Ladies and gentleman, I use Lyx 1.1.5fix1 and found some bugs: - The latex fault: double Superscrips should be prevented! (You often get: a^{b}^{b} and don't see it, because the b is written over b; possible Solution would be ^{b}{}^{b} or better prevent double superscript) - It seems to me like Enumerate and Math-Displays don't work together. An example for this error is line 4707ff /layout Enumerate in the attached file. (don't look at contents - pre-alpha state!) Simply try it, my lyx crashes by DVI-Viewing! Greetings Georg Wild
#LyX 1.1 created this file. For more info see http://www.lyx.org/ \lyxformat 2.16 \textclass amsart-seq \begin_preamble \usepackage {amssymb} \usepackage {amssymb} \usepackage {stmaryrd} \usepackage {eufrak} \usepackage [mathcal] {euscript} \usepackage {floatflt} \end_preamble \language german \inputencoding latin1 \fontscheme default \graphics default \paperfontsize default \spacing single \papersize Default \paperpackage widemarginsa4 \use_geometry 0 \use_amsmath 0 \paperorientation portrait \footskip \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 2 \paperpagestyle plain \layout Problem \begin_inset LatexCommand \label{xTAx} \end_inset Sei \begin_inset Formula \( f:\mathbb R^{n}\rightarrow \mathbb R;\, x\mapsto x^{T}Ax \) \end_inset mit einer \begin_inset Formula \( n\times n-Matrix \) \end_inset A. Beweisen Sie, daß f differenzierbar ist und berechnen Sie das Differential \begin_inset LatexCommand \index{Differential} \end_inset \begin_inset Formula \( df\left( a\right) \) \end_inset für \begin_inset Formula \( a\in \mathbb R^{n}. \) \end_inset \lang american 33 \layout Standard \begin_inset Formula \( f:x\mapsto Ax\, und\, f:x\mapsto x^{T} \) \end_inset sind linear. \begin_inset Formula \begin{eqnarray*} f\left( x+h\right) & = & \left( x+h\right) ^{T}A\left( x+h\right) =x^{T}Ax+h^{T}Ax+h^{T}Ax+h^{T}Ah\\ & = & \begin{array}{ccccccc} \underbrace{x^{T}Ax} & + & \underbrace{x^{T}Ah} & + & \underbrace{h^{T}Ax} & + & \underbrace{h^{T}Ah}\\ f\left( x\right) & & linear & & \left( x^{T}A^{T}h\right) ^{T} & & R\left( h\right) \end{array}\\ & = & \begin{array}{ccccc} \underbrace{x^{T}Ax} & + & x^{T}\left( A+A^{T}\right) h & + & h^{T}Ah\\ f\left( x\right) & & Df\left( x\right) h & & R\left( h\right) \end{array} \end{eqnarray*} \end_inset \layout Standard f ist differenzierbar und es gilt: \begin_inset Formula \( df\left( a\right) =a^{T}\left( A+A^{T}\right) \) \end_inset \layout Problem \line_top Gegeben ist die Funktion \begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) \mapsto x^{2}y+z. \) \end_inset \layout Enumerate Finden Sie den Gradienten \begin_inset LatexCommand \index{Gradient} \end_inset von f im Punkt \begin_inset Formula \( \left( 2,3,5\right) \) \end_inset bezüglich des euklidischen Skalarproduktes! \layout Enumerate Finden Sie eine lineare Approximation \begin_inset LatexCommand \index{Approximation} \end_inset von f im Punkt \begin_inset Formula \( \left( 2,3,5\right) \) \end_inset ! \layout Enumerate Berechnen Sie die Richtungsableitung \begin_inset Formula \( \partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right) \) \end_inset zum einen direkt und zum anderem unter Verwendung des Ergebnisses von Teil a, d.h. verifizieren Sie an diesem Beispiel die bekannte Formel \begin_inset Formula \( \partial _{h}f\left( x,y,z\right) =\left\langle h,grad\, f\left( x,y,z\right) \right\rangle \) \end_inset ! \layout Standard \begin_inset Formula \begin{eqnarray*} grad\, f\left( 2,3,5\right) & = & \left( \begin{array}{c} \partial _{1}f\left( x\right) \\ \partial _{2}f\left( x\right) \\ \partial _{3}f\left( x\right) \end{array}\right) =\left( \begin{array}{c} 2xy\\ x^{2}\\ 1 \end{array}\right) =\left( \begin{array}{c} 12\\ 4\\ 1 \end{array}\right) \\ f\left( x+h\right) & = & f\left( x\right) +\nabla f\left( x\right) \cdot h+....=f\left( x\right) +\left( \begin{array}{c} 12\\ 4\\ 1 \end{array}\right) \cdot h\\ \partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right) & = & \lim _{t\rightarrow 0}\frac{f\left( 2+t,3,5-t\right) -f\left( 2,3,5\right) }{t}=\lim _{t\rightarrow 0}\frac{\left( 2+t\right) ^{2}\cdot 3+\left( 5-t\right) -\left( 2^{2}\cdot 3+5\right) }{t}=\\ & = & \lim _{t\rightarrow 0}\frac{12+12t+3t^{2}+5-t-17}{t}=\lim _{t\rightarrow 0}\frac{11t+3t^{2}}{t}=11\\ \partial _{\left( 1,0,-1\right) }f\left( 2,3,5\right) & = & \left\langle \left( \begin{array}{c} 1\\ 0\\ -1 \end{array}\right) ,\left( \begin{array}{c} 12\\ 4\\ 1 \end{array}\right) \right\rangle =12-1=11 \end{eqnarray*} \end_inset \layout Problem \line_top Gegeben ist die Funktion \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset mit \begin_inset Formula \( f\left( 0,0\right) =0 \) \end_inset und \layout Standard \begin_inset Formula \[ f\left( x,y\right) =\frac{x^{3}}{\sqrt{x^{2}+y^{2}}};\left( x,y\right) \neq \left( 0,0\right) .\] \end_inset \layout Standard \series bold \bar under Zeigen Sie: \series default \bar default f ist überall differenzierbar. \layout Standard \begin_inset Formula \begin{eqnarray*} Df\left( x,y,z\right) h & = & \lim _{t\rightarrow 0}\frac{f\left( x+th_{1},x+th_{2}\right) -f\left( x,y\right) }{t}=\lim _{t\rightarrow 0}\frac{\frac{\left( x+th_{1}\right) ^{3}}{\sqrt{\left( x+th_{1}\right) ^{2}+\left( y+th_{2}\right) ^{2}}}-\frac{x^{3}}{\sqrt{x^{2}+y^{2}}}}{t}\\ Df\left( 0,0,0\right) h & = & \lim _{t\rightarrow 0}\frac{\frac{\left( th_{1}\right) ^{3}}{\sqrt{\left( th_{1}\right) ^{2}+\left( th_{2}\right) ^{2}}}}{t}=\lim _{t\rightarrow 0}\frac{t^{2}h_{1}^{3}}{\sqrt{t^{2}\cdot \left( h_{1}^{2}+h_{2}^{2}\right) }}=\lim _{t\rightarrow 0}\frac{th^{3}_{1}}{\left\Vert h\right\Vert _{2}}=0 \end{eqnarray*} \end_inset \begin_inset Formula \( \Longrightarrow \) \end_inset Die Richtungs-Ableitung von f in \begin_inset Formula \( \left( \begin{array}{c} 0\\ 0\\ 0 \end{array}\right) \) \end_inset ist in jede Richtung 0. In den anderen Punkten ist die Ableitung als Komposition differenzierbarer Abbildungen differenzierbar. \layout Problem \line_top Es seien \begin_inset Formula \( \) \end_inset -Funktionen auf einer offenen Teilmenge des \begin_inset Formula \( \mathbb R^{n}. \) \end_inset Dann gilt: \begin_inset LatexCommand \index{Gradient, Produkt} \end_inset \begin_inset Formula \[ \triangle \left( fg\right) =f\cdot \triangle g+2\left\langle grad\, g,grad\, g\right\rangle +g\cdot \triangle f\] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \triangle \left( fg\right) & = & \left( \begin{array}{c} \partial _{1}^{2}\left( fg\right) \\ \partial _{2}^{2}\left( fg\right) \\ .\\ .\\ \partial _{n}^{2}\left( fg\right) \end{array}\right) =\left( \begin{array}{c} \partial _{1}^{2}f\cdot g+\partial _{1}f\cdot \partial _{1}g+\partial _{1}^{2}g\cdot f+\partial _{1}f\cdot \partial _{1}g\\ \partial _{2}^{2}f\cdot g+\partial _{2}f\cdot \partial _{2}g+\partial _{2}^{2}g\cdot f+\partial _{2}f\cdot \partial _{2}g\\ .\\ .\\ \partial _{n}^{2}f\cdot g+\partial _{n}f\cdot \partial _{n}g+\partial _{n}^{2}g\cdot f+\partial _{n}f\cdot \partial _{n}g \end{array}\right) =\\ & = & \left( \begin{array}{c} \partial _{1}^{2}f\cdot g+2\cdot \partial _{1}f\cdot \partial _{1}g+\partial _{1}^{2}g\cdot f\\ \partial _{2}^{2}f\cdot g+2\cdot \partial _{2}f\cdot \partial _{2}g+\partial _{2}^{2}g\cdot f\\ .\\ .\\ \partial _{n}^{2}f\cdot g+2\cdot \partial _{n}f\cdot \partial _{n}g+\partial _{n}^{2}g\cdot f \end{array}\right) =\\ & = & \left( \begin{array}{c} \partial _{1}^{2}f\\ \partial _{2}^{2}f\\ .\\ .\\ \partial _{n}^{2}f \end{array}\right) +2\left( \begin{array}{c} \partial _{1}f\cdot \partial _{1}g\\ \partial _{2}f\cdot \partial _{2}g\\ .\\ .\\ \partial _{n}f\cdot \partial _{n}g \end{array}\right) +\left( \begin{array}{c} \partial _{1}^{2}g\\ \partial _{2}^{2}g\\ .\\ .\\ \partial _{n}^{2}g \end{array}\right) \\ & = & f\cdot \triangle g+2\left\langle grad\, g,grad\, g\right\rangle +g\cdot \triangle f \end{eqnarray*} \end_inset \layout Problem \line_top Seien \begin_inset Formula \( I_{1},...,I_{n}\subset \mathbb R \) \end_inset offene Intervalle und \begin_inset Formula \( Q:=I_{1}\times ...\times I_{n}\subset \mathbb R^{n} \) \end_inset . Sei \begin_inset Formula \( f:\mathbb K\rightarrow \mathbb R \) \end_inset eine partiell differenzierbare Funktion mit \begin_inset LatexCommand \index{Ableitung, beschränkt partielle} \end_inset beschränkten partiellen Ableitungen: \begin_inset Formula \( \left| \partial _{i}f\right| \leqq C\, \forall _{i\in \left\{ 1..n\right\} } \) \end_inset . \layout Enumerate Man beweise für beliebige Punkte \begin_inset Formula \( x,y\in Q \) \end_inset die Fehlerabschätzung: \begin_inset Formula \[ \left| f\left( y\right) -f\left( x\right) \right| \leqq C\cdot \sum _{i=1}^{n}\left| y_{i}-x_{i}\right| \] \end_inset \layout Enumerate Man zeige, daß f stetig ist. \layout Enumerate Finden Sie ein Gegenbeispiel zu der Abschätzung in Teil 1, wenn an Stelle der Kugel nur noch ein wegzusammenhängender Definitionsbereich vorausgesetzt wird. \layout Proof Definiere: \begin_inset Formula \[ a_{0}:=\left( \begin{array}{c} x_{1}\\ x_{2}\\ .\\ .\\ x_{n} \end{array}\right) =x;\, a_{1}:=\left( \begin{array}{c} y_{1}\\ x_{2}\\ .\\ .\\ x_{n} \end{array}\right) ;\, ....\, a_{n}:=\left( \begin{array}{c} y_{1}\\ y_{2}\\ .\\ .\\ y_{n} \end{array}\right) =y\] \end_inset \newline Es gilt: \begin_inset Formula \[ \left\{ a_{i-1}+t\left( a_{i}-a_{i-1}\right) ,t\in \left[ 0,1\right] \right\} \subset Q\] \end_inset \newline \layout Proof \begin_inset Formula \begin{eqnarray*} \left| f\left( a_{i}\right) -f\left( a_{i-1}\right) \right| & = & \left| f\left( y_{1},...,y_{i},x_{i+1},...,x_{n}\right) -f\left( y_{1},...,y_{i-1},x_{i},...,x_{n}\right) \right| =\\ & = & \left| \int _{x_{i}}^{y_{i}}\begin{array}{c} \underbrace{\partial _{i}f\left( y_{1},...,y_{i-1},t,x_{i+1},...,x_{n}\right) }\\ \leqq C \end{array}dt\right| \\ & & \\ & \leqq & C\cdot \left| y_{i}-x_{i}\right| \\ & & \\ \Rightarrow \left| \begin{array}{c} \underbrace{f\left( y\right) }\\ f\left( a_{n}\right) \end{array}-\begin{array}{c} \underbrace{f\left( x\right) }\\ f\left( a_{0}\right) \end{array}\right| & \leqq & \left| f\left( a_{n}\right) -f\left( a_{n-1}\right) +f\left( a_{n-1}\right) -f\left( a_{n-2}\right) +...+f\left( a_{1}\right) -f\left( a_{0}\right) \right| \leqq \\ & \leqq & \sum _{i=1}^{n}\left| f\left( a_{i}\right) -f\left( a_{i-1}\right) \right| \leqq \sum _{i=1}^{n}C\cdot \begin{array}{c} \underbrace{\left| y_{i}-x_{i}\right| }\\ \left\Vert x-y\right\Vert _{1} \end{array} \end{eqnarray*} \end_inset \layout Standard Wegen \begin_inset Formula \( \left| f\left( y\right) -f\left( x\right) \right| \leqq C\cdot \left\Vert x-y\right\Vert _{1} \) \end_inset und da auf endlich dimensionalen Vektorräumen alle Normen äquivalent sind, ist f Lipschitz-stetig. \layout Standard Wird an Stelle einer Kugel nur ein wegzusammenhängendes Gebiet vorausgesetzt, so sind die obigen Aussagen nicht mehr gültig; sei etwa: \newline \begin_inset Formula \( K=\mathbb R^{2}\smallsetminus \mathbb R^{-}\times \left\{ 0\right\} \) \end_inset \newline \begin_inset Formula \( f\left( x_{1},x_{2}\right) =arccos\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\cdot sgn\, x_{2} \) \end_inset \newline Bei Betrachtung der Folgen \begin_inset Formula \( x_{n}=\left( -1,-\frac{1}{n}\right) ;\, y_{n}=\left( -1,+\frac{1}{n}\right) \) \end_inset folgt für \begin_inset Formula \( n\rightarrow \infty \) \end_inset \begin_inset Formula \( \left\Vert y-x\right\Vert _{1}\rightarrow 0 \) \end_inset , aber \begin_inset Formula \( \left| f\left( x\right) -f\left( y\right) \right| \rightarrow 2\pi \) \end_inset . \layout Problem \line_top Man berechne \begin_inset Formula \( d^{\left( 2\right) }f \) \end_inset und \begin_inset Formula \( f'' \) \end_inset für \begin_inset Formula \( f:\mathbb R_{+}\times \mathbb R\rightarrow \mathbb R,\left( x,y\right) \mapsto x^{y}. \) \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} h^{T}d^{\left( 2\right) }f\left( x,y\right) h & = & h^{T}\left( \begin{array}{cc} \partial _{1}^{2}f(x,y) & \partial _{12}f\left( x,y\right) \\ \partial _{21}f\left( x,y\right) & \partial _{2}^{2}f(x,y) \end{array}\right) h=\\ & = & h^{T}\left( \begin{array}{cc} y\left( y-1\right) x^{y-2} & x^{y-1}+y\cdot \ln x\cdot x^{y-1}\\ x^{y-1}+y\cdot \ln x\cdot x^{y-1} & ln^{2}x\cdot x^{y} \end{array}\right) h\\ f''(x,y) & = & \left( \begin{array}{cc} y\left( y-1\right) x^{y-2} & x^{y-1}+y\cdot \ln x\cdot x^{y-1}\\ x^{y-1}+y\cdot \ln x\cdot x^{y-1} & ln^{2}x\cdot x^{y} \end{array}\right) \end{eqnarray*} \end_inset \layout Problem \line_top Gegeben sei die Potenzfunktion \begin_inset Formula \( f:\mathbb C\rightarrow \mathbb C;\, z\mapsto z^{k};k\in \mathbb N \) \end_inset . Man identifiziere den Definitionsbereich mit \begin_inset Formula \( \mathbb R^{2} \) \end_inset . Man zeige, daß f harmonisch \begin_inset LatexCommand \index{harmonisch} \end_inset ist (d.h. \begin_inset Formula \( \triangle f=0 \) \end_inset ) \layout Enumerate unter Verwendung von carthesischen Koordinaten x,y \layout Enumerate unter Verwendung von Polarkoordinaten \begin_inset LatexCommand \index{Polarkoordinaten} \end_inset r, \begin_inset Formula \( \varphi \) \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \triangle f\left( x,y\right) & = & \partial _{x}^{2}f\left( x,y\right) +\partial _{y}^{2}f\left( x,y\right) =\partial _{x}^{2}\left( x+iy\right) ^{k}+\partial _{y}^{2}\left( x+iy\right) ^{k}=\\ & = & \left[ k\left( k-1\right) +i^{2}\cdot k\left( k+1\right) \right] \left( x+iy\right) =0\cdot \left( x+iy\right) =0 \end{eqnarray*} \end_inset \layout Standard Sei nun \begin_inset Formula \( r=\left| z^{k}\right| =\left| z\right| ^{k};\, \varphi =arctan\left( \frac{Re\left( \left( x+iy\right) ^{k}\right) }{Im\left( \left( x+iy\right) ^{k}\right) }\right) . \) \end_inset Bekanntlich gilt dann: \begin_inset Formula \( \triangle f\left( x,y\right) =\left( F_{rr}+\frac{1}{r^{2}}F_{\varphi \varphi }+\frac{1}{r}F_{r}\right) \left( r,\varphi \right) ;\, F\left( r,\varphi \right) =f\left( r\, cos\varphi ,r\, sin\varphi \right) \) \end_inset . \begin_inset Formula \begin{eqnarray*} F\left( r,\varphi \right) & = & f\left( r\, cos\varphi ,r\, sin\varphi \right) =\left( r\, cos\varphi +i\, r\, sin\varphi \right) ^{k}=\\ & = & r^{k}\cdot \left( cos\varphi +i\, sin\varphi \right) ^{k}=r^{k}\cdot e^{ik\varphi }\\ F_{rr}\left( r,\varphi \right) & = & e^{ik\varphi }\cdot k\left( k+1\right) r^{k-2}\\ F_{\varphi \varphi }\left( r,\varphi \right) & = & r^{k}\cdot \left( ik\right) ^{2}\cdot e^{ik\varphi }=-r^{k}k^{2}e^{ik\varphi }\\ F_{r}\left( r,\varphi \right) & = & k\cdot r^{k-1}\cdot e^{ik\varphi }\\ \triangle f\left( x,y\right) & = & e^{ik\varphi }\cdot k\left( k+1\right) r^{k-2}+\frac{1}{r^{2}}\cdot \left( -r^{k}k^{2}e^{ik\varphi }\right) +\frac{1}{r}k\cdot r^{k-1}\cdot e^{ik\varphi }=\\ & = & e^{ik\varphi }\cdot k\cdot r^{k-2}\cdot \left( \left( k+1\right) -k-1\right) =0 \end{eqnarray*} \end_inset \layout Problem \line_top Man ermittle alle rotationssymetrischen, harmonischen Funktionen auf einer Kugelschale im \begin_inset Formula \( \mathbb R^{n} \) \end_inset und insbesondere auf einer Kugel. \layout Standard \SpecialChar ~ \layout Problem \line_top Man untersuche die Funktion \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R;\, f\left( x,y\right) =x^{3}+y^{3}+3xy \) \end_inset auf Extrema \begin_inset LatexCommand \index{Extrema} \end_inset . \layout Standard Für ein Extrema ist notwendig: \begin_inset Formula \begin{eqnarray*} grad\, f\left( x,y\right) & = & \left( \begin{array}{c} \partial _{x}f\left( x,y\right) \\ \partial _{y}f\left( x,y\right) \end{array}\right) =\left( \begin{array}{c} 3x^{2}+3y\\ 3y^{2}+3x \end{array}\right) \doteq 0\\ \Longrightarrow & & 3x^{2}+3y=3\left( x^{2}+y\right) \doteq 0\Leftrightarrow x^{2}+y=0\\ \Longrightarrow & & 3y^{2}+3x=3\left( y^{2}+x\right) \doteq 0\Leftrightarrow y^{2}+x=0\\ & \Rightarrow & \left( x^{2}+y\right) -x\left( y^{2}+x\right) =y-xy^{2}=y\left( 1-xy\right) \doteq 0\\ L\ddot{o}sung\, 1 & \Rightarrow & y=0\Rightarrow x=0\\ L\ddot{o}sung\, 2 & \Rightarrow & 1-xy=0\Rightarrow x=\frac{1}{y}\Rightarrow y^{2}+\frac{1}{y}=0\Rightarrow \frac{1}{y}\left( y^{3}+1\right) =0\Rightarrow \\ \left( y\neq 0\right) & \Rightarrow & y=-1\Rightarrow x=-1 \end{eqnarray*} \end_inset \layout Standard Es gibt also 2 stationäre Punkte: \begin_inset Formula \( P_{1}\left( 0,0\right) ;\, P_{2}\left( -1,-1\right) \) \end_inset . \begin_inset Formula \begin{eqnarray*} H_{f}\left( x,y\right) & = & \left( \begin{array}{cc} 6x & 3\\ 3 & 6y \end{array}\right) =3\left( \begin{array}{cc} 2x & 1\\ 1 & 2y \end{array}\right) =\\ det\, H_{f}\left( x,y\right) & = & 4xy-1\\ det\, H_{f}\left( 0,0\right) & = & -1<0\Longrightarrow Sattelpunkt\\ det\, H_{f}\left( -1,-1\right) & = & 3>0\, Maximum,\, da\, H_{f}(-1,-1)_{\nwarrow }<0 \end{eqnarray*} \end_inset \layout Note \line_top