e^{-t^{2}}\int _{0}^{t}e^{-u^{2}}du=-2f^{'}\left( t\right) f\left( t\right) \\
F\left( t\right)  & = & -\left[ f\left( t\right) \right] ^{2}+c\\
F\left( 0\right)  & = & \int _{0}^{1}\frac{1}{1+x^{2}}dx=arctan\, x|_{0}^{1}=\frac{\pi 
}{4}-0\\
F\left( t\right)  & = & -\left[ \int _{0}^{t}e^{-u^{2}}du\right] ^{2}+\frac{\pi }{4}
\end{eqnarray*}

\end_inset 


\layout Enumerate


\begin_inset Formula \begin{eqnarray*}
\left| f\left( t\right) \right|  & = & \int 
_{0}^{1}\frac{e^{-t^{2}}e^{-t^{2}x^{2}}}{1+x^{2}}dx\leq \int 
_{0}^{1}\frac{e^{-t^{2}\cdot 1}}{1}=e^{-t^{2}}\rightarrow 0\textrm{ 
f}\ddot{\textrm{u}}\textrm{r t}\rightarrow \infty \\
 & \Rightarrow  & \int _{0}^{\infty }e^{-u^{2}}du=\frac{\sqrt{\pi }}{2}\\
 & \Rightarrow  & \int _{-\infty }^{\infty }e^{-u^{2}}du=\sqrt{\pi }
\end{eqnarray*}

\end_inset 


\layout Standard


\begin_inset LatexCommand \printindex{}

\end_inset 


\the_end

Reply via email to