Kriterien für pos.Definitheit \begin_inset LatexCommand \index{Definitheit} \end_inset einer \begin_inset Formula \( n\times n \) \end_inset -Matrix: \layout Enumerate alle Eigenwerte \begin_inset LatexCommand \index{Eigenwerte} \end_inset >0 \layout Enumerate Hurwitzkriterium \begin_inset LatexCommand \index{Hurwitzkriterium} \end_inset : \begin_inset Formula \( det\, \left( a_{ij}\right) _{1\leqq i,j\leqq k}>0 \) \end_inset \layout Enumerate Charakteristisches \begin_inset LatexCommand \index{Charakteristisches Polynom} \end_inset Polynom hat n pos. Nullstellen \layout Enumerate \begin_inset Formula \( 2\times 2 \) \end_inset -Matrix Sp>0; det \begin_inset Formula \( H_{f} \) \end_inset >0 \newline \begin_inset Formula \( Tr\left( SAS^{-1}\right) =Tr\left( A\right) , \) \end_inset da \begin_inset Formula \( Tr\left( AB\right) =Tr(BA) \) \end_inset \newline \begin_inset Formula \( det\left( SAS^{-1}\right) =det\left( A\right) , \) \end_inset da \begin_inset Formula \( det\left( AB\right) =det(BA) \) \end_inset \layout Problem \line_top Sei f eine \begin_inset Formula \( \) \end_inset -Funktion auf einer Umgebung der Halbebene \begin_inset LatexCommand \index{Halbebene} \end_inset \begin_inset Formula \( \mathbb H:=\mathbb R\times \left[ 0,\infty \right) \) \end_inset . Man zeige: Wenn \begin_inset Formula \( f|_{\mathbb H} \) \end_inset im Randpunkt \begin_inset LatexCommand \index{Randpunkt} \end_inset \begin_inset Formula \( p=\left( \textrm{x},0\right) \) \end_inset ein lokales Extremum hat, so ist der Gradient von f im Punkt p senkrecht \begin_inset LatexCommand \index{senkrecht} \end_inset zum Rand, d.h. parallel zur \begin_inset Formula \( x_{2} \) \end_inset -Achse. \layout Proof Angenommen \begin_inset Formula \( \varphi '\left( 0\right) >0\Longrightarrow \exists \tilde{t} \) \end_inset zwischen t und 0 mit \begin_inset Formula \( \frac{\varphi \left( t\right) -\varphi \left( 0\right) }{t-0}=\varphi '\left( \tilde{t}\right) \) \end_inset nach MWS. Wegen \begin_inset Formula \( \) \end_inset gilt damit: \begin_inset Formula \( \exists \varepsilon >0:\frac{\varphi \left( \xi \right) -\varphi \left( 0\right) }{\xi }>0\forall \left| \xi \right| <\varepsilon \) \end_inset . Für \begin_inset Formula \( \xi <0 \) \end_inset folgt damit \begin_inset Formula \( \varphi \left( \xi \right) <\varphi \left( 0\right) \) \end_inset , für \begin_inset Formula \( \xi >0 \) \end_inset folgt damit \begin_inset Formula \( \varphi \left( \xi \right) >\varphi \left( 0\right) \) \end_inset im Wiederspruch zur Voraussetzung, daß ein Extremum existiert. \begin_inset Formula \( \Longrightarrow \varphi '\left( 0\right) \leqq 0 \) \end_inset \newline Ebenso werde \begin_inset Formula \( \varphi '\left( 0\right) <0 \) \end_inset ausgeschlossen. \begin_inset Formula \( \Longrightarrow \varphi '\left( 0\right) =0\Longrightarrow \nabla f\left( p\right) =\left( 0,f_{y}\left( p\right) \right) \) \end_inset \layout Problem \line_top Konstruktion einer Funktion auf \begin_inset Formula \( \mathbb R^{2}, \) \end_inset die im Ursprung in jeder Richtung lokal konstant ist, aber in keiner Umgebung des Ursprungs beschränkt: \newline Sei \begin_inset Formula \( \varphi :\mathbb R\rightarrow \mathbb R \) \end_inset eine \begin_inset Formula \( \) \end_inset -Funktion, die im Intervall \begin_inset Formula \( \left( -1,1\right) \) \end_inset positive Werte besitzt und auf \begin_inset Formula \( \mathbb R\smallsetminus \left( -1,1\right) \) \end_inset konstant gleich Null ist, z.B. \begin_inset Formula \[ \varphi \left( t\right) =\{\begin{array}{c} e^{\frac{-1}{1-t^{2}}}\\ 0 \end{array}\begin{array}{l} f\ddot{u}r\, t\in \left( -1,1\right) \\ sonst \end{array}\] \end_inset Definiere \begin_inset Formula \[ f:\mathbb R^{2}\rightarrow \mathbb R;f\left( x\right) :=\{\begin{array}{c} \frac{1}{x}\varphi \left( \frac{y}{x^{2}}-2\right) \\ 0 \end{array}\begin{array}{l} f\ddot{u}r\, x\neq 0\\ f\ddot{u}r\, x=0 \end{array}\] \end_inset Zeige: \begin_deeper \layout Enumerate \begin_inset Formula \( f\equiv 0 \) \end_inset in den Gebieten \begin_inset Formula \( \left\{ \left( x,y\right) \in \mathbb R^{2}:y<x^{2}\right\} \) \end_inset und \begin_inset Formula \( \left\{ \left( x,y\right) \in \mathbb R^{2}:y>3x^{2}\right\} \) \end_inset . \layout Enumerate \begin_inset Formula \( \) \end_inset . \layout Enumerate f ist in keiner Umgebung von \begin_inset Formula \( \left( 0,0\right) \) \end_inset beschränkt. \layout Enumerate Für jedes \begin_inset Formula \( \left( a,b\right) \in \mathbb R^{2} \) \end_inset gibt es ein \begin_inset Formula \( \varepsilon >0 \) \end_inset , do daß \begin_inset Formula \( f\left( \left( 0,0\right) +t\left( a,b\right) \right) =0 \) \end_inset für alle \begin_inset Formula \( t\in \left( -\varepsilon ,\varepsilon \right) \) \end_inset . (Insbesondere sind alle Richtungsableitungen im Ursprung gleich Null.) \end_deeper \layout Enumerate \added_space_top 1cm \begin_inset LatexCommand \label{Nullstellen} \end_inset \begin_inset Formula \( f\left( x,y\right) =0, \) \end_inset falls x=0 oder \begin_inset Formula \( x\neq 0\wedge \left| \frac{y}{x^{2}}-2\right| >1 \) \end_inset . \newline \begin_inset Formula \( \frac{y}{x^{2}}-2>1\Rightarrow y>3x^{2}\, \wedge \, -\frac{y}{x^{2}}+2>1\Rightarrow y<x^{2} \) \end_inset \lang american \layout Enumerate \begin_inset Formula \( \) \end_inset \newline \begin_inset Formula \( x\neq 0: \) \end_inset f in Umgebung von \begin_inset Formula \( \left( x,y\right) \) \end_inset Verkettung von \begin_inset Formula \( \mathbb C^{\infty } \) \end_inset -Funktionen \newline x=0,\SpecialChar ~ aber\SpecialChar ~ \begin_inset Formula \( y\neq 0 \) \end_inset : aus ( \begin_inset LatexCommand \ref{Nullstellen} \end_inset ) folgt, daß f in einer Umgebung von \begin_inset Formula \( \left( 0,y\right) \) \end_inset gleich 0 ist. \layout Enumerate \begin_inset Formula \begin{eqnarray*} f\left( t,2t^{2}\right) & = & \frac{1}{t}\varphi \left( \frac{2t^{2}}{t^{2}}-2\right) =\frac{1}{t}\varphi \left( 0\right) =\frac{1}{e^{t}}=e^{-t}\\ & & \end{eqnarray*} \end_inset Sei V vorg. Umgebung von \begin_inset Formula \( \left( 0,0\right) ;t_{n}=\frac{1}{n} \) \end_inset \newline \begin_inset Formula \[ \left( t_{n},2t_{n}^{2}\right) \begin{array}{c} \\ \longrightarrow \\ n\rightarrow \infty \end{array}\left( 0,0\right) \Longrightarrow \exists N\in \mathbb N:\left( t_{n},2t_{n}^{2}\right) \in V\forall n\geqq N;f\left( t_{n},2t_{n}^{2}\right) =e^{-t_{n}}\begin{array}{c} \\ \longrightarrow \\ n\rightarrow \infty \end{array}\infty \] \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} \left( x,y\right) & = & \left( 0,0\right) +t\left( a,b\right) =\left( ta,tb\right) \\ a=0 & \Rightarrow & f\left( ta,tb\right) =f\left( 0,tb\right) =0\forall t\\ a\neq 0 & \Rightarrow & \Rightarrow \left( x,y\right) =\left( ta,tb\right) =\frac{tb}{t^{2}a^{2}}-2=\frac{b}{ta^{2}}-2;\, t\neq 0\\ & t>0: & \frac{b}{ta^{2}}-2>1\Leftrightarrow t<\frac{b}{3a^{2}}\\ & t<0: & \frac{b}{ta^{2}}-2<1\\ \Rightarrow f\left( ta,tb\right) & = & 0\forall \left| t\right| <\varepsilon =\frac{b}{3a^{2}}\\ & \end{eqnarray*} \end_inset \layout Problem \line_top Unabhängigkeit \begin_inset LatexCommand \index{Unabhängigkeit} \end_inset der Integration \begin_inset LatexCommand \index{Integration} \end_inset von der Reihenfolge: \newline Es sei \begin_inset Formula \( f:\left[ a,b\right] \times \left[ c,d\right] \rightarrow \mathbb C \) \end_inset eine stetige Funktion. Dann gilt: \begin_inset Formula \[ \int _{c}^{d}\left( \int _{a}^{b}f\left( x,y\right) dx\right) dy=\int _{a}^{b}\left( \int _{c}^{d}f\left( x,y\right) dy\right) dx\] \end_inset Mit Hilfe dieser Vertauschungsregel berechne man das Integral \layout Problem \begin_inset Formula \[ \int _{0}^{1}\frac{x^{t}-1}{ln\, x}dx\, f\ddot{u}r\, t\geqq 0.\] \end_inset \layout Proof \begin_inset Formula \begin{eqnarray*} H_{1}\left( y\right) & = & \int _{c}^{y}\left( \int _{a}^{b}f\left( x,t\right) dx\right) dt\\ H_{2}\left( y\right) & = & \int _{d}^{b}\left( \int _{c}^{y}f\left( x,t\right) dt\right) dx\\ \frac{\partial }{\partial y}H_{1}\left( y\right) & = & \int _{a}^{b}f\left( x,y\right) dx\\ & \end{eqnarray*} \end_inset \begin_float footnote \layout Standard Beweis der glm. Stetigkeit: \layout Standard \begin_inset Formula \begin{eqnarray*} \left| \frac{\int _{y_{0}}^{y}f\left( x,t\right) dt-\int _{y_{0}}^{y}f\left( x,y_{0}\right) dt}{y-y_{0}}\right| & = & \left| \frac{\int _{y_{0}}^{y}f\left( x,t\right) dt-\left( y-y_{0}\right) f\left( x,y_{0}\right) }{y-y_{0}}\right| =\\ & = & \left| \frac{\int _{y_{0}}^{y}\left[ f\left( x,t\right) -f\left( x,y_{0}\right) \right] dt}{y-y_{0}}\right| \leqq \\ & \leqq & \int _{y_{0}}^{y}\left| \frac{f\left( x,t\right) -f\left( x,y_{0}\right) }{y-y_{0}}\right| dt\leqq \\ & \leqq & \frac{y-y_{0}}{y-y_{0}}\max \left| f\left( x,t\right) -f\left( x,y_{0}\right) \right| =\\ & = & \max \left| f\left( x,t\right) -f\left( x,y_{0}\right) \right| \end{eqnarray*} \end_inset \layout Standard \begin_inset Formula \( \forall y\in \forall \varepsilon >0\exists \delta >0:max\left| ...\right| \leqq \varepsilon \, falls\, \left| y-y_{0}\right| <\delta \) \end_inset , da \begin_inset Formula \( \left| f\left( x,t\right) -f\left( x,y_{0}\right) \right| \) \end_inset stetige Funktion auf Kompaktum \begin_inset Formula \( \left[ a,b\right] \) \end_inset , und jede Funktion auf Kompaktum gleichmäßig stetig. \end_float \newline \begin_inset Formula \begin{eqnarray*} \frac{\partial }{\partial y}H_{2}\left( y_{0}\right) & = & H_{2}'\left( y_{0}\right) =\lim _{y\rightarrow y_{0}}\frac{H_{2}\left( y\right) -H_{2}\left( y_{0}\right) }{y-y_{0}}=\\ & = & \lim _{y\rightarrow y_{0}}\frac{1}{y-y_{0}}\left[ \int _{a}^{b}\left( \int _{y_{0}}^{y}f\left( x,t\right) dt\right) dx\right] =\\ & = & \lim _{y\rightarrow y_{0}}\left[ \int _{a}^{b}f\left( x,y_{0}\right) dx\right] \end{eqnarray*} \end_inset \layout Proof \begin_inset Formula \begin{eqnarray*} F\left( t\right) & = & \int _{0}^{1}\frac{x^{t}-1}{ln\, x}dx\\ \frac{\partial }{\partial t}\frac{x^{t}}{ln\, x} & = & \frac{\partial }{\partial t}\frac{e^{t\, ln\, x}}{ln\, x}=e^{t\, ln\, x}=x^{t}\\ \int _{0}^{t}x^{s}ds & = & \left[ \frac{x^{s}}{ln\, x}\right] _{0}^{t}=\frac{x^{t}-1}{ln\, x}\\ F\left( t\right) & = & \int _{0}^{1}\left( \int _{0}^{t}x^{s}ds\right) dx=\int _{0}^{t}\left( \int _{0}^{1}x^{s}dx\right) ds=\int _{0}^{t}\left[ \frac{1}{s+1}x^{s+1}\right] _{0}^{1}ds=\\ & = & \int _{0}^{t}\frac{1}{s+1}ds=\left[ ln\left| s+1\right| \right] _{0}^{t}=ln\left| t+1\right| \end{eqnarray*} \end_inset \layout Problem \line_top Sei \begin_inset Formula \( \rho \) \end_inset eine stetige Funktion auf dem Rechteck \begin_inset Formula \( Q:=\left[ a,b\right] \times \left[ c,d\right] \subset \mathbb R^{2} \) \end_inset . Man zeige, daß die auf \begin_inset Formula \( \mathbb R^{2}\smallsetminus \mathbb Q \) \end_inset durch \begin_inset Formula \[ u\left( x,y\right) :=\int _{a}^{b}\left( \int _{c}^{d}ln\left( \left( x-s\right) ^{2}+\left( y-t\right) ^{2}\right) \cdot \rho \left( s,t\right) dt\right) ds\] \end_inset definierte Funktion harmonisch ist. \layout Standard Differenziationssatz für Faltung \begin_inset LatexCommand \index{Faltung, Differentiationssatz} \end_inset : \begin_inset Formula \[ \triangle U\left( x,y\right) =\int _{a}^{b}\left( \int _{c}^{d}\triangle \left( x,y\right) ln\left( \left( x-s\right) ^{2}+\left( y-t\right) ^{2}\right) \zeta \left( s,t\right) dt\right) ds\] \end_inset \layout Problem \line_top \begin_inset LatexCommand \label{Lagrange} \end_inset Man ermittle zu der Lagrange-Funktion \begin_inset Formula \[ L\left( t,y,p\right) =\frac{1}{2}mp^{2}-mgy\, \, \, \, \, \, \left( m,g>0\right) \] \end_inset die Eulersche Differentialgleichung. \layout Standard \begin_inset Formula \begin{eqnarray*} \frac{d}{dx}L_{p}\left( x,\varphi \left( x\right) ,\varphi '\left( x\right) \right) & = & L_{y}\left( x,\varphi \left( x\right) ,\varphi '\left( x\right) \right) \\ \frac{d}{dt}\left( m\varphi '\left( t\right) \right) & = & -mg\\ \varphi ''\left( t\right) & = & g\\ \varphi '\left( t\right) & = & gt+v_{0}\\ y\left( t\right) & = & \frac{1}{2}gt^{2}+v_{0}t+y_{0}\, \, \, \left( Wurfparabel\right) \end{eqnarray*} \end_inset \layout Problem \line_top Man zeige allgemein: Hängt die Lagrange-Funktion L \begin_inset Formula \( \left( t,y,p\right) \) \end_inset nicht von t ab, d.h. \begin_inset Formula \( L\left( t,y,p\right) =\hat{L}\left( y,p\right) \) \end_inset , so ist für jede Lösung \begin_inset Formula \( \varphi \) \end_inset der Eulerschen Differentialgleichung \begin_inset Formula \[ \frac{d}{dt}\hat{L}_{p}\left( \varphi \left( t\right) ,\varphi '\left( t\right) \right) =\hat{L}_{y}\left( \varphi \left( t\right) ,\varphi '\left( t\right) \right) \] \end_inset die Funktion \begin_inset LatexCommand \index{Lagrange, zeitunabhängig} \end_inset \begin_inset Formula \[ E_{\varphi }:=\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '-\hat{L}\left( \varphi ,\varphi '\right) \] \end_inset (als Funktion von t) konstant. \newline Man berechne \begin_inset Formula \( E_{\varphi } \) \end_inset für den Fall der Lagrangefunktion von ( \begin_inset LatexCommand \ref{Lagrange} \end_inset ). \layout Standard \begin_inset Formula \begin{eqnarray*} E_{\varphi } & = & \hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '-\hat{L}\left( \varphi ,\varphi '\right) \\ \frac{d}{dt}E_{\varphi } & = & \frac{d}{dt}\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '+\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi ''-\frac{d}{dt}\hat{L}\left( \varphi ,\varphi '\right) =\\ & = & \hat{L}_{y}\left( \varphi ,\varphi '\right) \varphi '+\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi ''-\hat{L}_{y}\left( \varphi ,\varphi '\right) \varphi '-\hat{L}_{p}\left( \varphi ,\varphi '\right) \varphi '=0\\ z.B.\, E_{\varphi } & = & mp^{2}-\frac{1}{2}mp^{2}+mgy=\frac{1}{2}my'^{2}+mgy=\\ & = & \frac{1}{2}m\left( gt+v_{0}\right) ^{2}+mg\left( \frac{1}{2}gt^{2}+v_{0}t+y_{0}\right) =\frac{1}{2}mv_{0}^{2}+mgy_{0}=const \end{eqnarray*} \end_inset \layout Problem \line_top Man berechne das Differential \begin_inset Formula \( df \) \end_inset für die Abbildung \begin_inset Formula \[ f:\mathbb K^{n\times n}\rightarrow \mathbb K^{n\times n},\, f\left( A\right) =A^{T}A\] \end_inset direkt und unter Verwendung der Produktregel. \newline Man berechne die Differentiale \begin_inset Formula \( dg \) \end_inset und \begin_inset Formula \( dh \) \end_inset für die Abbildungen \begin_inset Formula \begin{eqnarray*} g: & \mathbb K^{n\times n}\rightarrow \mathbb K^{n\times n} & f\left( A\right) =A^{3}\\ h: & \mathbb R^{n}\rightarrow \mathbb R & h\left( x\right) =e^{x^{T}Ax};A\in \mathbb R^{n\times n} \end{eqnarray*} \end_inset \begin_inset LatexCommand \label{expXTAx} \end_inset \begin_inset Formula \begin{eqnarray*} df\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{f\left( A+hk\right) -f\left( A\right) }{k}=\lim _{k\rightarrow 0}\frac{\left( A+hk\right) ^{T}\left( A+hk\right) -A^{T}A}{k}=\\ & = & \lim _{k\rightarrow 0}\frac{A^{T}A+A^{T}hk+\left( hk\right) ^{T}A+(hk)^{T}\left( hk\right) -A^{T}A}{k}=\\ & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( hk\right) ^{T}A+(hk)^{T}\left( hk\right) }{k}=\\ & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( A^{T}\left( hk\right) \right) ^{T}+(hk)^{T}\left( hk\right) }{k}=\\ & = & \lim _{k\rightarrow 0}\frac{A^{T}hk+\left( A^{T}\left( hk\right) \right) ^{T}+(hk)^{T}\left( hk\right) }{k}=\\ & = & A^{T}h+\left( A^{T}\left( h\right) \right) ^{T}=A^{T}h+h^{T}A\\ d\left( A^{T}\right) h & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) ^{T}-A^{T}}{k}=h^{T}\\ d\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) -A}{k}=h\\ df\left( A\right) h & = & d\left( A^{T}\right) h\cdot A+A^{T}d\left( A\right) h=h^{T}A+A^{T}h \end{eqnarray*} \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} dg\left( A\right) h & = & \lim _{k\rightarrow 0}\frac{f\left( A+hk\right) -f\left( A\right) }{k}=\lim _{k\rightarrow 0}\frac{\left( A+hk\right) ^{3}-A^{3}}{k}=\\ & = & \lim _{k\rightarrow 0}\frac{\left( A+hk\right) \left( A+hk\right) \left( A+hk\right) -A^{3}}{k}=\\ & = & \lim _{k\rightarrow 0}\frac{1}{k}(A^{3}+AA\left( hk\right) +A\left( hk\right) A+A\left( hk\right) ^{2}+\left( hk\right) AA+\\ & & +\left( hk\right) A\left( hk\right) +\left( hk\right) ^{2}A+\left( hk\right) ^{3}-A^{3}=\\ & = & AAh+Aha+hAA\\ d\left( e^{x}\right) h & = & \lim _{k\rightarrow 0}\frac{e^{x+k}-e^{x}}{k}=\lim _{k\rightarrow 0}\frac{e^{x}\left( e^{k}-e^{0}\right) }{k-0}=e^{k}\cdot e^{0}=e^{k}\\ d\left( x^{T}Ax\right) h & = & \lim _{k\rightarrow 0}\frac{\left( x+hk\right) ^{T}A\left( x+hk\right) -x^{T}Ax}{k}=\\ & = & \lim _{k\rightarrow 0}\frac{x^{T}A\left( hk\right) +\left( hk\right) ^{T}Ax+\left( hk\right) ^{T}A\left( hk\right) }{k}=x^{T}Ah+h^{T}Ax\\ dh_{a}\left( B\right) h & = & d\left( e^{x}\right) \left( a^{T}Aa\right) \circ d\left( x^{T}Ax\right) \left( a\right) h=e^{a^{T}Aa}\left( a^{T}Ah+h^{T}Aa\right) \\ & \end{eqnarray*} \end_inset \layout Problem \line_top Für die Polarkoordinatenabbildung \begin_inset LatexCommand \index{Polarkoordinaten, Abbildung} \end_inset \begin_inset Formula \[ P_{3}:\mathbb R^{3}\rightarrow \mathbb R^{3},\, P_{3}\left( \begin{array}{c} r\\ \varphi _{1}\\ \varphi _{2} \end{array}\right) :=\left( \begin{array}{c} r\, cos\varphi _{1}\, cos\, \varphi _{2}\\ r\, sin\varphi _{1}\, cos\, \varphi _{2}\\ r\, sin\, \varphi _{2} \end{array}\right) \] \end_inset berechne man die Ableitung \begin_inset Formula \( P_{3}', \) \end_inset das Differential \begin_inset Formula \( dP_{3} \) \end_inset und die Determinante \begin_inset Formula \( det\, P_{3}' \) \end_inset . \layout Standard \begin_inset Formula \begin{eqnarray*} P_{3}' & = & \left( \begin{array}{ccc} cos\varphi _{1}\, cos\, \varphi _{2} & -r\, sin\, \varphi _{1}\, cos\, \varphi _{2} & -r\, cos\, \varphi _{1}\, sin\, \varphi _{2}\\ sin\varphi _{1}\, cos\, \varphi _{2} & r\, cos\, \varphi _{1}\, cos\, \varphi _{2} & -r\, cos\, \varphi _{1}\, sin\, \varphi _{2}\\ sin\, \varphi _{2} & 0 & r\, cos\, \varphi _{2} \end{array}\right) \\ dP_{3}'h & = & P_{3}'h\\ det\, P_{3}' & = & r^{2}\, cos\, \varphi _{2} \end{eqnarray*} \end_inset \layout Standard \begin_float margin \layout Standard \align center \pextra_type 3 \begin_inset Figure size 89 168 file G1.eps width 3 15.00 height 3 20.00 flags 11 \end_inset \layout Standard \align center \pextra_type 3 \pextra_widthp 50 \begin_inset Figure size 89 168 file G2.eps width 3 15.00 height 3 20.00 flags 11 \end_inset \layout Standard \noindent \align center \pextra_type 3 \pextra_widthp 40 \begin_inset Figure size 89 168 file G3.eps width 3 15.00 height 3 20.00 flags 11 \end_inset \end_float \layout Problem \line_top Gegeben sei die Funktion \begin_inset Formula \[ f:\mathbb R^{2}\rightarrow \mathbb R^{2};\, \left( x,y\right) \rightarrow \left( x^{2}-y^{2},2xy\right) .\] \end_inset Außerdem seien die Scharen parametrisierter Kurven \begin_inset Formula \begin{eqnarray*} \gamma _{1}^{\left( a\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto \left( a,t\right) \\ \gamma _{2}^{\left( b\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto \left( t,b\right) \, und\\ \gamma _{3}^{\left( r\right) }:\mathbb R\rightarrow \mathbb R^{2} & ; & t\mapsto \left( r\, cos\, t,r\, sin\, t\right) \end{eqnarray*} \end_inset \begin_inset Formula \( \left( a,b,r\in \mathbb R,r>0\right) \) \end_inset im Urbildraum von f gegeben. \begin_deeper \layout Enumerate \pextra_type 3 \pextra_widthp 50 Man skizziere die Bilder der Kurven \begin_inset Formula \( f\circ \gamma _{1}^{\left( a\right) },f\circ \gamma _{2}^{\left( b\right) }\, und\, f\circ \gamma _{3}^{\left( r\right) } \) \end_inset für einige Werte a,b,r. \layout Enumerate \pextra_type 3 \pextra_widthp 50 Man berechne die Ableitung und das Differential von f im Punkt \begin_inset Formula \( \left( a,b\right) \) \end_inset . Man bermerke, daß \begin_inset Formula \( f'\left( a,b\right) \) \end_inset eine Ähnlichkeitsmatrix (d.h. \begin_inset Formula \( c\cdot A \) \end_inset mit einer orthogonalen Matrix A und \begin_inset Formula \( c\in \mathbb R\smallsetminus \left\{ 0\right\} \) \end_inset ) ist. \layout Enumerate \pextra_type 3 \pextra_widthp 50 Man berechne die Bilder der Tangentialvektoren \begin_inset Formula \( v_{1}:=\left( \gamma _{1}^{\left( a\right) }\right) '\left( b\right) \) \end_inset und \begin_inset Formula \( v_{2}:=\left( \gamma _{2}^{\left( b\right) }\right) '\left( a\right) \) \end_inset im Punkt \begin_inset Formula \( \left( a,b\right) \) \end_inset unter \begin_inset Formula \( df \) \end_inset . Welcher Winkel liegt zwischen den Tangentialvektoren? \layout Enumerate \pextra_type 3 \pextra_widthp 50 Für zwei Kurven \begin_inset Formula \( \alpha \, \beta :\left( -\varepsilon ;\varepsilon \right) \rightarrow \mathbb R^{n} \) \end_inset mit \begin_inset Formula \( \alpha \left( 0\right) =\beta \left( 0\right) \neq \left( 0,0\right) \) \end_inset beweise man: \lang american \lang german \begin_inset Formula \begin{eqnarray*} \frac{\left\langle df_{\left( a,b\right) }\alpha '\left( 0\right) ,df_{\left( a,b\right) }\beta '\left( 0\right) \right\rangle }{\left\Vert df_{\left( a,b\right) }\alpha '\left( 0\right) \right\Vert \cdot \left\Vert df_{\left( a,b\right) }\beta '\left( 0\right) \right\Vert } & = & \frac{\left\langle \alpha '\left( 0\right) ,\beta '\left( 0\right) \right\rangle }{\left\Vert \alpha '\left( 0\right) \right\Vert \cdot \left\Vert \beta '\left( 0\right) \right\Vert },\\ & & \end{eqnarray*} \end_inset wobei \begin_inset Formula \( \left\langle \cdot ,\cdot \right\rangle \) \end_inset das euklidsche Skalarprodukt und \begin_inset Formula \( \left\Vert \cdot \right\Vert \) \end_inset die euklidsche Norm auf \begin_inset Formula \( \) \end_inset bedeuten. \end_deeper \layout Standard \begin_inset Formula \begin{eqnarray*} df_{\left( a,b\right) }\left( x,y\right) & = & \left( \begin{array}{cc} 2a & -2b\\ 2b & 2a \end{array}\right) \left( \begin{array}{c} x\\ y \end{array}\right) \\ df_{\left( 1,0\right) }\left( x,y\right) & = & \left( \begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right) \left( \begin{array}{c} x\\ y \end{array}\right) =2\left( \begin{array}{c} x\\ y \end{array}\right) \\ f'(a,b) & = & \left( \begin{array}{cc} 2a & -2b\\ 2b & 2a \end{array}\right) =2\sqrt{a^{2}+b^{2}}\left( \begin{array}{cc} \frac{a}{\sqrt{a^{2}+b^{2}}} & \frac{-b}{\sqrt{a^{2}+b^{2}}}\\ \frac{b}{\sqrt{a^{2}+b^{2}}} & \frac{a}{\sqrt{a^{2}+b^{2}}} \end{array}\right) =\\ & = & 2\sqrt{a^{2}+b^{2}}\left( \begin{array}{cc} cos\, \varphi & -sin\, \varphi \\ sin\, \varphi & cos\, \varphi \end{array}\right) \in 2\sqrt{a^{2}+b^{2}}\cdot EO\left( 2\right) \\ & & \end{eqnarray*} \end_inset \layout Standard \begin_inset Formula \( f'_{\left( a,b\right) }=A \) \end_inset hat Eigenschaft \begin_inset Formula \( A^{T}A=c\cdot \mathbb 1 \) \end_inset mit geeignetem \begin_inset Formula \( c=4\left( a^{2}+b^{2}\right) >0. \) \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \alpha '\left( 0\right) =:v & ; & \beta '\left( 0\right) =:w\\ \frac{\left\langle Av,Aw\right\rangle }{\left\Vert Av\right\Vert \cdot \left\Vert Aw\right\Vert } & \begin{array}{c} !\\ =\\ \end{array} & \frac{\left\langle v,w\right\rangle }{\left\Vert v\right\Vert \cdot \left\Vert w\right\Vert }\Leftrightarrow \\ \Leftrightarrow \frac{v^{T}A^{T}Aw}{\sqrt{v^{T}A^{T}Av}\cdot \sqrt{w^{T}A^{T}Aw}} & = & \frac{v^{T}w}{\sqrt{v^{T}v}\sqrt{w^{T}w}}\Leftrightarrow \\ \Leftrightarrow \frac{c\cdot v^{T}w}{c\cdot \sqrt{v^{T}v}\sqrt{w^{T}w}} & = & \frac{v^{T}w}{\sqrt{v^{T}v}\sqrt{w^{T}w}}\, \, \, \surd \end{eqnarray*} \end_inset \layout Problem \line_top Die Joukowski-Abbildung \begin_inset Formula \( f:\mathbb C\smallsetminus \mathbb C,\, z\mapsto \frac{1}{2}\left( z+\frac{1}{z}\right) \) \end_inset je3des der beiden Gebiete \begin_inset Formula \( D_{1}:=\left\{ z\in \mathbb C:\left| z\right| <1\right\} \) \end_inset bijektiv und konform auf \begin_inset Formula \( G:=\mathbb C\smallsetminus \left\{ t\in \mathbb R:-1\leqq t\leqq 1\right\} \) \end_inset ab. \newline Man zeige: Jede der beiden Einschränkungen \begin_inset Formula \( f|_{D_{1}} \) \end_inset und \begin_inset Formula \( f_{D_{2}} \) \end_inset ist sogar ein Diffeomorphismus von \begin_inset Formula \( D_{1} \) \end_inset bzw. \begin_inset Formula \( D_{2} \) \end_inset auf G und die inversen Abbildungen sind auch wieder konform. \layout Standard \begin_inset Formula \begin{eqnarray*} \frac{1}{2}\left( z+\frac{1}{z}\right) & = & w\\ z^{2}-2wz+1 & = & 0\\ z_{1|2} & = & w\pm \sqrt{w^{2}-1} \end{eqnarray*} \end_inset Bekannt: f bijektiv (injektiv würde genügen); konform (stetig würde genügen) \newline \bar under Satz von der Diffeomorphie: \bar default f differenzierbar genau dann, wenn \begin_inset Formula \( f' \) \end_inset nicht singulär, d.h. kein Eigenwert = 0, d. h. f' invertierbar. \layout Standard \begin_inset Formula \begin{eqnarray*} f'\left( x,y\right) & = & \left( \begin{array}{cc} a & -b\\ b & a \end{array}\right) \\ a & = & \frac{1}{2}+\frac{y^{2}-x^{2}}{2\left( x^{2}-y^{2}\right) }\\ b & = & \frac{xy}{\left( x^{2}+y^{2}\right) ^{2}} \end{eqnarray*} \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} f'\left( x,y\right) \, invertierbar & \Leftrightarrow & det\, f'\left( x,y\right) =a^{2}+b^{2}\neq 0\Leftrightarrow \\ \Leftrightarrow \left( a,b\right) \neq \left( 0,0\right) & \Leftrightarrow & \left\{ nicht\, y=0\left( \rightarrow b=0\right) \, und\, nicht\, a=0\Leftrightarrow x^{4}-x^{2}=0\right\} \Leftrightarrow \\ \Leftrightarrow \left\{ nicht\, y=0\, und\, x\in \left\{ -1,0,1\right\} \right\} & \Rightarrow & f'\, \ddot{u}berall\, auf\, D_{1}\, und\, D_{2}\, invertierbar\\ f' & = & \left( \begin{array}{cc} a & b\\ -b & a \end{array}\right) \\ \left( f'\right) ^{-1} & = & \frac{1}{a^{2}+b^{2}}\left( \begin{array}{cc} a & b\\ -b & a \end{array}\right) ;f\, konform \end{eqnarray*} \end_inset \layout Problem \line_top Gegeben sei das Gleichungssystem \begin_inset Formula \begin{eqnarray*} f_{1}\left( x,y_{1},y_{2}\right) & = & x^{3}+y_{1}^{3}+y_{2}^{3}-7=0\\ f_{2}\left( x,y_{1},y_{2}\right) & = & xy_{1}+y_{1}y_{2}+y_{2}x+2=0 \end{eqnarray*} \end_inset und die Nullstelle \begin_inset Formula \( \left( 2,-1,0\right) \) \end_inset . Man zeige, daß das Gleichungssystem in der Nähe dieser Nullstelle nach \begin_inset Formula \( y_{1} \) \end_inset und \begin_inset Formula \( y_{2} \) \end_inset aufgelöst werden kann, d.h. lokal um \begin_inset Formula \( \left( 2,-1,0\right) \) \end_inset gilt für alle Lösungen des Gleichungssystems: \begin_inset Formula \[ \] \end_inset Man berechne \begin_inset Formula \( g'\left( 2\right) . \) \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} F\left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) & = & \left( \begin{array}{c} f_{1}\\ f_{2} \end{array}\right) \left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) =\\ & = & \left( \begin{array}{c} x^{3}+y_{1}^{3}+y_{2}^{3}-7\\ xy_{1}+y_{1}y_{2}+y_{2}x+2 \end{array}\right) \left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) =0\\ & \end{eqnarray*} \end_inset Kurve darf nicht senkrecht auf der y-Achse stehen \begin_inset Formula \( \Rightarrow \) \end_inset x-Achse \begin_inset Formula \( \in \) \end_inset Ebene der beiden Normalenvektoren (=Gradienten). \begin_inset Formula \begin{eqnarray*} 0=F_{1}'\left( x\right) & = & \partial _{1}f_{1}\left( x,g_{1}\left( x\right) ,g_{2}\left( x\right) \right) \cdot 1+\partial _{2}f_{1}\cdot g_{1}'\left( x\right) +\partial _{3}f_{2}\cdot g_{2}'\left( x\right) \\ 0=F_{2}'\left( x\right) & = & \partial _{1}f_{2}+d_{2}f_{2}\cdot g_{1}'\left( x\right) +\partial _{3}f_{2}\cdot g_{2}'\left( x\right) \\ f\ddot{u}r\, x=2: & & g_{1}\left( x\right) =-1;\, g_{2}\left( x\right) =0\\ \partial _{1}f_{1}\left( 2,-1,0\right) =12 & & \partial _{1}f_{2}\left( 2,-1,0\right) =-1\\ \partial _{2}f_{1}\left( 2,-1,0\right) =3 & \times & \partial _{2}f_{2}\left( 2,-1,0\right) =2\\ \partial _{3}f_{1}\left( 2,-1,0\right) =0 & & \partial _{3}f_{2}\left( 2,-1,0\right) =1\\ F_{1}'\left( 2\right) & = & 12+3g_{1}'\left( 2\right) +0=0\Rightarrow g_{1}'\left( 2\right) =-4\\ F_{2}'\left( 2\right) & = & -1+2g_{1}'\left( 2\right) +g_{2}'\left( 2\right) =0\Rightarrow g_{2}\left( 2\right) =9\\ \Rightarrow & & g'\left( 2\right) =\left( \begin{array}{c} -4\\ 9 \end{array}\right) \end{eqnarray*} \end_inset \layout Problem \line_top Die Gleichung \begin_inset Formula \[ z^{3}+z+xy=2\] \end_inset hat für jedes \begin_inset Formula \( \left( x,y\right) \in \mathbb R^{2} \) \end_inset genau eine reelle Lösung \begin_inset Formula \( z=g\left( x,y\right) \) \end_inset . Man zeige, daß \begin_inset Formula \( g:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset differenzierbar ist, und berechne \begin_inset Formula \( g'\left( 1,2\right) \) \end_inset . Man untersuche g auf Extrema. \layout Standard \begin_inset Formula \begin{eqnarray*} \nabla f & = & \left( \begin{array}{c} y\\ x\\ 1+3z^{2} \end{array}\right) ;\, z-Komponente>0\\ & & \Rightarrow lokal\, differenzierbar\, und\, nach\, z\, aufl\ddot{o}sbar\\ & & \, \, \left( Satz\, \ddot{u}ber\, implizite\, Funktionen\right) \\ z & \mapsto & z^{3}+z\, ist\, bijektiv\\ & \Rightarrow & global\, differenzierbar\, h\ddot{a}ngt\, z\, von\, x,y\, ab\\ \left[ d_{\left( x,y\right) }f\right] v & = & \left( y,x\right) \cdot v\, \left( v\in \mathbb R^{2}\right) \\ \left[ d_{\left( z\right) }f\right] w & = & \left( 3z^{2}+1\right) \cdot w\, \left( v\in \mathbb R\right) \\ & \end{eqnarray*} \end_inset Formel für g' \begin_inset Formula \( \left( x,y\right) \) \end_inset : \begin_inset Formula \begin{eqnarray*} dg_{\left( x,y\right) }v & = & -\left[ d_{\left( z\right) }f\left( x,y,z\right) \right] ^{-1}\cdot \left[ d_{\left( x,y\right) }f\left( x,y,z\right) \right] v=\\ & = & -\frac{1}{3z^{2}+1}\left( y,x\right) v \end{eqnarray*} \end_inset Speziell für \begin_inset Formula \( \left( x,y\right) =\left( 1,2\right) \) \end_inset : \begin_inset Formula \begin{eqnarray*} z^{3}+z+2 & = & 2\, \Rightarrow z=0\\ dg_{\left( 1,2\right) }v & = & -\frac{1}{3\cdot 0^{2}+1}\left( 2,1\right) v=\left( -2,-1\right) v;\, v\in \mathbb R^{2} \end{eqnarray*} \end_inset Extrema: \begin_inset Formula \begin{eqnarray*} \left( x,y\right) & = & \left( 0,0\right) \, einziger\, Kandidat\\ F\left( x,y\right) & := & f\left( x,y,g\left( x,y\right) \right) =2\\ 0 & = & \partial _{x}F\left( x,y\right) =\partial _{1}f\cdot 1+\partial _{2}f\cdot 0+\partial _{3}f\cdot g_{x}\left( x,y\right) \\ 0 & = & \partial _{y}F\left( x,y\right) =\partial _{1}f\cdot 0+\partial _{2}f\cdot 1+\partial _{3}f\cdot g_{y}\left( x,y\right) \\ 0 & = & 1y+0x+\left( 3z^{2}+1\right) g_{x}\left( x,y\right) \\ 0 & = & 0y+1x+\left( 3z^{2}+1\right) g_{y}\left( x,y\right) \\ g_{x} & = & g_{y}=0\Rightarrow x=y=0;\, z^{3}+z+0=0\Rightarrow z=1\\ 0 & = & \partial _{x}^{2}F\left( x,y\right) =\\ & = & \partial _{1}^{2}f+\partial _{2}\partial _{1}f+\partial _{3}\partial _{1}f\cdot g_{x}\left( x,y\right) +\partial _{1}\partial _{3}f\cdot g_{x}\left( x,y\right) +\partial _{2}\partial _{3}f\cdot 0\cdot g_{x}\left( x,y\right) +\\ & & +\partial _{3}\partial _{3}f\cdot \left[ g_{x}\left( x,y\right) \right] ^{2}+\partial _{3}f\cdot g_{xx}\left( x,y\right) \\ \partial _{xy}f\left( 0,0\right) & = & 0\\ \partial _{3}f\left( 0,0,1\right) & = & 4\\ \partial _{1}^{2} & = & 0\\ g_{xx}\left( 0,0\right) & = & 0\\ aus\, Symmetrie: & & g_{yy}\left( 0,0\right) =0\\ 0 & = & \partial _{y}\partial _{x}F=\\ & = & \partial _{1}^{2}\cdot 0+\partial _{2}\partial _{1}f+\partial _{3}\partial _{1}f\cdot g_{y}+\left[ \partial _{1}\partial _{3}f+\partial _{2}\partial _{3}f+\partial _{3}\partial _{3}f\cdot g_{y}\right] g_{x}+\partial _{3}f\cdot g_{xy}\\ 0 & = & 4g_{xy}\left( 0,0\right) +1\\ g_{xy}\left( 0,0\right) & = & -\frac{1}{4}\\ g''\left( 0,0\right) & = & \left( \begin{array}{cc} 0 & -\frac{1}{4}\\ -\frac{1}{4} & 0 \end{array}\right) \\ det\, g''\left( 0,0\right) & = & -\frac{1}{16}\Rightarrow g''\, indefinit\Rightarrow \left( 0,0\right) \, ist\, Sattelpunkt \end{eqnarray*} \end_inset \layout Problem \line_top Sei \begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R \) \end_inset eine \begin_inset Formula \( \) \end_inset -Funktion und \begin_inset Formula \( A=\left( p_{0},T_{0},V_{0}\right) \) \end_inset eine Nullstelle von f mit \begin_inset Formula \( \partial _{p}f\left( A\right) \neq 0 \) \end_inset , \begin_inset Formula \( \partial _{T}f\left( A\right) \neq 0 \) \end_inset und \begin_inset Formula \( \partial _{V}f\left( A\right) \neq 0. \) \end_inset Thermodynamiker verwenden die Relation \begin_inset Formula \[ \frac{\partial p}{\partial T}\cdot \frac{\partial T}{\partial V}\cdot \frac{\partial V}{\partial p}=-1.\] \end_inset Wie ist eine solche Relation zu interpretieren? \layout Standard \begin_inset Formula \begin{eqnarray*} \partial _{p}f\left( p_{0},V_{0},T_{0}\right) & \neq & 0\\ & & \end{eqnarray*} \end_inset \begin_inset Formula \( \Rightarrow \) \end_inset Man kann f in a lokal nach \begin_inset Formula \( p_{1} \) \end_inset auflösen und \begin_inset Formula \( dp\left( T_{0},V_{0}\right) =-\left[ d_{\left( p\right) }f\left( p_{0},T_{0},V_{0}\right) \right] ^{-1}\cdot d_{\left( T,V\right) }f\left( p_{0},T_{0},V_{0}\right) \) \end_inset . \newline Hier ist \begin_inset Formula \( d_{\left( p\right) }f\left( p_{0},T_{0},V_{0}\right) :\mathbb R\rightarrow \mathbb R;\, h\mapsto \partial _{p}f\left( p_{0},T_{0},V_{0}\right) \cdot h. \) \end_inset \newline \begin_inset Formula \begin{eqnarray*} d_{\left( T,V\right) }f\left( p_{0},T_{0},V_{0}\right) : & \mathbb R^{2} & \Rightarrow \mathbb R\\ & k & \mapsto \left( \partial _{T}f,\partial _{V}f\right) _{\left( p_{0},T_{0},V_{0}\right) }\cdot k \end{eqnarray*} \end_inset Speziell: \begin_inset Formula \begin{eqnarray*} \partial _{T}p\left( T_{0},V_{0}\right) & = & -\frac{\partial _{V}f\left( p_{0},T_{0},V_{0}\right) }{\partial _{p}f\left( p_{0},T_{0},V_{0}\right) }\\ genauso:\partial _{V}p\left( T_{0},V_{0}\right) & = & -\frac{\partial _{V}f\left( p_{0},T_{0},V_{0}\right) }{\partial _{T}f\left( p_{0},T_{0},V_{0}\right) }\\ \partial _{p}p\left( T_{0},V_{0}\right) & = & -\frac{\partial _{p}f\left( p_{0},T_{0},V_{0}\right) }{\partial _{V}f\left( p_{0},T_{0},V_{0}\right) }\\ & \Rightarrow & \partial _{T}p\cdot \partial _{V}T\cdot \partial _{p}V=-1 \end{eqnarray*} \end_inset ideales Gas: \begin_inset Formula \begin{eqnarray*} f\left( p,T,V\right) & = & \frac{pV}{T}-c\\ p\left( T,V\right) & = & \frac{cT}{V};\, \partial _{R}p\left( p_{0},T_{0},V_{0}\right) =\frac{c}{V_{0}} \end{eqnarray*} \end_inset Tatsächlich ist auch \begin_inset Formula \[ -\frac{\partial _{T}f}{\partial _{p}f}=-\frac{-\frac{pV_{0}}{T_{0}^{2}}}{\frac{V_{0}}{T}}=\frac{p_{0}}{T_{0}}=\frac{c}{V_{0}}\] \end_inset \layout Problem \line_top Es sei M und N Untermannigfalten des \begin_inset Formula \( \mathbb R^{m} \) \end_inset bzw. \begin_inset Formula \( \mathbb R^{n} \) \end_inset . Dann ist das direkte Produkt \begin_inset Formula \( M\times N \) \end_inset eine Untermannigfaltigkeit des \begin_inset Formula \( \mathbb R^{m\times n} \) \end_inset der Dimension \begin_inset Formula \( dim\, M+dim\, N \) \end_inset . \layout Standard Offenbar \begin_inset Formula \( M\times N\subseteq \mathbb R^{m+n} \) \end_inset . Bezeichne \begin_inset Formula \( d|_{M}:=dim\, M;\, d|_{N}:=dim\, N. \) \end_inset Sei \begin_inset Formula \( \left( a,b\right) \in M\times N\Rightarrow \exists Umgebungen\, U\subseteq \mathbb R^{m}\, von\, a;\, V\subseteq \mathbb R^{n}\, von\, b \) \end_inset und Diffeomorphismous \begin_inset Formula \( \varphi ,\psi ;\, \varphi :U\rightarrow \hat{U}\in \mathbb R^{m};\, \psi :V\rightarrow \hat{V}\in \mathbb R^{n} \) \end_inset mit \begin_inset Formula \( \varphi \left( M\cap U\right) =\mathbb R_{0}^{d_{M}}\cap \hat{U} \) \end_inset und \begin_inset Formula \( \varphi \left( N\cap V\right) =\mathbb R_{0}^{d_{N}}\cap \hat{V} \) \end_inset . Dann ist \begin_inset Formula \( \eta :U\times V\rightarrow \hat{U}\times \hat{V};\, \left( p,y\right) \mapsto \left( \varphi \left( p\right) ,\psi \left( p\right) \right) \) \end_inset ein Diffeomorphismus \begin_inset Formula \( \eta '\left( p,q\right) =\left( \begin{array}{cc} \varphi '_{\left( p\right) }0 & \\ 0 & \psi '_{\left( q\right) } \end{array}\right) ;\, \eta \left( \left( M\times N\right) \cap \left( U\times V\right) \right) =\left( \mathbb R_{0}^{d_{M}}\cap \hat{U}\right) \times \left( \mathbb R_{0}^{d_{N}}\cap \hat{V}\right) \subset \mathbb R^{m+n} \) \end_inset \layout Problem \line_top Gegeben sei ein Gelenk \begin_inset LatexCommand \index{Gelenk} \end_inset in der Ebene, bestehend aus zwei Stangen \begin_inset LatexCommand \index{Stangen} \end_inset der Längen \begin_inset Formula \( l_{1},l_{2}. \) \end_inset Man interpretiere die Menge aller möglichen Positionen \begin_inset Formula \( \left( a_{1},a_{2},a_{3}\right) \) \end_inset der Eckpunkte als eine 4-dimensionale Untermannigfaltigkeit M des \begin_inset Formula \( \mathbb R^{6}. \) \end_inset Man finde eine geeignete Parametrisierung \begin_inset Formula \( \mathbb R^{2}\times \mathbb S^{1}\times \mathbb S^{1}\rightarrow M \) \end_inset ! \layout Standard Nullstellengebilde von \begin_inset Formula \( f:\mathbb R^{6}\rightarrow \mathbb R^{2};\, \left( \begin{array}{c} x_{1}\\ y_{1}\\ x_{2}\\ y_{2}\\ x_{3}\\ y_{3} \end{array}\right) \mapsto \left( \begin{array}{c} \left( x_{1}-x_{2}\right) ^{2}+\left( y_{1}-y_{2}\right) ^{2}-l_{1}^{2}\\ \left( x_{2}-x_{3}\right) ^{2}+\left( y_{2}-y_{3}\right) ^{2}-l_{2}^{2} \end{array}\right) \) \end_inset . f ist \begin_inset Formula \( \) \end_inset -Funktion. \begin_inset Formula \[ f'\left( x_{1},y_{1},x_{2},y_{2},x_{3},y_{3}\right) ^{T}=2\left( \begin{array}{cccccc} x_{1}-x_{2} & y_{1}-y_{2} & x_{2}-x_{1} & y_{2}-y_{1} & 0 & 0\\ 0 & 0 & x_{2}-x_{3} & y_{2}-y_{3} & x_{3}-x_{2} & y_{3}-y_{2} \end{array}\right) \] \end_inset \begin_inset Formula \( \Rightarrow f'\left( p\right) \, regul\ddot{a}r\, f\ddot{u}r\, alle\, p\in M\Rightarrow M\, Mannigfaltigkeit\, der\, Dimension\, 6-2=4. \) \end_inset \layout Problem \line_top Rotationsflächen im \begin_inset Formula \( \mathbb R^{3}. \) \end_inset \newline Es sei \begin_inset Formula \( M=f^{-1}\left( 0\right) \) \end_inset eine 1-dimensionale Untermannigfaltigkeit des \begin_inset Formula \( \mathbb R^{2} \) \end_inset , wobei \begin_inset Formula \( f:\mathbb R_{+}\times \mathbb R\rightarrow \mathbb R \) \end_inset eine stetig differenzierbare Funktion sei mit 0 als regulärem Wert. Man zeige: \begin_inset Formula \[ R:=\left\{ \left( x,y,z\right) \in \mathbb R^{3}|f\left( \sqrt{x^{2}-y^{2}},z\right) =0\right\} \] \end_inset ist eine 2-dimensionale Untermannigfaltigkeit des \begin_inset Formula \( \mathbb R^{3}. \) \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} g & : & \mathbb R^{3}\smallsetminus \left\{ \left( 0,0\right) \right\} \times \mathbb R\rightarrow \mathbb R^{+}\times \mathbb R\\ \left( \begin{array}{c} x\\ y\\ z \end{array}\right) & \mapsto & \left( \begin{array}{c} \sqrt{x^{2}+y^{2}}\\ z \end{array}\right) \end{eqnarray*} \end_inset Dann ist \begin_inset Formula \( R=\left( f\circ g\right) ^{-1}\left( 0\right) \) \end_inset . \newline Zu zeigen: 0 ist regulärer Wert von \begin_inset Formula \( f\circ g \) \end_inset . \begin_inset Formula \begin{eqnarray*} \left( f\circ g\right) '\left( x,y,z\right) & = & \left( f_{x},f_{y}\right) _{\left( \begin{array}{c} x\\ y\\ z \end{array}\right) }\circ \left( \begin{array}{ccc} \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & 0\\ 0 & 0 & 1 \end{array}\right) =\\ & = & \left( f_{x}\frac{x}{\sqrt{x^{2}+y^{2}}},f_{x}\frac{y}{\sqrt{x^{2}+y^{2}}},f_{y}\right) \end{eqnarray*} \end_inset \begin_inset Formula \( f_{x},f_{y} \) \end_inset nicht beide 0 (regulärer Wert) \begin_inset Formula \( \Rightarrow \) \end_inset mindestens ein Eintrag nicht 0 \begin_inset Formula \( \Rightarrow \) \end_inset für \begin_inset Formula \( \left( \begin{array}{c} x\\ y\\ z \end{array}\right) \in \mathbb R \) \end_inset ist \begin_inset Formula \( \left( f\circ g\right) '_{\left( \begin{array}{c} x\\ y\\ z \end{array}\right) } \) \end_inset surjektiv \begin_inset Formula \( \Rightarrow \) \end_inset R Mannigfaltigkeit der Dimension 3-1=2 \layout Problem \line_top Man zeige, daß jeder Punkt \begin_inset Formula \( \left( p,q\right) \in \mathbb R^{2} \) \end_inset mit \begin_inset Formula \( pq\neq 0 \) \end_inset auf genau zwei Parabeln \begin_inset Formula \( P_{a_{1}},P_{a_{2}} \) \end_inset der Schar \begin_inset Formula \[ P_{a}:=\left\{ \left( x,y\right) \in \mathbb R^{2}:ax^{2}-y-\frac{1}{4a}=0\right\} \] \end_inset liegt und daß sich diese beiden Parabeln im Punkt \begin_inset Formula \( \left( p,q\right) \) \end_inset senkrecht schneiden. \layout Standard \begin_inset Formula \begin{eqnarray*} ap^{2}-q-\frac{1}{4a} & = & 0\\ 4a^{2}p^{2}-4aq-1 & = & 0\\ a_{1|2} & = & \frac{4q\pm \sqrt{16q^{2}+4\cdot 4p^{2}}}{2\cdot 4p^{2}}=\frac{q}{2p^{2}}\pm \frac{\sqrt{p^{2}+q^{2}}}{2p^{2}} \end{eqnarray*} \end_inset Da \begin_inset Formula \( pq\neq 0 \) \end_inset existieren zwei Lösungen. Diese Schneiden sich in \begin_inset Formula \( \left( p,q\right) \) \end_inset . \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man formuliere den Satz vom regulären Wert für den Spezialfall einer Hyperfläche (d.h. Untermannigfaltigkeit der Dimension n-1) im \begin_inset Formula \( \mathbb R^{n} \) \end_inset . \layout Enumerate Ist \begin_inset Formula \( M:=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}=0\right\} \) \end_inset eine Untermannigfaltigkeit der \begin_inset Formula \( \mathbb R^{2} \) \end_inset ? \layout Enumerate Die Neilsche Parabel: \newline Es sei \begin_inset Formula \( N:=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{3}=y^{2}\right\} \) \end_inset . Man zeige: Für \begin_inset Formula \( A\in N,\, a\neq \left( 0,0\right) \) \end_inset , hat \begin_inset Formula \( T_{a}N \) \end_inset die Dimension 1, dagegen hat \begin_inset Formula \( T_{\left( 0,0\right) }N \) \end_inset die Dimension 0. Man folgere, daß N keine Untermannigfaltigkeit des \begin_inset Formula \( \mathbb R^{2} \) \end_inset ist. \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man bestimme alle Extrema der Funktion \begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) \mapsto xyz \) \end_inset auf der Sphäre \begin_inset Formula \( \mathbb S^{2}. \) \end_inset \layout Enumerate Gegeben sei die Funktion \begin_inset Formula \[ f:\mathbb R^{3}\rightarrow \mathbb R;\, \left( x,y,z\right) \mapsto z+\frac{1}{3}\left( x^{2}+y^{2}\right) .\] \end_inset Man zeige, daß f auf der Sphäre \begin_inset Formula \( \mathbb S^{2} \) \end_inset im Punkt p= \begin_inset Formula \( \left( 0,0,1\right) \) \end_inset ein Maximum hat, daß aber die Einschränkung des Differenzials zweiter Ordnung auf den Tangentialraum \begin_inset Formula \( T_{p}M \) \end_inset positiv definit ist. Die Einschränkung der Hessematrix auf den Tangentialraum liefert also kein Kriterium dafür, ob an einem kritischen Punkt ein Maximum oder Minimum oder Sattelpunkt vorliegt. \layout Standard \SpecialChar ~ \layout Standard \begin_inset Formula \begin{eqnarray*} \nabla f\left( x,y,z\right) & = & \left( \begin{array}{c} yz\\ xz\\ xy \end{array}\right) \\ \nabla g_{\mathbb S}\left( x,y,z\right) & = & 2\left( \begin{array}{c} x\\ y\\ z \end{array}\right) \\ Lagrange: & & \\ Fall\, 1 & : & xyz\neq 0\\ \left( \begin{array}{c} yz\\ xz\\ xy \end{array}\right) & = & \lambda \left( \begin{array}{c} x\\ y\\ z \end{array}\right) ;\, \lambda \in \mathbb R\\ \Rightarrow \lambda & = & \frac{yz}{x}=\frac{xz}{y}=\frac{xy}{z}\Rightarrow \\ \Rightarrow \lambda xyz & = & y^{2}z^{2}=x^{2}z^{2}=x^{2}y^{2}\Rightarrow \\ & \Rightarrow & x^{2}=y^{2}=z^{2}=\frac{1}{3}\\ & \Rightarrow & \left| x\right| =\left| y\right| =\left| z\right| =\frac{\sqrt{3}}{3}\\ Fall\, 2 & : & Sonderf\ddot{a}lle\, xyz=0\\ f\left( 0,0,\pm 1\right) & = & 0\\ Wegen\, f\left( \varepsilon ,\varepsilon ,\sqrt{1-2\varepsilon ^{2}}\right) & > & 0\\ und\, f\left( -\varepsilon ,\varepsilon ,\sqrt{1-2\varepsilon ^{2}}\right) & < & 0\, liegt\, kein\, Extrema\, vor.\\ & & (andere\, Sonderf\ddot{a}lle\, werden\, durch\, Symmetrie\, ausgeschlossen)\\ Da\, \mathbb S^{2}\, kompakt: & & \\ f\left( x,y,z\right) & & Extemum\, falls\, \left| x\right| =\left| y\right| =\left| z\right| =\frac{\sqrt{3}}{3}\\ Minimum & & falls\, sgn\left( xyz\right) <0\\ Maximum & & falls\, sgn\left( xyz\right) >0 \end{eqnarray*} \end_inset \layout Problem \line_top Man skizziere das Geschwindigkeitsfeld \begin_inset Formula \( v:\mathbb R^{3}\rightarrow \mathbb R^{3},x\mapsto w\times x \) \end_inset einer starren Drehung im \begin_inset Formula \( \mathbb R^{3} \) \end_inset mit der verktoriellen Drehgeschwindigkeit \begin_inset Formula \( \omega \in \mathbb R^{3} \) \end_inset und berechne die Divergenz \begin_inset Formula \[ div\, v:=\sum ^{3}_{i=1}\frac{\partial v_{i}}{\partial x_{i}}.\] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} v\left( x\right) & = & \left( \begin{array}{c} w_{1}\\ w_{2}\\ w_{3} \end{array}\right) \times \left( \begin{array}{c} x_{1}\\ x_{2}\\ x_{3} \end{array}\right) =\left( \begin{array}{c} w_{2}x_{3}-w_{3}x_{2}\\ w_{3}x_{1}-w_{1}x_{3}\\ w_{1}x_{2}-w_{2}x_{1} \end{array}\right) \\ div\, v & = & \sum ^{3}_{i=1}\frac{\partial v_{i}}{\partial x_{i}}=0 \end{eqnarray*} \end_inset \layout Problem \line_top Man löse das Anfangswertproblem \begin_inset Formula \[ \left( \begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right) =\left( \begin{array}{c} -y\\ x \end{array}\right) ;\, \left( \begin{array}{c} x\left( 0\right) \\ y\left( 0\right) \end{array}\right) =\left( \begin{array}{c} 1\\ 0 \end{array}\right) \] \end_inset mittels Picard-Lindelöf-Iteration. \layout Standard \begin_inset Formula \[ F\left( \left( x,y\right) ,t\right) =\left( \begin{array}{c} -y\\ x \end{array}\right) \, Lipschitzstetig\, bzgl\, \left( x,y\right) \] \end_inset \begin_inset Formula \begin{eqnarray*} \varphi _{0}(t) & = & \left( \begin{array}{c} x_{0}\left( t\right) \\ y_{0}\left( t\right) \end{array}\right) =\left( \begin{array}{c} 1\\ 0 \end{array}\right) \\ \varphi _{k+1}(t) & = & \left( \begin{array}{c} x_{k+1}\left( t\right) \\ y_{k+1}\left( t\right) \end{array}\right) =\int _{0}^{t}\left( \begin{array}{c} -y_{k}\left( s\right) \\ x_{k}\left( s\right) \end{array}\right) ds+\left( \begin{array}{c} x_{0}\\ y_{0} \end{array}\right) \\ \varphi _{1}(t) & = & \int _{0}^{t}\left( \begin{array}{c} -0\\ 1 \end{array}\right) ds+\left( \begin{array}{c} 1\\ 0 \end{array}\right) =\left( \begin{array}{c} 1\\ t \end{array}\right) \\ \varphi _{2}(t) & = & \int _{0}^{t}\left( \begin{array}{c} -t\\ 1 \end{array}\right) ds+\left( \begin{array}{c} 1\\ 0 \end{array}\right) =\left( \begin{array}{c} 1-\frac{1}{2}t^{2}\\ t \end{array}\right) \\ \varphi _{3}(t) & = & \int _{0}^{t}\left( \begin{array}{c} -t\\ 1-\frac{1}{2}t^{2} \end{array}\right) ds+\left( \begin{array}{c} 1\\ 0 \end{array}\right) =\left( \begin{array}{c} 1-\frac{1}{2}t^{2}\\ t-\frac{1}{6}t^{3} \end{array}\right) \\ \varphi _{2n}(t) & = & \left( \begin{array}{c} 1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+...\pm \frac{1}{\left( 2n\right) !}t^{2n}\\ t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+...\pm \frac{1}{\left( 2n-1\right) !}t^{2n-1} \end{array}\right) \\ \lim _{n\rightarrow \infty }\varphi _{2n}(t) & = & \left( \begin{array}{c} cos\, t\\ sin\, t \end{array}\right) \end{eqnarray*} \end_inset \layout Problem \line_top \noun on Das Lemma von Morse \noun default \begin_inset LatexCommand \index{Morse} \end_inset \newline Sei f eine reelle \begin_inset Formula \( \) \end_inset -Funktion in einer Umgebung U von \begin_inset Formula \( 0\in \mathbb R^{n} \) \end_inset mit \begin_inset Formula \( f\left( 0\right) =0,f'\left( 0\right) =0 \) \end_inset und nicht ausgearteter Hessematrix \begin_inset Formula \( f''\left( 0\right) . \) \end_inset Dann existiert ein Diffeomorphismus \begin_inset Formula \( \phi :U_{0}\rightarrow V \) \end_inset einer Umgebung \begin_inset Formula \( U_{0}\subset U \) \end_inset von 0 auf eine Umgebung V von 0 so, daß \begin_inset Formula \[ f\circ \phi ^{-1}\left( y\right) =\left( y_{1}^{2}+...+y_{k}^{2}\right) -\left( y_{k+1}^{2}+...+y_{n}^{2}\right) .\] \end_inset \layout Enumerate Worin besteht der Unterschied zur Taylor-Formel? \layout Enumerate Man veranschauliche und beweise die Aussage am Beispiel n=1. \layout Enumerate Man beweise das Lemma von Morse: \newline Zunächst zeige man, daß es eine Nullumgebung Û und eine \begin_inset Formula \( \) \end_inset -Funktion \begin_inset Formula \( A:\hat{U}\rightarrow \mathbb R^{n\times n} \) \end_inset gibt mit \begin_inset Formula \[ f\left( x\right) =x^{T}A\left( x\right) x.\] \end_inset \layout Enumerate Wie sehen im Fall einer positiv definiten Hessematrix die Niveauflächen in der Nähe von \begin_inset Formula \( 0\in U \) \end_inset aus? \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} f\left( 0\right) & = & 0\in \mathbb R\\ f'\left( 0\right) & = & 0\in \mathbb R^{n\times n}\\ f\left( x\right) & = & x^{T}Ax+R\left( x\right) \end{eqnarray*} \end_inset Durch Diagonalisierung und Normierung wird \begin_inset Formula \( x^{T}Ax=\left( x_{1}^{2}+...+x_{k}^{2}\right) -\left( x_{k+1}^{2}+...+x_{n}^{2}\right) \) \end_inset (lineare Koordinatentransformation!). \newline \bar under Unterschied: \bar default Man läßt nicht nur lineare Koordinatentransformationen zu, sondern auch einen Diffeomorphismus \begin_inset Formula \( \Rightarrow \) \end_inset R \begin_inset Formula \( \left( x\right) \) \end_inset fällt weg. \newline \layout Enumerate \bar under Spezialfall n=1: \newline \bar default Taylor: \begin_inset Formula \( f\left( x\right) =ax^{2}+R\left( x\right) =\pm \left( \sqrt{\left| a\right| }\times \sqrt{1+\frac{R\left( x\right) }{ax^{2}}}\right) ^{2}=\pm \phi ^{2}\left( x\right) \) \end_inset \newline \bar under Behauptung \bar default : \begin_inset Formula \( \phi \left( x\right) \) \end_inset ist Diffeomorphismus \newline \begin_inset Formula \begin{eqnarray*} \phi \left( x\right) & = & \sqrt{\left| a\right| }x\cdot \sqrt{1+\frac{R\left( x\right) }{ax^{2}}}\, differenzierbar\, \forall x\neq 0\\ \phi '\left( 0\right) & = & \lim _{x\rightarrow 0}\frac{\phi \left( x\right) -\phi \left( 0\right) }{x-0}=\lim _{x\rightarrow 0}\sqrt{\left| a\right| }\cdot \sqrt{1+\frac{R\left( x\right) }{ax^{2}}}=\sqrt{\left| a\right| }\, existiert\, in\, \mathbb R\\ \phi '\left( x\right) & & stetig\, f\ddot{u}r\, x\neq 0\\ & & Stetigkeit\, in\, x=0\\ R\left( x\right) & = & \frac{1}{2}\int _{0}^{y}\left( x-t\right) ^{2}f^{\left( 3\right) }\left( t\right) dt\\ F\left( x,y\right) & := & \frac{1}{2}\int _{0}^{y}\left( x-t\right) ^{2}f^{\left( 3\right) }\left( t\right) dt\\ \partial _{y}F & = & \frac{1}{2}\left( x-y\right) ^{2}f^{\left( 3\right) }\left( y\right) \\ \partial _{x}F & = & \int _{0}^{y}\left( x-t\right) f^{\left( 3\right) }\left( t\right) dt\\ R\left( x\right) & = & F\left( x,x\right) \\ R'\left( x_{0}\right) & = & \partial _{x}F\left( x_{0},x_{0}\right) +\partial _{y}F\left( x_{0},x_{0}\right) =\int _{0}^{x_{0}}\left( x-t\right) f^{\left( 3\right) }\left( t\right) dt\\ \lim _{x\rightarrow 0}\frac{R\left( x\right) }{x^{2}} & = & 0\, (Taylor)\\ \lim _{x\rightarrow 0}\frac{R'\left( x\right) }{x} & = & \lim _{x\rightarrow 0}\int _{0}^{x}\frac{x-t}{x}f^{\left( 3\right) }\left( t\right) dt=0\\ & & Damit\, durch\, Rechnung\\ \lim _{x\rightarrow 0}\phi '\left( x\right) & = & \sqrt{\left| a\right| }=\phi '\left( 0\right) \\ f\circ \phi ^{-1}\left( x\right) & = & \pm x^{2} \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} f\left( x\right) & = & \sum _{i=1}^{n}a_{i}\left( x\right) x_{i}+f\left( 0\right) \\ a_{i}\left( x\right) & = & \int _{0}^{1}\partial _{i}f\left( tx\right) dt\leftarrow a_{i}\left( 0\right) =\partial _{i}f\left( 0\right) =0;\, \partial _{j}a_{i}\left( 0\right) =\partial _{j}\partial _{i}f\left( 0\right) \\ a_{i}\left( x\right) & = & \sum _{j=1}^{n}a_{ij}\left( x\right) x_{j}+a_{i}\left( 0\right) =\sum ^{n}_{j=1}a_{ij}\left( x\right) x_{j}\\ f\left( x\right) & = & \sum ^{n}_{i,j=1}a_{ij}\left( x\right) x_{i}x_{j}=x^{T}A\left( x\right) \cdot x=\frac{1}{2}x^{T}\left( A\left( x\right) +A\left( x\right) ^{T}\right) \cdot x\, \, \, \left( oBdA\, symmetrisch\right) \\ & \end{eqnarray*} \end_inset \layout Enumerate Eigenwerte positiv \newline \begin_inset Formula \( f\left( x\right) =x_{1}^{2}+...+x_{n}^{2} \) \end_inset \hfill Paraboilid \hfill \layout Standard \pagebreak_top \SpecialChar ~ \layout Note \line_top \bar under Exponentialfunktion: \layout Note \begin_inset Formula \begin{eqnarray*} \Lambda & = & \left( \begin{array}{ccc} \lambda _{1} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda _{n} \end{array}\right) \\ \Lambda ^{k} & = & \left( \begin{array}{ccc} \lambda _{1}^{k} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda _{n}^{k} \end{array}\right) \\ e^{\left( \begin{array}{ccc} \lambda _{1} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda _{n} \end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\Lambda ^{k}}{k!}=\left( \begin{array}{ccc} \sum _{k=0}^{\infty }\frac{1}{k!}\lambda _{1}^{k} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sum _{k=0}^{\infty }\frac{1}{k!}\lambda _{n}^{k} \end{array}\right) =\left( \begin{array}{ccc} e^{\lambda _{1}} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda _{n}} \end{array}\right) \\ \mathbb I & = & \left( \begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right) \\ \mathbb I^{2} & = & \left( \begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right) =-1\cdot \mathbb E\\ \left( \mathbb I^{2}\right) ^{k} & = & I^{2k}=\left( -1\right) ^{k}\mathbb E\\ e^{t\mathbb I} & = & \sum _{k=0}^{\infty }\frac{\left( t\mathbb I\right) ^{k}}{k!}=E+\mathbb I+\frac{t^{2}\left( -1\right) ^{2}}{2!}\mathbb E+\frac{t^{3}\left( -1\right) ^{3}}{3!}\mathbb I+....=\\ & = & \left( \sum _{k=0}^{\infty }\left( -1\right) ^{k}\frac{t^{2k}}{\left( 2k\right) !}\right) E+\left( \sum _{k=0}^{\infty }\left( -1\right) ^{k}\frac{t^{2k-1}}{\left( 2k-1\right) !}\right) I=\left( \begin{array}{c} cos\, t\\ sin\, t \end{array}\right) \\ \mathbb I^{*} & = & \left( \begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right) \\ \mathbb I^{*}\, ^{2} & = & \left( \begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) \\ e^{\mathbb I^{*}} & = & \mathbb E+t\left( \begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right) +\frac{t^{2}}{2!}\left( \begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) \end{eqnarray*} \end_inset \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man berechne \begin_inset Formula \( e^{At} \) \end_inset aufgrund der Potenzreihe für \begin_inset Formula \( A_{1}:=\left( \begin{array}{cc} a & -b\\ b & a \end{array}\right) \) \end_inset und \begin_inset Formula \( A_{2}:=\left( \begin{array}{ccc} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{array}\right) \) \end_inset . \layout Enumerate Man ermittle ein Fundamentalsystem für die Lösungen von \begin_inset Formula \( \dot{x}=Ax \) \end_inset mit den Matrizen aus Teil (1). \layout Enumerate Man zeige: Das Additionstheorem \begin_inset LatexCommand \index{Additionstheorem} \end_inset für die Exponentialfunktion \begin_inset LatexCommand \index{Exponentialfunktion} \end_inset von Matrizen gilt nicht allgemein: Berechne \begin_inset Formula \( e^{A}\cdot e^{B} \) \end_inset und \begin_inset Formula \( e^{A+B} \) \end_inset für die Matrizen \begin_inset Formula \( A:=\left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right) \) \end_inset und \begin_inset Formula \( B:=\left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right) \) \end_inset . \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} A_{1} & = & \left( \begin{array}{cc} a & -b\\ b & a \end{array}\right) =a\mathbb E+b\mathbb I\\ e^{tA_{1}} & = & e^{ta\mathbb E+tb\mathbb I}=\left( \begin{array}{ccc} e^{t_{a}} & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{t_{a}} \end{array}\right) \left( \begin{array}{cc} cos\, tb & -sin\, tb\\ sin\, tb & cos\, tb \end{array}\right) =e^{t_{a}}\left( \begin{array}{cc} cos\, tb & -sin\, tb\\ sin\, tb & cos\, tb \end{array}\right) \\ A_{2} & = & \left( \begin{array}{ccc} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{array}\right) \\ e^{tA_{2}} & = & e^{t\lambda \mathbb E}\cdot e^{t\mathbb I}=e^{t\lambda }\mathbb E\left( \mathbb E+t\left( \begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right) +\frac{t^{2}}{2!}\left( \begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) \right) =e^{t\lambda }\left( \begin{array}{ccc} 1 & t & \frac{t^{2}}{2}\\ 0 & 1 & t\\ 0 & 0 & 1 \end{array}\right) \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} \phi _{1}\left( t\right) & = & k_{1}e^{at}\left( \begin{array}{c} cos\, bt\\ sin\, bt \end{array}\right) +k_{2}e^{at}\left( \begin{array}{c} -sin\, bt\\ cos\, bt \end{array}\right) \, \, f\ddot{u}r\, A_{1}\\ \phi _{2}\left( t\right) & = & k_{1}e^{\lambda t}+k_{2}e^{\lambda t}\left( \begin{array}{c} t\\ 1\\ 0 \end{array}\right) +k_{3}e^{\lambda t}\left( \begin{array}{c} \frac{1}{2}t^{2}\\ t\\ 1 \end{array}\right) \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} e^{A}=e^{\left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right) ^{k}}{k!}=\mathbb E+\left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right) +0=\left( \begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right) \\ e^{B}=e^{\left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right) } & = & \sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right) ^{k}}{k!}=\mathbb E+\left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right) \sum _{k=1}^{\infty }\frac{1}{k!}=\left( \begin{array}{cc} e^{1} & 0\\ 0 & 1 \end{array}\right) \\ e^{A}\cdot e^{B} & = & \left( \begin{array}{cc} e & 1\\ 0 & 1 \end{array}\right) \\ e^{B}\cdot e^{A} & = & \left( \begin{array}{cc} e & e\\ 0 & 1 \end{array}\right) \\ e^{A+B} & = & e^{\left( \begin{array}{cc} 1 & 1\\ 0 & 0 \end{array}\right) }=\sum _{k=0}^{\infty }\frac{\left( \begin{array}{cc} 1 & 1\\ 0 & 0 \end{array}\right) ^{k}}{k!}=\left( \begin{array}{cc} e & e-1\\ 0 & 1 \end{array}\right) \end{eqnarray*} \end_inset \layout Problem \line_top Man zeige: Das früher definierte charakteristische \begin_inset LatexCommand \index{Polynom, charakteristisches} \end_inset Polynom einer lienearen Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten \begin_inset Formula \[ x^{\left( n\right) }+a_{n-1}x^{\left( n-1\right) }+...+a_{1}x'+a_{0}x=0\] \end_inset ist bis auf einen konstanten Faktor das charakteristische Polynom der Matrix des assoziierten Systems erster Ordnung. \layout Standard \begin_inset Formula \begin{eqnarray*} \left( \begin{array}{c} x\\ x'\\ \vdots \\ \vdots \\ \vdots \\ x^{\left( n-1\right) } \end{array}\right) & = & \left( \begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \ddots & 0 & 0\\ 0 & 0 & 0 & \ddots & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1\\ -a_{0} & -a_{1} & -a_{2} & 0 & -a_{n-2} & -a_{n-1} \end{array}\right) \left( \begin{array}{c} x\\ x'\\ \vdots \\ \vdots \\ \vdots \\ x^{\left( n-1\right) } \end{array}\right) \\ det\left( A-\lambda \mathbb E\right) & = & \left( \begin{array}{cccccc} -\lambda & 1 & 0 & 0 & 0 & 0\\ 0 & -\lambda & 1 & 0 & 0 & 0\\ 0 & 0 & -\lambda & \ddots & 0 & 0\\ 0 & 0 & 0 & \ddots & 1 & 0\\ 0 & 0 & 0 & 0 & -\lambda & 1\\ -a_{0} & -a_{1} & -a_{2} & 0 & -a_{n-2} & -a_{n-1}-\lambda \end{array}\right) =\\ & = & \left( -\lambda \right) ^{n-1}\left( -a_{n-1}-\lambda \right) +a_{n-2}\left( -\lambda \right) ^{n-2}+a_{n-3}\left( -\lambda \right) ^{n-3}+...=\\ & = & \left( -1\right) ^{n}\left[ \left( a_{n-1}+\lambda \right) \lambda ^{n-1}+a_{n-2}\lambda ^{n-2}+...+a_{1}\lambda +a_{0}\right] \end{eqnarray*} \end_inset \layout Problem \line_top Set \begin_inset Formula \( v:\mathbb R^{n}\rightarrow \mathbb R^{n} \) \end_inset ein \begin_inset Formula \( \) \end_inset -Vektorfeld. Man zeige: \layout Enumerate Ist \begin_inset Formula \( x_{0} \) \end_inset eine Nullstelle von \begin_inset Formula \( v \) \end_inset und \begin_inset Formula \( \varphi \) \end_inset eine maximale Integralkurve von v mit \begin_inset Formula \( \varphi \left( t_{0}\right) =x_{0} \) \end_inset , so ist \begin_inset Formula \( \varphi \) \end_inset auf ganz \begin_inset Formula \( \mathbb R \) \end_inset definiert und \begin_inset Formula \( \varphi \left( t\right) =x_{0} \) \end_inset für alle \begin_inset Formula \( t\in \mathbb R \) \end_inset . \layout Enumerate Jede maximale Integralkurve zu \begin_inset Formula \( \tilde{v}:\mathbb R^{n}\rightarrow \mathbb R^{n},\, \tilde{v}\left( x\right) :=sin\left( \left\Vert x\right\Vert _{2}^{2}\right) \cdot v\left( x\right) \) \end_inset ist auf ganz \begin_inset Formula \( \mathbb R \) \end_inset definiert. Wo verläuft sie? \layout Standard Lösung: \layout Enumerate ist Lösung des AWP. Da \begin_inset Formula \( \varphi \) \end_inset auf ganz \begin_inset Formula \( \mathbb R \) \end_inset definiert ist, ist es bereits die maximale Lösung. \layout Enumerate \begin_inset Formula \[ \tilde{v}\left( x\right) :=sin\left( \left\Vert x\right\Vert _{2}^{2}\right) \cdot v\left( x\right) \] \end_inset Maximale Lösung \begin_inset LatexCommand \index{Lösung, maximale} \end_inset örtlich \begin_inset LatexCommand \index{örtlich} \end_inset beschränkt \begin_inset Formula \( \Rightarrow \) \end_inset zeitlich \begin_inset LatexCommand \index{zeitlich} \end_inset auf ganz \begin_inset Formula \( \mathbb R \) \end_inset unbeschränkt \begin_inset LatexCommand \index{unbeschränkt} \end_inset ! \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man zeige: Der Tangentialraum \begin_inset Formula \( T_{\mathbb 1}O\left( n\right) \) \end_inset besteht aus allen schiefsymmetrischen reellen \begin_inset Formula \( n\times n \) \end_inset -Matritzen. \layout Enumerate Man zeige: Sei \begin_inset Formula \( H\in T_{\mathbb 1}O\left( n\right) \) \end_inset . Dann ist \begin_inset Formula \[ \gamma :\mathbb R\rightarrow O\left( n\right) ,\, t\mapsto e^{Ht}\] \end_inset eine differenzierbare Kurve in \begin_inset Formula \( O\left( n\right) \) \end_inset mit \begin_inset Formula \( \) \end_inset \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} f & : & \mathbb R^{n\times n}\rightarrow R^{n\times n}\\ & & A\mapsto A^{T}A\\ O\left( n\right) & = & f^{-1}\left( \mathbb 1\right) \end{eqnarray*} \end_inset \begin_inset Formula \( \mathfrak 1 \) \end_inset ist regulärer Wert: \newline Sei \begin_inset Formula \( A\in f^{-1}\left( \mathfrak 1\right) \) \end_inset , d.h. \begin_inset Formula \( A^{T}A=1 \) \end_inset . \begin_inset Formula \( df_{A}H=A^{T}H+H^{T}A\, \forall H\in T_{A}\mathbb R^{n\times n} \) \end_inset . Sei \begin_inset Formula \( y\in T_{\mathbb 1}\mathbb R_{s}^{n\times n}\approxeq R_{s}^{n\times n} \) \end_inset . \newline Wähle: \begin_inset Formula \begin{eqnarray*} H & := & \frac{1}{2}\left( A^{T}\right) ^{-1}Y=\frac{1}{2}AY\\ df_{A}H & = & \frac{1}{2}\left( A^{T}AY+Y^{T}A^{T}A\right) =\frac{1}{2}\left( Y+Y^{T}\right) =Y \end{eqnarray*} \end_inset \begin_inset Formula \( \Rightarrow df_{A} \) \end_inset surjektiv \begin_inset Formula \( \Rightarrow \) \end_inset Satz über implizite \begin_inset LatexCommand \index{implizite} \end_inset Funktionen \newline \begin_inset Formula \( O\left( n\right) \) \end_inset ist Mannigfaltigkeit der Dimension \begin_inset Formula \( n^{2}-\frac{n\left( n+1\right) }{2} \) \end_inset . \newline \begin_inset Formula \( T_{\mathbb 1}O\left( n\right) =Kern\, df_{\mathbb 1}\mathbb R^{n\times n}=\left\{ X\in \mathbb R^{n\times n}:\mathbb 1^{T}x+x^{T}\mathbb 1=0\right\} =\left\{ X\in \mathbb R^{n\times n}:x+x^{T}=0\right\} \) \end_inset \layout Enumerate Sei \begin_inset Formula \( H\in \left\{ X\in \mathbb R^{n\times n}:x+x^{T}=0\right\} \) \end_inset . \newline \begin_inset Formula \begin{eqnarray*} f_{1} & : & \mathbb R\rightarrow \mathbb R^{n\times n};\, t\mapsto e^{Ht}\, differenzierbar\\ f_{1}\left( 0\right) & = & e^{0H}=\mathfrak 1;\, \gamma _{1}'\left( t\right) =He^{Ht}\\ \gamma _{1}'\left( 0\right) & = & He^{0H}=H \end{eqnarray*} \end_inset Behauptung: \begin_inset Formula \( e^{Ht}\in O\left( n\right) \, \forall t. \) \end_inset \newline zu Zeigen: \begin_inset Formula \( \left( e^{Ht}\right) ^{T}e^{Ht}=\mathfrak 1 \) \end_inset \newline \begin_inset Formula \( \left( e^{Ht}\right) ^{T}e^{Ht}=e^{-Ht}e^{Ht}=e^{\mathfrak 0}=\mathfrak 1 \) \end_inset \layout Problem \line_top Man bestimme durch Reihenentwicklung zwei unabhängige Lösungen von \begin_inset Formula \( \ddot{x}=tx \) \end_inset . Sind die Reihen für numerische Zwecke gut geeignet? \layout Standard \begin_inset Formula \begin{eqnarray*} x\left( t\right) & = & tx=a_{0}+a_{1}t+a_{2}t^{2}+a_{3}t^{3}+...\\ \dot{x}\left( t\right) & = & a_{1}+2a_{2}t+3a_{3}t^{2}+4a_{4}t^{3}+....\\ \ddot{x}\left( t\right) =tx\left( t\right) & = & 0+2a_{2}+6a_{2}t+12a_{4}t^{2}\\ \Rightarrow a_{2} & = & 0\\ a_{n+3} & = & \frac{1}{\left( n+3\right) \left( n+2\right) }a_{n}\forall n\in \mathbb N\\ a_{2} & = & a_{5}=a_{8}=...=0\\ x\left( t\right) & = & a_{0}\left( 1+\frac{t^{3}}{3\cdot 2}+\frac{t^{6}}{\left( 6\cdot 5\right) \left( 3\cdot 2\right) }+...\right) +\\ & & +a_{1}\left( t+\frac{t^{4}}{3\cdot 4}+\frac{t^{7}}{\left( 6\cdot 7\right) \left( 3\cdot 4\right) }+...\right) \end{eqnarray*} \end_inset Vergleich mit Potenzreihe \begin_inset LatexCommand \index{Potenzreihe} \end_inset : Konvergenz sehr gut, besonders für kleine t. \newline Für negative T: Leipnitzkriterium: \begin_inset Formula \( \sum _{n=0}^{\infty }\left( -1\right) ^{n}a_{n};\, a_{n}\geq a_{n+1}\rightarrow 0;\, \left| R_{n}\right| =\left| \sum _{i=n+1}^{\infty }\left( -1\right) ^{i}a_{i}\right| \leq a_{n+1};\, sgn\, R_{n}=\left( -1\right) ^{n+1}. \) \end_inset \begin_inset Formula \begin{eqnarray*} x_{1}\left( t\right) & = & 1+\frac{t^{3}}{3\cdot 2}+\frac{t^{6}}{\left( 6\cdot 5\right) \left( 3\cdot 2\right) }+...\\ x_{2}\left( t\right) & = & 1+\frac{t^{4}}{3\cdot 4}+\frac{t^{7}}{\left( 6\cdot 7\right) \left( 3\cdot 4\right) }+... \end{eqnarray*} \end_inset Zwei linear unabhängige Lsg. bilden eine Basis. \begin_inset Formula \begin{eqnarray*} x\left( t\right) & = & a_{0}x_{1}\left( t\right) +a_{1}x_{2}\left( t\right) \\ & & \forall a_{0},a_{1}\in \mathbb R \end{eqnarray*} \end_inset \layout Note \line_top Ist \begin_inset Formula \( \phi \) \end_inset eine Fundamentalmatrix \begin_inset LatexCommand \index{Fundamentalmatrix} \end_inset der homogenen \begin_inset LatexCommand \index{homogenen} \end_inset Gleichung \begin_inset Formula \( \dot{x}=Ax, \) \end_inset so ist \begin_inset Formula \[ x_{p}\left( t\right) :=\phi \left( t\right) \cdot c\left( t\right) \, mit\, c:=\int \phi \left( s\right) ^{-1}b\left( s\right) ds\] \end_inset eine Lösung der inhomogenen \begin_inset LatexCommand \index{inhomogenen} \end_inset Gleichung \begin_inset Formula \( \dot{x}=Ax+b \) \end_inset . \layout Problem \line_top Man bestimme die Lösung des Anfangswertproblems \begin_inset LatexCommand \index{Anfangswertproblems} \end_inset : \begin_inset Formula \begin{eqnarray*} \left( \begin{array}{c} x\\ y \end{array}\right) ^{*} & = & \left( \begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right) \cdot \left( \begin{array}{c} x\\ y \end{array}\right) +\left( \begin{array}{c} 0\\ 3t+1 \end{array}\right) \\ \left( \begin{array}{c} x\\ y \end{array}\right) \left( 0\right) & = & \left( \begin{array}{c} 0\\ 3 \end{array}\right) \end{eqnarray*} \end_inset \layout Standard Fundamentalmatrix \begin_inset LatexCommand \index{Fundamentalmatrix} \end_inset : \begin_inset Formula \begin{eqnarray*} \phi \left( t\right) & = & e^{t\left( \begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right) }=\left( \begin{array}{cc} cos\, t & -sin\, t\\ sin\, t & cos\, t \end{array}\right) \\ c & = & \int _{0}^{s}\left( \begin{array}{cc} cos\, t & sin\, t\\ -sin\, t & cos\, t \end{array}\right) \left( \begin{array}{c} 0\\ 3t+1 \end{array}\right) dt=\int _{0}^{s}\left( 3t+1\right) \left( \begin{array}{c} sin\, t\\ cos\, t \end{array}\right) dt=\\ & = & 3\int _{0}^{s}\left( \begin{array}{c} t\, sin\, t\\ t\, cos\, t \end{array}\right) dt+\int _{0}^{s}\left( \begin{array}{c} sin\, t\\ cos\, t \end{array}\right) dt=3\left[ \left( \begin{array}{c} sin\, t-t\, cos\, t\\ cos\, t+t\, sin\, t \end{array}\right) \right] _{0}^{s}+\left[ \left( \begin{array}{c} -cos\, t\\ sin\, t \end{array}\right) \right] _{0}^{s}=\\ & = & 3\left( \begin{array}{c} sin\, s-s\, cos\, s\\ cos\, s+s\, sin\, s-1 \end{array}\right) +\left( \begin{array}{c} -cos\, s+1\\ sin\, s \end{array}\right) =\left( \begin{array}{c} 3sin\, s-3s\, cos\, s-cos\, s+1\\ 3cos\, s+3s\, sin\, s+sin\, s-3 \end{array}\right) =\\ & = & \left( 3s+1\right) \left( \begin{array}{c} -cos\, s\\ sin\, s \end{array}\right) +\left( \begin{array}{c} 3sin\, s+1\\ 3cos\, s-3 \end{array}\right) \\ x_{p}\left( t\right) & = & \left( \begin{array}{cc} cos\, s & -sin\, s\\ sin\, s & cos\, s \end{array}\right) \left( \begin{array}{c} 3sin\, s-3s\, cos\, s-cos\, s+1\\ 3cos\, s+3s\, sin\, s+sin\, s-3 \end{array}\right) =\\ & = & \left( \begin{array}{c} 3sin\, s\, cos\, s-3s\, cos^{2}s-cos^{2}s+cos\, s-3sin\, s\, cos\, s-3s\, sin^{2}s-sin^{2}s+3sin\, s\\ 3sin^{2}s-3s\, sin\, s\, cos\, s-sin\, s\, cos\, s+sin\, s+3cos^{2}s+3s\, sin\, s\, cos\, s+sin\, s\, cos\, s-3cos\, s \end{array}\right) =\\ & = & \left( \begin{array}{c} +cos\, s-3s+3sin\, s-1\\ +sin\, s-3cos\, s+3 \end{array}\right) \end{eqnarray*} \end_inset Die allgemeine Lösung des AWP ist \begin_inset Formula \begin{eqnarray*} \left( \begin{array}{c} x\\ y \end{array}\right) & = & x_{p}+\phi \left( t\right) \left( \begin{array}{c} c_{1}\\ c_{2} \end{array}\right) =\\ & = & \left( \begin{array}{c} cos\, s-3s+3sin\, s-1\\ sin\, s-3cos\, s+3 \end{array}\right) +c_{1}\left( \begin{array}{c} cos\, s\\ sin\, s \end{array}\right) +c_{2}\left( \begin{array}{c} -sin\, s\\ cos\, s \end{array}\right) =\\ & = & \left( \begin{array}{c} cos\, s-3s+3sin\, s-1\\ sin\, s-3cos\, s+3 \end{array}\right) +3\left( \begin{array}{c} -sin\, s\\ cos\, s \end{array}\right) =\left( \begin{array}{c} cos\, s-3s-1\\ sin\, s+3 \end{array}\right) =\\ \left( \begin{array}{c} x\\ y \end{array}\right) \left( 0\right) & = & \left( \begin{array}{c} 0\\ 3 \end{array}\right) \, \surd \\ \left( \begin{array}{c} cos\, s-3s-1\\ sin\, s+3 \end{array}\right) ^{*} & = & \left( \begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right) \cdot \left( \begin{array}{c} cos\, s-3s-1\\ sin\, s+3 \end{array}\right) +\left( \begin{array}{c} 0\\ 3t+1 \end{array}\right) \, \surd \end{eqnarray*} \end_inset \layout Problem \line_top Sei \begin_inset Formula \( A\in \mathbb C^{n\times n} \) \end_inset und \begin_inset Formula \( \) \end_inset . Man zeige: \newline Falls \begin_inset Formula \( \alpha \) \end_inset kein Eigenwert von A ist, hat die Differentialgleichung \begin_inset Formula \[ \dot{x}=Ax+e^{at}\cdot c\] \end_inset genau eine Lösung der Form \begin_inset Formula \( x\left( t\right) =e^{at}\cdot d \) \end_inset mit \begin_inset Formula \( d\in \mathbb C^{n} \) \end_inset . \layout Standard \begin_inset Formula \begin{eqnarray*} e^{at}d & = & ae^{at}\cdot d\\ A\left( e^{at}d\right) +e^{at}\cdot c & = & e^{at}\left( Ad-c\right) \\ e^{at}ad & = & e^{at}\left( Ad-c\right) \\ ad & = & Ad+c,\, da\, e^{at}\left( Ad+c\right) \\ -c & = & Ad-qd\\ -c & = & \left( A-a\mathbb E\right) d \end{eqnarray*} \end_inset \begin_inset Formula \( \alpha \) \end_inset kein Eigenwert \begin_inset Formula \( \Rightarrow d:=\left( A-a\mathbb E\right) ^{-1}\cdot c \) \end_inset eindeutig. \newline \begin_inset Formula \( \alpha \) \end_inset ein Eigenwert \layout Problem \line_top Man diskutiere die Gleichung zweiter Ordnung \begin_inset Formula \[ \ddot{x}=-\left( x-\frac{1}{2}x^{2}\right) .\] \end_inset \layout Enumerate Wie lautet das assoziierte \begin_inset LatexCommand \index{assoziierte} \end_inset System erster Ordnung? \layout Enumerate Man ermittle dazu ein erstes Integral und diskutiere qualitativ dessen Niveaulin ien in der nähe der kritischen Stellen. \layout Enumerate Man berechne explizit die Niveaulinien. \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} \left\{ \begin{array}{c} x_{0}:=x\\ x_{1}:=\dot{x} \end{array}\right\} & \Rightarrow & \left( \begin{array}{c} x_{0}\\ x_{1} \end{array}\right) ^{*}=\left( \begin{array}{c} \dot{x}_{0}\\ \dot{x}_{1} \end{array}\right) =\left( \begin{array}{c} \dot{x}_{1}\\ -\left( x-\frac{1}{2}x^{2}\right) \end{array}\right) \\ bezeichne:\, \left( \begin{array}{c} x_{0}\\ x_{1} \end{array}\right) =\left( \begin{array}{c} x\\ y \end{array}\right) & \Rightarrow & \left( \begin{array}{c} x\\ y \end{array}\right) ^{*}=\left( \begin{array}{c} y\\ -\left( x-\frac{1}{2}x^{2}\right) \end{array}\right) \end{eqnarray*} \end_inset \layout Enumerate E sei erstes Integral \begin_inset Formula \( E\left( x\left( t\right) ,y\left( t\right) \right) =const \) \end_inset . \begin_inset Formula \begin{eqnarray*} \frac{d}{dt}E & \Rightarrow & Ex\dot{x}+Ey\dot{y}=0\\ grad\, E\cdot \left( \begin{array}{c} x\\ y \end{array}\right) & = & 0\\ \nabla E & \perp & \left( \begin{array}{c} y\\ -\left( x-\frac{1}{2}x^{2}\right) \end{array}\right) \\ Ansatz:\, E_{x} & = & \left( x-\frac{1}{2}x^{2}\right) \\ E_{y} & = & y \end{eqnarray*} \end_inset kritischer Punkt für E; \begin_inset Formula \( grad\, E=0 \) \end_inset \hfill \begin_inset Formula \( E\left( x,y\right) =\frac{1}{2}x^{2}-\frac{1}{6}x^{3}+\frac{1}{2}y^{2} \) \end_inset \begin_inset Formula \begin{eqnarray*} E_{y} & = & y=0\\ E_{x} & = & x\frac{1}{2}x^{2}=0\\ \Rightarrow 2\, krit.\, Punkte & & \left( x,y\right) =\{\begin{array}{c} \left( 0,0\right) \\ \left( 2,0\right) \end{array} \end{eqnarray*} \end_inset Lösungskurven verlaufen in den Niveumengen \begin_inset Formula \( E^{-1}\left( \left\{ \left( 0,0\right) \right\} \right) \) \end_inset und \begin_inset Formula \( E^{-1}\left( \left\{ \left( 2,0\right) \right\} \right) \) \end_inset . Mit dem Lemma von Morse folgt wegen \begin_inset Formula \begin{eqnarray*} \left( x,y\right) & = & \left( \begin{array}{cc} 1-x & 0\\ 0 & 1 \end{array}\right) \, \, \, \, \, \, \, \, Hessematrix\\ E''\left( 0,0\right) & = & \left( \begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \, \, \, \, \, \, positiv\, definit, \end{eqnarray*} \end_inset daß die Lösungskurven in einer Umgebung von \begin_inset Formula \( \left( 0,0\right) \) \end_inset auf \begin_inset Formula \( \) \end_inset -Deformierten Kreisen verlaufen. E ist äquivalent zu \begin_inset Formula \( \tilde{E}\left( u,v\right) =u^{2}+v^{2} \) \end_inset in Umgebung von \begin_inset Formula \( \left( 0,0\right) . \) \end_inset \begin_inset Formula \begin{eqnarray*} E''\left( 2,0\right) & = & \left( \begin{array}{cc} -1 & 0\\ 0 & 1 \end{array}\right) \\ \tilde{E}\left( u,v\right) & = & u^{2}+v^{2} \end{eqnarray*} \end_inset Niveaulinie heißt nicht Lösungskurve!, denn die Lösung läuft in unendlich langer Zeit zu \begin_inset Formula \( \left( 2,0\right) \) \end_inset . In \begin_inset Formula \( \left( 2,0\right) \) \end_inset steht konstante Lösung. \begin_inset Formula \begin{eqnarray*} E\left( x,y\right) & = & \frac{1}{2}x^{2}-\frac{1}{6}x^{3}+\frac{1}{2}y^{2}\\ E^{-1}\left( \left\{ \left( 0,0\right) \right\} \right) & = & \left\{ \left( x,y\right) :y=\pm \sqrt{\frac{1}{3}x^{3}-x^{2}}\right\} \\ E^{-1}\left( \left\{ \left( 2,0\right) \right\} \right) & = & \left\{ \left( x,y\right) :y=\pm \sqrt{\frac{4}{3}+\frac{1}{3}x^{3}-x^{2}}\right\} \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \[ y=\pm \left| x\right| \sqrt{\frac{1}{3}x-1}\] \end_inset \layout Problem \line_top Sei A eine reelle \begin_inset Formula \( 3\times 3 \) \end_inset -Matrix mit Eigenwerten \begin_inset Formula \( -\lambda \pm i\mu \) \end_inset und \begin_inset Formula \( -\lambda \) \end_inset , wobei \begin_inset Formula \( \lambda ,\gamma ,\mu \in \mathbb R_{+}. \) \end_inset Man skizziere die Integralkurven des Vektorfeldes \begin_inset Formula \( v:\mathbb R^{3}\rightarrow \mathbb R^{3},\, v\left( x\right) =Ax \) \end_inset , und untersuche sie für \begin_inset Formula \( t\rightarrow \infty \) \end_inset . \layout Standard \SpecialChar ~ \layout Problem \line_top Man zeige für \begin_inset Formula \( A\in \mathbb C^{n\times n} \) \end_inset : \begin_inset Formula \[ det\, e^{A}=e^{Spur\, A}\] \end_inset \layout Enumerate direkt unter Verwendung der Beziehung \begin_inset Formula \( e^{T^{-1}AT}=T^{-1}e^{A}T \) \end_inset . \layout Enumerate mit Hilfe der Formel von Liouville \begin_inset LatexCommand \index{Liouville} \end_inset . \layout Standard \SpecialChar ~ \layout Enumerate Wähle \begin_inset Formula \( T\in \mathbb C^{n\times n} \) \end_inset invertierbar, so daß \begin_inset Formula \( T^{-1}AT \) \end_inset Jordan-Normalform. \begin_inset Formula \begin{eqnarray*} T^{-1}AT & = & \left( \begin{array}{ccc} \lambda _{1} & & *\\ & \ddots & \\ 0 & & \lambda _{n} \end{array}\right) =X\\ X^{2} & = & \left( \begin{array}{ccc} \lambda _{1}^{2} & & *\\ & \ddots & \\ 0 & & \lambda _{n}^{2} \end{array}\right) \\ e^{X} & = & \left( \begin{array}{ccc} e^{\lambda _{1}} & & *\\ & \ddots & \\ 0 & & e^{\lambda _{n}} \end{array}\right) \\ det\, e^{A} & = & det\, e^{X}=\prod _{k=1}^{n}e^{\lambda _{k}}=e^{\sum _{k=0}^{n}\lambda _{k}}=e^{tr\, X}=e^{tr\, A} \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} \frac{d}{dt}vol_{n}\left( \phi _{t}\left( M\right) \right) & = & \int _{M}div\, v\left( \phi _{t}\left( x\right) \right) \left[ det\, \phi '\left( x\right) \right] dx\\ & & \end{eqnarray*} \end_inset Wähle v so, daß \begin_inset Formula \( \phi _{t}\left( x\right) =e^{At}x, \) \end_inset d.h. wähle \begin_inset Formula \( v\left( x\right) =Ax \) \end_inset . \begin_inset Formula \begin{eqnarray*} \frac{d}{dt}vol_{M}\left( e^{At}M\right) & = & \int _{M}div\, v\left( e^{At}x\right) \cdot det\left( e^{At}\cdot \mathbb 1\right) dx\\ \frac{d}{dt}\left( det\, e^{At}\cdot vol\left( M\right) \right) & = & \int _{M}tr\left( A\right) \cdot det\, e^{At}dx\\ \frac{d}{dt}\left( det\, e^{At}\right) \cdot vol\left( M\right) & = & tr\, A\, det\, e^{At}\int _{M}dx\\ \frac{d}{dt}det\, e^{At} & = & tr\, A\, det\, e^{At}\\ \Rightarrow f\left( t\right) & = & const\cdot e^{tr\, A\cdot t} \end{eqnarray*} \end_inset \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man beschreibe die Zustandsabbildung \begin_inset Formula \( \phi _{t} \) \end_inset für das Vektorfeld \begin_inset Formula \( v\left( \begin{array}{c} x\\ y \end{array}\right) =\left( \begin{array}{cc} 1 & -1\\ 1 & 1 \end{array}\right) \left( \begin{array}{c} x\\ y \end{array}\right) . \) \end_inset \layout Enumerate Wie sehen die Bildmengen des Quadrates \begin_inset Formula \( Q=\left\{ \left( x,y\right) :\left| x-2\right| \leq 1,\left| y\right| \leq 1\right\} \) \end_inset unter \begin_inset Formula \( \phi _{1} \) \end_inset und \begin_inset Formula \( \phi _{2} \) \end_inset aus? \layout Enumerate Verifizieren Sie, daß die Divergenz des Vektorfeldes v konstant ist. Was folgt daraus für die Flächeninhalte von \begin_inset Formula \( \phi _{t}\left( A\right) \) \end_inset für eine Teilmenge \begin_inset Formula \( a\subset \mathbb R^{2} \) \end_inset ? Verifizieren Sie Ihr Ergebnis am Beispiel des obigen Quadrats Q. \layout Problem \line_top Sei \begin_inset Formula \( \alpha :I\rightarrow \mathbb R \) \end_inset eine stetige Funktion ohne Nullstelle auf einem Intervall \begin_inset Formula \( I\subset \left[ 0,\infty \right) \) \end_inset . Man ermittle für das Vektorfeld \begin_inset Formula \[ v\left( \begin{array}{c} x\\ y \end{array}\right) =\alpha \left( r\right) \cdot \left( \begin{array}{c} -y\\ x \end{array}\right) \, mit\, r:=\sqrt{x^{2}+y^{2}}\] \end_inset auf dem Kreisring \begin_inset Formula \( K_{1}:=\left\{ \left( x,y\right) \in \mathbb R^{2}:\sqrt{x^{2}+y^{2}}\in I\right\} \) \end_inset einen globalen Fluß \begin_inset Formula \( \phi :\mathbb R\times K_{I}\rightarrow \mathbb R^{2}. \) \end_inset \layout Standard \SpecialChar ~ \layout Problem \line_top Seien \begin_inset Formula \( \omega ,\omega _{1},\omega _{2} \) \end_inset 1-Formen und f eine Funktion auf \begin_inset Formula \( U\subset \mathbb R^{n}. \) \end_inset Man definiert 1-Formen auf \begin_inset Formula \( \omega _{1}+\omega _{2}\, und\, f\omega \) \end_inset durch \begin_inset Formula \begin{eqnarray*} \left( \omega _{1}+\omega _{2}\right) & := & \omega _{1}\left( x\right) h+\omega _{2}\left( x\right) h\\ \left( f\omega \right) \left( x\right) h & := & f\left( x\right) \omega \left( x\right) h. \end{eqnarray*} \end_inset \layout Enumerate Wie erhält man aus den Koordinatendarstellungen von \begin_inset Formula \( \omega ,\omega _{1}\, und\, \omega _{2} \) \end_inset diejenigen von \begin_inset Formula \( \omega _{1}+\omega _{2} \) \end_inset und \begin_inset Formula \( f\omega \) \end_inset ? \layout Enumerate Wenn \begin_inset Formula \( \omega _{1} \) \end_inset und \begin_inset Formula \( \omega _{2} \) \end_inset exakt sind, dann ist es auch \begin_inset Formula \( \omega _{1}+\omega _{2} \) \end_inset . Gilt analoges für das Produkt \begin_inset Formula \( f\omega \) \end_inset ? \layout Problem \line_top \series bold Techniken zur Berechnung von Stammfunktionen \begin_inset LatexCommand \index{Stammfunktionen} \end_inset \layout Enumerate Durch Integration längs radialer Wege ermittle man eine Stammfunktion zu \begin_inset Formula \[ \omega =\left( x^{2}-yz\right) dx+\left( y^{2}-xz\right) dy-xy\, dz.\] \end_inset \layout Enumerate Es sei \begin_inset Formula \( \omega =f_{1}dx_{1}+f_{2}dx_{2} \) \end_inset eine \begin_inset Formula \( \) \end_inset auf einem Rechteck \begin_inset Formula \( R=I\times J. \) \end_inset Man zeige: \begin_inset Formula \( \omega \) \end_inset besitzt höchsten dann eine Stammfunktion auf R, wenn die sogenannte Integrabili tätsbedingung \begin_inset Formula \( \partial _{1}f_{2}=\partial _{2}f_{1} \) \end_inset ist. Gegebenenfalls ermittle man eine Kandidatin f für eine Stammfunktion durch achsenparallele Integration und zeige, daß \begin_inset Formula \( df=\omega . \) \end_inset \layout Enumerate Anwendung: Man verifiziere, daß die Windungsform \begin_inset Formula \( \omega _{W}=\frac{-y\, dx+x\, dy}{x^{2}+y^{2}} \) \end_inset die Integrabilitätsbedingung auf \begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\} \) \end_inset erfüllt und berechne eine Stammfunktion in der rechten Halbebene. \newline Warum kann \begin_inset Formula \( \omega _{W} \) \end_inset auf \begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\} \) \end_inset keine Stammfunktion haben? \layout Enumerate Man berechne eine Stammfunktion auf der längs der negativen x-Achse geschlitzen Ebenen \begin_inset Formula \( \mathbb R^{2}\smallsetminus S,\, S=\left\{ \left( x,0\right) :x\leq 0\right\} \) \end_inset , durch Integration. \layout Problem \line_top Für eine 1-Form \begin_inset Formula \( \omega =\sum _{i=1}^{n}a_{i}dx_{i} \) \end_inset definiere man \begin_inset Formula \( \left\Vert \omega \left( x\right) \right\Vert _{2}:=\sqrt{\sum _{i=1}^{n}\left| a_{i}\left( x\right) \right| ^{2}} \) \end_inset . Man zeige: Ist \begin_inset Formula \( \omega \) \end_inset eine stetige 1-Form auf U und \begin_inset Formula \( \gamma :\left[ a,b\right] \rightarrow U \) \end_inset ein Integrationsweg, so gilt: \begin_inset Formula \[ \left| \int _{\gamma }\omega \right| \leq \max _{t\in \left[ a,b\right] }\left\Vert \omega \left( \gamma \left( t\right) \right) \right\Vert _{2}\cdot L\left( \gamma \right) ,\] \end_inset wobei \begin_inset Formula \( L\left( \gamma \right) \) \end_inset die Bogenlänge\SpecialChar \@. von \begin_inset Formula \( \gamma \) \end_inset bezeichnet. \layout Standard \SpecialChar ~ \layout Problem \line_top Es sei F ein \begin_inset Formula \( \) \end_inset - bzw. \begin_inset Formula \( \) \end_inset -Vertorfeld auf einer offenen Menge \begin_inset Formula \( U\subset \mathbb R^{3} \) \end_inset . Man zeige: \layout Enumerate Für jeden Vektor \begin_inset Formula \( v\in \mathbb R^{3} \) \end_inset gilt \begin_inset Formula \( rot\left( F\times v\right) =\partial _{v}F-div\, F\cdot v \) \end_inset . \layout Enumerate \begin_inset Formula \( div\, rot\, F=0 \) \end_inset \layout Problem \line_top Berchnen Sie das Differential und die Ableitung von \begin_inset Formula \( f:\mathbb R^{n}\smallsetminus \left\{ 0\right\} \rightarrow \mathbb R \) \end_inset für \layout Enumerate \begin_inset Formula \[ f\left( x\right) =\frac{x^{T}Ax}{\left\Vert x\right\Vert _{2}}\] \end_inset \layout Enumerate \begin_inset Formula \[ f\left( x\right) =e^{-1/\left\Vert x\right\Vert _{2}^{2}}\] \end_inset \layout Standard \SpecialChar ~ \layout Enumerate Siehe auch Problem \begin_inset LatexCommand \ref{xTAx} \end_inset ! \begin_inset Formula \begin{eqnarray*} \partial _{k}\frac{1}{\left\Vert x\right\Vert _{2}} & = & \partial _{k}\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+..+x_{n}^{2}}}=-\frac{x_{k}}{\left\Vert x\right\Vert _{2}^{3}}\\ \left( \frac{1}{\left\Vert x\right\Vert _{2}}\right) '\left( x\right) & = & -\frac{x^{T}}{\left\Vert x\right\Vert _{2}}\\ df\left( x\right) h & = & d\left( x^{T}Ax\cdot \frac{1}{\left\Vert x\right\Vert _{2}}\right) \left( x\right) h=d\left( x^{T}Ax\right) h\cdot \frac{1}{\left\Vert x\right\Vert _{2}}-x^{T}Ax\cdot \frac{x^{T}}{\left\Vert x\right\Vert _{2}^{3}}h=\\ & = & x^{T}\left( A+A^{T}\right) h\cdot \frac{1}{\left\Vert x\right\Vert _{2}}+x^{T}Ax\cdot \frac{x^{T}}{\left\Vert x\right\Vert _{2}}h=\frac{1}{\left\Vert x\right\Vert _{2}}\left( x^{T}Ah+x^{T}A^{T}h-\frac{x^{T}Axx^{T}}{\left\Vert x\right\Vert _{2}^{2}}h\right) =\\ & = & \frac{x^{T}}{\left\Vert x\right\Vert _{2}}\left( A+A^{T}-\frac{Axx^{T}}{\left\Vert x\right\Vert _{2}^{2}}\right) h\\ f'\left( x\right) & = & \frac{x^{T}}{\left\Vert x\right\Vert _{2}}\left( A+A^{T}-\frac{Axx^{T}}{\left\Vert x\right\Vert _{2}^{2}}\right) \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} f\left( x\right) & = & e^{-1/\left\Vert x\right\Vert _{2}^{2}}\\ df\left( x\right) h & = & e^{-1/\left\Vert x\right\Vert _{2}^{2}}\cdot \left( -\frac{2}{\left\Vert x\right\Vert _{2}^{3}}\right) \cdot \frac{x^{T}}{\left\Vert x\right\Vert _{2}}h=\left( -2e^{-1/\left\Vert x\right\Vert _{2}^{2}}\right) \frac{x^{T}}{\left\Vert x\right\Vert _{2}^{4}}h\\ f''\left( x\right) & = & \left( -2e^{-1/\left\Vert x\right\Vert _{2}^{2}}\right) \frac{x^{T}}{\left\Vert x\right\Vert _{2}^{4}}h \end{eqnarray*} \end_inset \layout Problem \line_top Die Funtionen \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset mit \begin_inset Formula \( f\left( 0,0\right) =0 \) \end_inset und \begin_inset Formula \[ f\left( x,y\right) =\frac{xy^{2}}{x^{2}+y^{4}}\] \end_inset ist im Nullpunkt unstetig, hat dort aber Ableitungen in jeder Richtung. \layout Standard \begin_inset Formula \begin{eqnarray*} \partial _{h}f\left( 0,0\right) & = & \lim _{t\rightarrow 0}\frac{f\left( \left( 0,0\right) +t\left( h_{1},h_{2}\right) \right) -f\left( \left( 0,0\right) \right) }{t}=\lim _{t\rightarrow 0}\frac{\left( th_{1}\right) \left( th_{2}\right) ^{2}}{\left[ \left( \left( th_{1}\right) ^{2}+\left( th_{2}\right) ^{4}\right) \right] t}=\\ & = & \lim _{t\rightarrow 0}\frac{t^{3}h_{1}h_{2}^{2}}{\left[ h_{1}^{2}+t^{2}h_{2}^{4}\right] t^{3}}=\lim _{t\rightarrow 0}\frac{h_{1}h_{2}^{2}}{\left[ h_{1}^{2}+t^{2}h_{2}^{4}\right] }=\frac{h_{1}h_{2}^{2}}{h_{1}^{2}}=\frac{h^{2}}{h_{1}}\, falls\, h_{2}\neq 0\\ & = & \lim _{t\rightarrow 0}h_{1}\cdot \frac{h_{2}^{2}}{\left[ t^{2}h_{2}^{4}\right] }=0\, falls\, h_{2}=0\\ & = & 0\, f\ddot{u}r\, h=\left( 0,0\right) \, nV \end{eqnarray*} \end_inset f ist unstetig bei \begin_inset Formula \( \left( 0,0\right) \) \end_inset : \begin_inset Formula \begin{eqnarray*} \left( \varepsilon ^{2},\varepsilon \right) & \mapsto & f\left( \varepsilon ^{2},\varepsilon \right) =\frac{\left( \varepsilon ^{2}\right) ^{2}}{2\varepsilon ^{4}}=\frac{1}{2}\\ \lim _{\varepsilon \rightarrow 0}\left( \varepsilon ^{2},\varepsilon \right) & = & \left( 0,0\right) \\ \lim _{\varepsilon \rightarrow 0}f\left( \varepsilon ^{2},\varepsilon \right) & = & \frac{1}{2} \end{eqnarray*} \end_inset \layout Problem \line_top \SpecialChar ~ \layout Enumerate Bestimmen Sie den Gradienten der Funktion \begin_inset Formula \( f:\mathbb R^{3}\rightarrow \mathbb R,\, \left( x,y,z\right) \mapsto x^{2}y+z \) \end_inset im Punkt \begin_inset Formula \( \left( 2,3,5\right) \) \end_inset bezüglich des Skalarproduktes \begin_inset Formula \[ \left\langle v,w\right\rangle :=v^{T}\left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{array}\right) w.\] \end_inset \layout Enumerate Sei \begin_inset Formula \( \left( G_{ij}\right) \) \end_inset eine positiv definite, symmetrische \begin_inset Formula \( n\times n \) \end_inset -Matrix. Dann definiert \begin_inset Formula \( \left\langle v,w\right\rangle _{G}:=v^{T}\cdot G\cdot w \) \end_inset ein Skalarprodukt auf \begin_inset Formula \( \mathbb R^{n} \) \end_inset . Bestimmen Sie für eine allgemeine Funktion \begin_inset Formula \( g\in \mathbb C^{1}\left( \mathbb R^{n},\mathbb R\right) \) \end_inset den Gradienten \begin_inset Formula \( grad_{G}g\left( a\right) \) \end_inset in einem Punkt a bezüglich dieses Skalarproduktes! \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} \partial _{x}f\left( 2,3,5\right) & = & 12\\ \partial _{y}f\left( 2,3,5\right) & = & 4\\ \partial _{z}f\left( 2,3,5\right) & = & 1\\ df\left( a\right) h=12h_{1}+4h_{2}+h_{3} & = & \left\langle grad\, f\left( a\right) ,h\right\rangle =\left( \alpha ,\beta ,\gamma \right) \left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{array}\right) \left( \begin{array}{c} h_{1}\\ h_{2}\\ h_{3} \end{array}\right) =\\ & = & \alpha h_{1}+3\beta h_{2}+2\gamma h_{3}\\ \Rightarrow & & \alpha =12;\, \beta =\frac{4}{3};\, \gamma =\frac{1}{2}\\ \Rightarrow & & grad\, f\left( a\right) =\left( \begin{array}{c} 12\\ \frac{4}{3}\\ \frac{1}{2} \end{array}\right) \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} \left\langle grad\, g\left( a\right) ,h\right\rangle & = & dg\left( a\right) \cdot h\\ \left[ grad\, g\left( a\right) \right] ^{T}Gh & = & dg\left( a\right) h=\left( \partial _{1}g,\partial _{2}g,...,\partial _{n}g\right) h\\ \left[ grad\, g\left( a\right) \right] ^{T}G & = & \left( \partial _{1}g,\partial _{2}g,...,\partial _{n}g\right) \left( a\right) \\ \left[ grad\, g\left( a\right) \right] ^{T} & = & \left( \partial _{1}g,\partial _{2}g,...,\partial _{n}g\right) G^{-1}=g'\left( a\right) \cdot G^{-1}\\ grad\, g\left( a\right) & = & \left( G^{-1}\right) ^{T}\left( g'\left( a\right) \right) ^{T} \end{eqnarray*} \end_inset \layout Problem \line_top Es sei \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset eine \begin_inset Formula \( \) \end_inset -Funktion. Durch Komposition mit einer Polarkoordinatenabbildung \begin_inset Formula \( P_{2} \) \end_inset bilde man \begin_inset Formula \( F:=f\circ P_{2}, \) \end_inset \begin_inset Formula \[ F\left( r,\varphi \right) =f\left( r\, cos\, \varphi ,r\, sin\, \varphi \right) .\] \end_inset Man zeige: In jedem Punkt \begin_inset Formula \( \left( x,y\right) :=\left( r\, cos\, \varphi ,r\, sin\, \varphi \right) \) \end_inset mit \begin_inset Formula \( r\neq 0 \) \end_inset gilt: \begin_inset Formula \[ \nabla f\left( x,y\right) =\left( F_{rr}+\frac{1}{r^{2}}F_{\varphi \varphi }+\frac{1}{r}F_{r}\right) \left( r,\varphi \right) \] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} F_{r}\left( r,\varphi \right) & = & \frac{\partial }{\partial r}f\left( r\, cos\, \varphi ,r\, sin\, \varphi \right) =\frac{\partial f}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial v}=f_{x}cos\, \varphi +f_{y}sin\, \varphi \\ F_{rr}\left( r,\varphi \right) & = & f_{xx}cos^{2}\varphi +f_{xy}sin\, \varphi \, cos\, \varphi +f_{yx}sin\, \varphi \, cos\, \varphi +f_{yy}sin^{2}\varphi =\\ & = & f_{xx}cos^{2}\varphi +2f_{xy}sin\, \varphi \, cos\, \varphi +f_{yy}sin^{2}\varphi \\ F_{\varphi }\left( r,\varphi \right) & = & -f_{x}r\, sin\, \varphi +f_{y}r\, cos\, \varphi \\ F_{\varphi \varphi }\left( r,\varphi \right) & = & \left[ f_{xx}\left( -r\, sin\, \varphi \right) +f_{xy}r\, cos\, \varphi \right] \left( -r\, sin\, \varphi \right) -f_{x}r\, cos\, \varphi +\\ & & +\left[ f_{yx}\left( -r\, sin\, \varphi \right) +f_{yy}r\, cos\, \varphi \right] \left( r\, cos\, \varphi \right) -f_{y}r\, sin\, \varphi \\ F_{rr}+\frac{1}{r}F_{r}+\frac{1}{r^{2}}F_{\varphi \varphi } & = & ...=f_{xx}\left( cos^{2}\varphi +sin^{2}\varphi \right) +f_{yy}\left( sin^{2}\varphi +cos^{2}\varphi \right) =\nabla f \end{eqnarray*} \end_inset \layout Problem \line_top Sei \begin_inset Formula \( \) \end_inset Dann ist \begin_inset Formula \( \psi :\mathbb R^{n}\times \mathbb R\rightarrow \mathbb R, \) \end_inset \begin_inset Formula \[ \psi \left( x,t\right) :=f\left( \left\langle v,x\right\rangle -c\left\Vert v\right\Vert _{2}t\right) \] \end_inset eine Lösung der Wellengleichung \begin_inset Formula \[ \triangle _{x}\psi =\frac{1}{c^{2}}\psi _{tt}.\] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \frac{\partial }{\partial x_{i}}\psi & = & f'\cdot v_{i}\qquad \triangle _{x}\psi =f''\left( ...\right) \left\Vert v\right\Vert _{2}^{2}\\ \frac{\partial ^{2}}{\partial x_{i}^{2}}\psi & = & f''\cdot v_{i}^{2}\\ \frac{\partial }{\partial t}\psi & = & f'\cdot \left( -c\left\Vert v\right\Vert _{2}\right) \\ \frac{\partial ^{2}}{\partial t^{2}}\psi & = & f''\cdot c^{2}\left\Vert v\right\Vert _{2}^{2}=\psi _{tt}=c^{2}\triangle _{x}\psi \end{eqnarray*} \end_inset \layout Problem \line_top Beispiel für \begin_inset Formula \( \partial _{ij}\neq \partial _{ji}: \) \end_inset \newline Es sei \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset gegeben durch \begin_inset Formula \( f\left( 0,0\right) =0 \) \end_inset und \begin_inset Formula \[ f\left( x,y\right) :=\frac{x^{3}y-xy^{3}}{x^{2}+y^{2}}\, f\ddot{u}r\, \left( x,y\right) \neq \left( 0,0\right) .\] \end_inset Man zeige: \layout Enumerate f ist eine \begin_inset Formula \( \) \end_inset -Funktion auf \begin_inset Formula \( \) \end_inset \layout Enumerate \begin_inset Formula \( \partial _{xy}f \) \end_inset und \begin_inset Formula \( \partial _{yx}f \) \end_inset existieren auf \begin_inset Formula \( \) \end_inset und sind stetig auf \begin_inset Formula \( \mathbb R^{2}\smallsetminus \left\{ 0\right\} \) \end_inset . \layout Enumerate \begin_inset Formula \( \partial _{xy}f\left( 0,0\right) =1 \) \end_inset und \begin_inset Formula \( \partial _{yx}\left( 0,0\right) =-1 \) \end_inset . \layout Standard \SpecialChar ~ \layout Standard \begin_inset Formula \begin{eqnarray*} \partial _{x}f\left( x,y\right) & = & \frac{x^{4}y+4x^{2}y^{3}-y^{4}}{\left( x^{2}+y^{2}\right) ^{2}}\, f\ddot{u}r\, \left( x,y\right) \neq \left( 0,0\right) \\ \partial _{x}f\left( 0,0\right) & = & 0\, f\ddot{u}r\, x=\left( 0,0\right) \\ \partial _{y}f\left( x,y\right) & = & \frac{x\left( x^{4}-4x^{2}y^{2}-y^{4}\right) }{\left( x^{2}+y^{2}\right) ^{2}} \end{eqnarray*} \end_inset für Stetigkeit von \begin_inset Formula \( \partial _{x}f \) \end_inset verwende man \begin_inset Formula \( \frac{x^{2}}{x^{2}+y^{2}}\leq 1,\frac{y^{2}}{x^{2}+y^{2}}\leq 1 \) \end_inset für \begin_inset Formula \( \left( x,y\right) \neq 0 \) \end_inset . \begin_inset Formula \( \left| \partial _{x}f\left( x,y\right) -\partial _{x}f\left( 0,0\right) \right| =\frac{\left| x^{4}y\right| +\left| 4x^{2}y^{2}y\right| +\left| y^{4}y\right| }{\left( x^{2}+y^{2}\right) ^{2}}\leq \left| y\right| +4\left| y\right| +\left| y\right| =6\left| y\right| \leq 6\left\Vert \left( x,y\right) \right\Vert \) \end_inset . Sei \begin_inset Formula \( \varepsilon >0 \) \end_inset . Wähle: \begin_inset Formula \( \delta =\frac{\varepsilon }{6}\Rightarrow \forall \left( x,y\right) \in \mathbb R^{2}:\left\Vert \left( x,y\right) -\left( 0,0\right) \right\Vert <\delta \) \end_inset . \begin_inset Formula \begin{eqnarray*} \left\Vert \partial _{x}f\left( x,y\right) -\partial _{x}f\left( 0,0\right) \right\Vert & < & \varepsilon \\ \partial _{y}\partial _{x}f & = & \frac{x^{6}+9x^{4}y^{2}-9x^{2}y^{4}-y^{6}}{\left( x^{2}+y^{2}\right) ^{3}}\, f\ddot{u}r\, \left( x,y\right) \neq \left( 0,0\right) \\ \left( \partial _{x}f\right) \left( 0,y\right) & = & -y\, f\ddot{u}r\, y\neq 0\, und\, auch\, \partial _{x}f\left( 0,0\right) =0\\ \partial _{y}\partial _{x}f\left( 0,0\right) & = & -1,\, analog\, \partial _{x}\partial _{y}f=1 \end{eqnarray*} \end_inset \layout Problem \line_top \SpecialChar ~ \layout Enumerate Man beweise die folgende Version einer allgemeinen Kettenregel: Seien \begin_inset Formula \( f:U\rightarrow \mathbb R,\, U\subset \mathbb R^{n} \) \end_inset und \begin_inset Formula \( \) \end_inset -Funktionen. Dann ist auch \begin_inset Formula \( g\circ f \) \end_inset eine \begin_inset Formula \( \) \end_inset -Funktion und es gilt: \begin_inset Formula \[ \left( g\circ f\right) '=\left( g'\circ f\right) \cdot f'.\] \end_inset \layout Enumerate Man zeige, daß \begin_inset Formula \( f:K\rightarrow \mathbb R,\, x\mapsto e^{\frac{-1}{1-\left\Vert x\right\Vert _{2}^{2}}} \) \end_inset eine \begin_inset Formula \( \) \end_inset -Funktion ist, wobei \begin_inset Formula \( K:=\left\{ x\in \mathbb R^{N}:\left\Vert x\right\Vert _{2}<1\right\} \) \end_inset . \layout Standard \SpecialChar ~ \layout Enumerate Induktion nach k: \newline \begin_inset Formula \begin{eqnarray*} k=1 & : & \widehat{f_{i}}\left( t\right) =f\left( a+te_{i}\right) \textrm{ differenzierbar}\\ & & \partial _{i}\left( g\circ f\right) \left( a\right) =\frac{d}{dt}\left( g\circ \widehat{f_{i}}\right) \left( a\right) =g'\left( \widehat{f_{i}}\left( a\right) \right) \cdot \widehat{f_{i}}'\left( a\right) =g'\left( f\left( a\right) \right) \partial _{i}f\left( a\right) \in \mathcal C^{1}\\ & & \left( g\circ f\right) \left( a\right) =\left( g'\circ f\right) \left( a\right) \cdot f'\left( a\right) \textrm{ stetig partiell differenzierbar }\Rightarrow \mathcal C^{1}\\ k\rightarrow k+1 & : & \textrm{Seien }f,g\in \mathcal C^{k+1}\textrm{ und die Behauptung bewiesen f}\ddot{\textrm{u}}\textrm{r k}.\\ & & \textrm{Zun}\ddot{\textrm{a}}\textrm{chst f},g\in \mathcal C^{1}\\ & & \Rightarrow \partial _{1}\left( g\circ f\right) =\left( g'\circ f\right) \partial _{i}f\in \mathcal C^{k}\\ & & \Rightarrow \textrm{jedes }\partial _{i_{1}},...,\partial _{i_{k}}f\textrm{ stetig partiell differenzierbar }\Rightarrow \\ & & \Rightarrow \textrm{stetig differenzierbar}\Rightarrow f\in \mathcal C^{k+1} \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} f:\mathbb R^{n}\rightarrow \mathbb R & ; & x\mapsto \left\Vert x\right\Vert _{2}\\ g:\mathbb R\rightarrow \mathbb R & ; & x\mapsto \left\{ \begin{array}{c} e^{\frac{-1}{1-x}}\\ 0 \end{array}\begin{array}{c} \textrm{auf }\left( -1,1\right) \\ sonst \end{array}\right\} \\ \hat{f}:\mathbb R^{n}\rightarrow \mathbb R & ; & x\mapsto \left\Vert x\right\Vert _{2}^{2}\\ \hat{g}:\mathbb R\rightarrow \mathbb R & ; & x\mapsto \left\{ \begin{array}{c} e^{\frac{-1}{1-x}}\\ 0 \end{array}\begin{array}{c} \textrm{auf }\left( -\infty ,1\right) \\ sonst \end{array}\right\} \\ \left( g\circ \hat{f}\right) & \in & \mathcal C^{\infty } \end{eqnarray*} \end_inset \layout Problem \line_top \SpecialChar ~ \layout Enumerate Bestimmen Sie die Differentiale \begin_inset Formula \( d^{\left( 2\right) }\left( f\right) ,d^{\left( 3\right) }\left( f\right) \) \end_inset und die zweiten Ableitungen \begin_inset Formula \( f'' \) \end_inset für die Funktionen \begin_inset Formula \begin{eqnarray*} f:\mathbb R^{2}\rightarrow \mathbb R & ; & \left( x,y\right) \mapsto sin\left( xy\right) \textrm{ im Punkt }\left( \pi ,1\right) \\ g:\mathbb R^{3}\times \mathbb R_{+}\rightarrow \mathbb R & ; & \left( x,y,z\right) \mapsto xy\, ln\left( x\right) \textrm{ im Punkt }\left( 2,-3,1\right) \end{eqnarray*} \end_inset \layout Enumerate Berechnen Sie das Taylorpolynom dritter Ordnung für die Funktion \begin_inset Formula \[ \] \end_inset um den Entwicklungspunkt \begin_inset Formula \( \left( \frac{\pi }{8},\frac{\pi }{16}\right) \) \end_inset . \layout Standard \SpecialChar ~ \layout Enumerate \SpecialChar ~ \layout Enumerate \SpecialChar ~ \layout Problem \line_top Charakterisierung des Laplace-Operators durch die Drehinvarianz: \newline Der Differentialoperator \begin_inset Formula \( \) \end_inset , \begin_inset Formula \[ P\left( D\right) f:=\sum _{i,j=1}^{n}c_{ik}\partial _{i}\partial _{k}f\] \end_inset mit \begin_inset Formula \( c_{ik}\in \mathbb R \) \end_inset habe die folgende Eigenschaft: \newline Für jede \begin_inset Formula \( \) \end_inset -Funktion f auf \begin_inset Formula \( \mathbb R^{n} \) \end_inset und jede orthogonale Matrix \begin_inset Formula \( A\in \mathbb R^{n\times n} \) \end_inset gilt mit der durch \begin_inset Formula \( x\mapsto f\left( Ax\right) \) \end_inset erklärten Funktion \begin_inset Formula \( f_{A}: \) \end_inset \begin_inset Formula \[ \left( P\left( D\right) f_{A}\right) \left( x\right) =\left( P\left( D\right) f\right) \left( Ax\right) \] \end_inset Man zeige: \begin_inset Formula \( P\left( D\right) =c\triangle \) \end_inset mit einer Konstanten \begin_inset Formula \( \) \end_inset . \layout Proof oBdA \begin_inset Formula \( c_{ij}=c_{ji} \) \end_inset für alle i,j, sonst ersetze beide durch \begin_inset Formula \( \frac{c_{ij}+cji}{2}. \) \end_inset \newline Seien nun \begin_inset Formula \( i,j\in \left\{ 1..n\right\} ;\, i\neq j \) \end_inset . Wähle \begin_inset Formula \( f\left( x\right) =x_{i}x_{j} \) \end_inset ; \begin_inset Formula \[ A:=\left( \begin{array}{ccccc} 1 & & & & 0\\ & \ddots & & & \\ & & \left( -1\right) & & \\ & & & \ddots & \\ 0 & & & & 1 \end{array}\right) \] \end_inset \begin_inset Formula \( \partial _{ij}f=\partial _{ji}f=1 \) \end_inset auf \begin_inset Formula \( \mathbb R^{n},\, \partial _{k,l}f=0\, sonst \) \end_inset \newline \begin_inset Formula \( P\left( D\right) f=2c_{ij} \) \end_inset auf ganz \begin_inset Formula \( \) \end_inset \newline Andererseits gilt für \begin_inset Formula \( f_{A}\left( x\right) =f\left( Ax\right) =\left( Ax\right) _{i}\left( Ax\right) _{j}=-x_{i}x_{j} \) \end_inset . \begin_inset Formula \( P\left( D\right) f_{A}=-2c_{ij} \) \end_inset auf ganz \begin_inset Formula \( \mathbb R^{n}. \) \end_inset Insbesondere \begin_inset Formula \begin{eqnarray*} \left( P\left( D\right) f\right) \left( Ax\right) & = & 2c_{ij}\\ \left( P\left( D\right) f_{A}\right) \left( x\right) & = & -2c_{ij}\qquad \Longrightarrow c_{ij}=0 \end{eqnarray*} \end_inset \begin_inset Formula \( P\left( D\right) f=\sum _{i=1}^{n}c_{ii}\partial _{ii}f \) \end_inset \newline Wähle \begin_inset Formula \( f\left( x\right) =x_{1}^{2};\, A\left( x\right) =\left( \begin{array}{ccccc} 0 & & 1 & & \\ & 1 & & & \\ 1 & & 0 & & \\ & & & \ddots & \\ & & & & 1 \end{array}\right) \, \left( i-te\, Zeile\right) \) \end_inset \newline \begin_inset Formula \( \partial _{1}\partial _{1}f=2\textrm{ auf ganz }\mathbb R;\, \partial _{i}\partial _{j}f=0\textrm{ f}\ddot{\textrm{u}}\textrm{r j}\neq 1 \) \end_inset \newline \begin_inset Formula \( P\left( D\right) f=2c_{11} \) \end_inset insbesondere \begin_inset Formula \( \left( P\left( D\right) f\right) \left( Ax\right) =2c_{11} \) \end_inset \newline \begin_inset Formula \( f_{A}\left( x\right) =f\left( Ax\right) =\left[ \left( Ax\right) _{1}\right] ^{2}=x_{i}^{2} \) \end_inset \newline \begin_inset Formula \( \left( P\left( D\right) f_{A}\right) \left( x\right) =2c_{ii} \) \end_inset \newline \begin_inset Formula \( \left( P\left( D\right) \left( f_{A}\right) \right) \left( x\right) =2c_{ii}=2c_{11} \) \end_inset \newline \begin_inset Formula \( \Rightarrow c_{ii}=c\, \forall i\in \left\{ 1..n\right\} \Rightarrow P\left( D\right) =c\triangle \) \end_inset \layout Problem \line_top Man zeige: Wenn \begin_inset Formula \( f:\mathbb R^{2}\smallsetminus \left\{ 0\right\} \rightarrow \mathbb R \) \end_inset harmonisch ist, dann auch \begin_inset Formula \( g:\mathbb R^{2}\smallsetminus \left\{ 0\right\} \rightarrow \mathbb R,x\mapsto f\left( \frac{x}{\left\Vert x\right\Vert _{2}^{2}}\right) \) \end_inset . \layout Standard \begin_inset Formula \begin{eqnarray*} g\left( x\right) & = & f\left( h\left( x\right) \right) \textrm{ mit h}\left( \textrm{x}\right) =\frac{x}{\left\Vert x\right\Vert _{2}^{2}}=\frac{\left( x_{1},x_{2}\right) ^{T}}{x_{1}^{2}+x_{2}^{2}}\\ h_{1} & = & \frac{\left( 1,0\right) \left( x_{1}^{2}+x_{2}^{2}\right) -\left( x_{1},x_{2}\right) \cdot 2x_{1}}{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}=\frac{\left( x_{2}^{2}-x_{1}^{2},-2x_{1}x_{2}\right) }{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}\\ h_{2} & = & \frac{\left( -2x_{1}x_{2},-x_{2}^{2}+x_{1}^{2}\right) }{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}\, \textrm{aus Symmetrie }\\ h_{11} & = & \frac{\left( -2x_{1},-2x_{2}\right) \left( x_{1}^{2}+x_{2}^{2}\right) ^{2}-\left( x_{2}^{2}-x_{1}^{2},-2x_{1}x_{2}\right) 2\left( x_{1}^{2}+x_{2}^{2}\right) \cdot 2x_{1}}{\left( x_{1}^{2}+x_{2}^{2}\right) ^{2}}=\\ & = & \frac{\left( 2x_{1}^{3}-6x_{1}x_{2}^{2},-2x_{2}^{3}+6x_{1}^{2}x_{2}\right) }{\left( x_{1}^{2}+x_{2}^{2}\right) ^{3}}\\ h_{22} & = & \frac{\left( -2x_{1}^{3}+6x_{1}x_{2}^{2},2x_{2}^{3}-6x_{1}^{2}x_{2}\right) }{\left( x_{1}^{2}+x_{2}^{2}\right) ^{3}}\\ \Rightarrow & & Ah=h_{11}+h_{22}=0\Rightarrow \textrm{ h ist harmonisch} \end{eqnarray*} \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \triangle g & = & g_{11}+g_{22}\\ g_{1} & = & f_{1}h_{1}+f_{2}h_{2}\\ g_{11} & = & f_{11}h_{1}^{2}+h_{12}h_{1}^{2}+f_{1}h_{11}+f_{12}h_{1}^{2}+f_{22}h_{1}^{2}+f_{2}h_{11}\\ g_{22} & = & f_{22}h_{2}^{2}+f_{12}h_{2}^{2}+f_{2}h_{22}+f_{12}h_{2}^{2}+f_{11}h_{2}^{2}+f_{1}h_{22}\\ \triangle g & = & g_{11}+g_{22}=f_{11}h_{1}^{2}+h_{12}h_{1}^{2}+f_{1}h_{11}+f_{12}h_{1}^{2}+f_{22}h_{1}^{2}+f_{2}h_{11}+\\ & & +f_{22}h_{2}^{2}+f_{12}h_{2}^{2}+f_{2}h_{22}+f_{12}h_{2}^{2}+f_{11}h_{2}^{2}+f_{1}h_{22}=\\ & = & \left( f_{11}+f_{22}\right) \left( h_{1}^{2}+h_{2}^{2}\right) +\left( f_{1}+f_{2}\right) \left( h_{11}^{2}+h_{22}^{2}\right) +2f_{12}\left( h_{1}^{2}+h_{2}^{2}\right) =\\ & = & 2f_{12}\left( h_{1}^{2}+h_{2}^{2}\right) \end{eqnarray*} \end_inset \begin_inset Formula \( \Rightarrow g \) \end_inset harmonisch \layout Problem \line_top Man untersuche Folgende Funktion auf Extrema: \begin_inset Formula \[ f\left( x,y,z\right) =x^{2}+y^{2}+z^{2}-2xyz\textrm{ auf }\mathbb R^{3}\] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} \partial _{x}f\left( x,y,z\right) & = & 2x-2yz\\ \partial _{y}f\left( x,y,z\right) & = & 2y-2xz\\ \partial _{z}f\left( x,y,z\right) & = & 2z-2xy\\ grad\, f & = & 0\, \Leftrightarrow \left( \begin{array}{c} 2x-2yz\\ 2y-2xz\\ 2z-2xy \end{array}\right) =0\Leftrightarrow \left\{ \begin{array}{c} x=yz\\ y=xz\\ z=xy \end{array}\right\} \Rightarrow \left\{ \begin{array}{c} y^{2}=1\\ x^{2}=1\\ z^{2}=1 \end{array}\right\} \\ Extrema & : & P\left( x,y,z\right) \, mit\, \left| x\right| =\left| y\right| =\left| z\right| =1;\, xyz=1\\ & & P\left( 0,0,0\right) \\ f''\left( x,y,z\right) & = & \left( \begin{array}{ccc} 2 & -2z & -2y\\ -2z & 2 & -2x\\ -2y & -2x & 2 \end{array}\right) \\ f''\left( 0,0,0\right) & = & \left( \begin{array}{ccc} 2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{array}\right) \textrm{ positiv definit }\Rightarrow Minimum\, \left( 0,0,0\right) \\ f''\left( 1,1,1\right) & = & \left( \begin{array}{ccc} 2 & -2 & -2\\ -2 & 2 & -2\\ -2 & -2 & 2 \end{array}\right) \\ & & \end{eqnarray*} \end_inset \layout Standard Eigenwerte: \begin_inset Formula \begin{eqnarray*} det\left( f''\left( 1,1,1\right) -\lambda \mathbb E\right) & = & \left( 2-\lambda \right) ^{3}-8\cdot 2-4\left( 2-\lambda \right) \cdot 3=\\ & = & 8-12\lambda +6\lambda ^{2}-\lambda ^{3}-16-24+12\lambda =\lambda ^{3}+6\lambda ^{2}-32=0\\ \Rightarrow \lambda _{1} & = & -2\\ \lambda _{2|3} & = & 4\\ & \Rightarrow & Sattelpunkt\, in\, \left( 1,1,1\right) \\ f''\left( -1,-1,1\right) & = & \left( \begin{array}{ccc} 2 & -2 & 2\\ -2 & 2 & 2\\ 2 & 2 & 2 \end{array}\right) \\ det\left( f''\left( 1,1,1\right) -\lambda \mathbb E\right) & = & \left( 2-\lambda \right) ^{3}-16-12\left( 2-\lambda \right) =0\\ \Rightarrow \lambda _{1} & = & -2\\ \lambda _{2|3} & = & 4\\ & \Rightarrow & Sattelpunkt\, in\, \left( 1,1,1\right) \end{eqnarray*} \end_inset Da jede der drei Koordinaten in der exakt gleichen Form auftreten, gilt analog: \newline \begin_inset Formula \( \left( -1,1,-1\right) \) \end_inset und \begin_inset Formula \( \left( 1,-1,-1\right) \) \end_inset usw. sind Sattelpunkte. \layout Problem \line_top Man zeige, daß die Funktion \begin_inset Formula \( f:\mathbb R^{2}\rightarrow \mathbb R \) \end_inset , \begin_inset Formula \[ f\left( x,y\right) =\left( y-x^{2}\right) \left( y-3x^{2}\right) \] \end_inset in \begin_inset Formula \( \left( 0,0\right) \) \end_inset kein lokales Minimum hat, daß aber ihre sämtlichen Beschränkungen auf die Geraden durch \begin_inset Formula \( \left( 0,0\right) \) \end_inset dort isolierte lokale Minima haben. \layout Standard \begin_inset Formula \begin{eqnarray*} f\left( x,y\right) & = & \left( y-x^{2}\right) \left( y-3x^{2}\right) =y^{2}-4x^{2}y+3x^{4}\\ f_{x}\left( x,y\right) & = & -8xy+12x^{3};\, f_{xx}=-8y+36x^{2}\\ f_{y}\left( x,y\right) & = & 2y-4x^{2};\, f_{yy}=2\\ f_{xy}\left( x,y\right) & = & f_{yx}\left( x,y\right) =-8x\\ \nabla f\left( 0,0\right) & = & \left( 0,0\right) \\ f''\left( 0,0\right) & = & \left( \begin{array}{cc} 0 & 0\\ 0 & 2 \end{array}\right) \Rightarrow Eigenwerte\, \lambda _{1}=2;\lambda _{2}=0\Rightarrow \textrm{keine Aussage}\\ f\left( \varepsilon ,\varepsilon ^{2}\right) & = & \left( \varepsilon ^{2}-\varepsilon ^{2}\right) \left( \varepsilon ^{2}-3\varepsilon ^{2}\right) =0;\, f\left( 0,0\right) =0\\ \Rightarrow & & \textrm{bez}\ddot{\textrm{u}}\textrm{glich Parabel besitzt f in }\left( 0,0\right) \textrm{ kein lokales Minimum}\\ f\left( x,ax\right) & = & a^{2}x^{2}-4ax^{3}+3x^{4}\\ f_{x}\left( x,ax\right) & = & 2a^{2}x-12ax^{2}+12x^{3}=0\, in\, \left( 0,0\right) \\ f_{xx}\left( x,ax\right) & = & 2a^{2}-24ax+36x^{2}>0\, \forall a\neq 0\, in\, \left( 0,0\right) \\ f\left( x,0\right) & = & 3x^{4}\textrm{ besitzt in }\left( 0,0\right) \textrm{ Minimum}\\ \Rightarrow & & \textrm{ f hat in }\left( 0,0\right) \textrm{ zu jeder Geraden ein Minimum} \end{eqnarray*} \end_inset \layout Problem \line_top Man untersuche folgende Funktionen auf Extrema (auch Randextrema): \begin_inset Formula \[ g\left( x,y\right) =y\left( x-1\right) e^{-\left( x^{2}-y^{2}\right) }\textrm{ auf }\left[ 0;\infty \right) \times \mathbb R\] \end_inset \layout Standard \begin_inset Formula \begin{eqnarray*} g\left( x,y\right) & = & yxe^{-\left( x^{2}+y^{2}\right) }-ye^{-x^{2}+y^{2}}\\ \partial _{x}g\left( x,y\right) & = & ye^{-\left( x^{2}+y^{2}\right) }-2x^{2}ye^{-\left( x^{2}+y^{2}\right) }+2xye^{-\left( x^{2}+y^{2}\right) }=\left( -2x^{2}y+2xy+y\right) e^{-\left( x^{2}+y^{2}\right) }\\ \partial _{y}g\left( x,y\right) & = & xe^{-\left( x^{2}+y^{2}\right) }-2xy^{2}e^{-\left( x^{2}+y^{2}\right) }-e^{-\left( x^{2}+y^{2}\right) }+2y^{2}e^{-\left( x^{2}+y^{2}\right) }=\\ & & =\left( -2xy^{2}+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) }\\ \partial _{xx}g\left( x,y\right) & = & \left( -4xy+2y\right) e^{-\left( x^{2}+y^{2}\right) }-2x\left( -2x^{2}y+2xy+y\right) e^{-\left( x^{2}+y^{2}\right) }=\\ & = & 2y\left( 1+2x^{3}-2x^{2}-3x\right) e^{-\left( x^{2}+y^{2}\right) }\\ \partial _{yy}g\left( x,y\right) & = & \left( -4xy+4y\right) e^{-\left( x^{2}+y^{2}\right) }-2y\left( -2xy^{2}+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) }=\\ & = & 2y\left( 3+2xy^{2}-2y^{2}-3x\right) e^{-\left( x^{2}+y^{2}\right) }\\ \partial _{xy}g\left( x,y\right) & = & \left( -2y^{2}+1\right) e^{-\left( x^{2}+y^{2}\right) }-2x\left( -2xy+2y^{2}+x-1\right) e^{-\left( x^{2}+y^{2}\right) }=\\ & = & \left( 1-2x^{2}-2y^{2}-4xy+2x+4x^{2}y^{2}\right) e^{-\left( x^{2}+y^{2}\right) }=\partial _{yx}g\left( x,y\right) \end{eqnarray*} \end_inset Nullstellen der 1. Ableitung: \begin_inset Formula \begin{eqnarray*} -2x^{2}y+2xy+y & = & 0\\ -2xy^{2}+2y^{2}+x-1 & = & 0 \end{eqnarray*} \end_inset \begin_inset Formula \begin{eqnarray*} & & \Rightarrow P_{1}=\left( 1,0\right) \\ \textrm{aus }1: & y\left( -2x^{2}+2x+1\right) =0 & \Rightarrow x_{1|2}=\frac{-2\pm \sqrt{4+8}}{-4}=\frac{1\pm \sqrt{3}}{2}\\ \textrm{aus }2: & y^{2}\left( -2x^{2}+2\right) +x-1=0 & \Rightarrow y^{2}=\frac{1}{2}\\ & & \Rightarrow P_{2}=\left( \frac{1+\sqrt{3}}{2},\frac{\sqrt{2}}{2}\right) \\ & & \Rightarrow P_{3}=\left( \frac{1+\sqrt{3}}{2},-\frac{\sqrt{2}}{2}\right) \\ & & \Rightarrow P_{4}=\left( \frac{1-\sqrt{3}}{2},\frac{\sqrt{2}}{2}\right) \\ & & \Rightarrow P_{5}=\left( \frac{1-\sqrt{3}}{2},-\frac{\sqrt{2}}{2}\right) \end{eqnarray*} \end_inset \begin_inset Formula \begin{eqnarray*} \partial _{xx}g\left( P_{2}\right) & = & \sqrt{2}e^{-\left( \frac{1}{4}\left( 1+2\sqrt{3}\right) +\frac{1}{2}\right) }\left( 1-\frac{3}{2}\left( 1+\sqrt{3}\right) -\frac{1}{2}\left( 4+2\sqrt{3}+\frac{1}{4}\left( 1+3+3+3+3\sqrt{3}\right) \right) \right) =\\ & = & -\sqrt{6}e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\ \partial _{yy}g\left( P_{2}\right) & = & \sqrt{2}e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\left( 3+\frac{1}{2}+\frac{1}{2}\sqrt{3}+\frac{1}{2}+\frac{1}{2}\sqrt{3}-1\right) =\sqrt{2}\left( 1-\sqrt{3}\right) e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\ \partial _{xy}g\left( P_{2}\right) & = & \\ \partial _{yx}g\left( P_{2}\right) & = & e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\left( 1-1-\frac{1}{2}\left( 4+2\sqrt{3}\right) +1\left( 1+\sqrt{3}\right) +\frac{1}{2}\left( 4+2\sqrt{3}\right) -\left( 1+\sqrt{3}\right) \right) =0\\ g''\left( P_{2}\right) & = & \left( \begin{array}{cc} -\sqrt{6} & 0\\ 0 & \sqrt{2}\left( 1-\sqrt{3}\right) \end{array}\right) e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\\ det\, g''\left( P_{2}\right) & = & \left( e^{-\frac{1}{2}\left( 3+\sqrt{3}\right) }\right) ^{2}det\, \left( \begin{array}{cc} \sqrt{6} & 0\\ 0 & \sqrt{2}\left( 1-\sqrt{3}\right) \end{array}\right) =e^{-\left( 3+\sqrt{3}\right) }\left( 6-2\sqrt{3}\right) >0\\ & \Rightarrow & Maximum\, P_{2}\\ & & \textrm{weil g}\left( \textrm{x},-y\right) =-g\left( x,y\right) \textrm{ ist }P_{3}\textrm{ Minimum} \end{eqnarray*} \end_inset Randextrema: \begin_inset Formula \begin{eqnarray*} & & x=0\, und\, \partial _{y}g=0\\ e^{-\left( x^{2}+y^{2}\right) }\left( x-1-2y^{2}x+2y^{2}\right) & = & 0\, mit\, x=0\\ -1+2y^{2} & = & 0\Rightarrow 2y^{2}=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\\ g\left( 0,\sqrt{\frac{1}{2}}\right) & = & \sqrt{\frac{1}{2}}\left( -1\right) e^{-\frac{1}{2}}=-\sqrt{\frac{1}{2}}e^{-\frac{1}{2}}\\ & & \textrm{wegen Symmetrie }g\left( x,-y\right) =-g\left( x,y\right) \\ & \Rightarrow & g\left( 0,-\sqrt{\frac{1}{2}}\right) =\frac{1}{2}\sqrt{2}e^{-\frac{1}{2}}\\ & \Rightarrow & \textrm{Randmaximum bei }\left( 0,-\frac{1}{2}\sqrt{2}\right) \\ & & \textrm{Randmaximum bei }\left( 0,\frac{1}{2}\sqrt{2}\right) \end{eqnarray*} \end_inset \begin_inset Formula \( P_{1}\left( 1,0\right) \) \end_inset ist Sattelpunkt! \layout Problem \line_top Eine Funktion \begin_inset Formula \( f\in \mathcal C^{2}\left( \mathbb R^{2}\right) \) \end_inset genüge der partiellen Differentialgleichung \begin_inset Formula \[ \triangle f=c\cdot f\textrm{ mit der Konstanten }c>0\] \end_inset in einer Umgebung der abgeschlossenen Kreisscheibe \begin_inset Formula \( D:=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}+y^{2}\leq 1\right\} . \) \end_inset Ferner erfülle f die Randbedingung \begin_inset Formula \[ f\left( x,y\right) =0\textrm{ f}\ddot{\textrm{u}}\textrm{r alle x}\in \partial D=\left\{ \left( x,y\right) \in \mathbb R^{2}:x^{2}+y^{2}=0\right\} .\] \end_inset Man zeige: \begin_inset Formula \( f\equiv 0 \) \end_inset auf ganz D. \newline Hinweis: Welches Vorzeichen hat \begin_inset Formula \( \triangle f \) \end_inset an der Stelle eines Maximums/Minimums? \layout Standard \SpecialChar ~ \layout Problem \line_top Eine Möglichkeit zur Berechnung von \begin_inset Formula \( \int _{\mathbb R}e^{-x^{2}}dx: \) \end_inset \layout Enumerate Man zeige, daß durch \begin_inset Formula \[ F\left( t\right) =\int _{0}^{1}\frac{e^{-\left( 1+x^{2}\right) t^{2}}}{1+x^{2}}dx\] \end_inset eine diefferenzierbare Funktion \begin_inset Formula \( F:\mathbb R\rightarrow \mathbb R \) \end_inset erklärt wird mit \begin_inset Formula \( F'\left( t\right) =-2e^{-t^{2}}\cdot \int _{0}^{t}e^{-u^{2}}du. \) \end_inset \layout Enumerate Man folgere daraus: \begin_inset Formula \( F\left( t\right) =-\left( \int _{0}^{t}e^{-u^{2}}du\right) ^{2}+\frac{\pi }{4}. \) \end_inset \newline Hinweis: \begin_inset Formula \( F' \) \end_inset hat die Form \begin_inset Formula \( F'\left( t\right) =-2f'\left( t\right) \cdot f\left( t\right) \) \end_inset . \layout Enumerate Man zeige: \begin_inset Formula \( \int _{\mathbb R}e^{-u^{2}}du=\sqrt{\pi } \) \end_inset . \layout Standard \SpecialChar ~ \layout Enumerate \begin_inset Formula \begin{eqnarray*} F\left( t\right) & = & \int _{0}^{1}\frac{e^{-\left( 1+x^{2}\right) t^{2}}}{1+x^{2}}dx\textrm{ ist stetig auf }\left[ 0,1\right] \times \mathbb R\\ & & \Rightarrow \textrm{F stetig partiell differenzierbar }\Rightarrow F\textrm{ stetig differenzierbar}\\ & & \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} F'\left( t\right) & = & \int _{0}^{1}\frac{\partial }{\partial t}\frac{e^{-\left( 1+x^{2}\right) t^{2}}}{1+x^{2}}dx=\int _{0}^{1}-2te^{-\left( 1+x^{2}\right) t^{2}}dx=-2e^{-t^{2}}\int _{0}^{1}e^{-x^{2}t^{2}}t\, dx=\\ & = & -2e^{-t^{2}}\int _{0}^{t}e^{-u^{2}}du=-2f^{'}\left( t\right) f\left( t\right) \\ F\left( t\right) & = & -\left[ f\left( t\right) \right] ^{2}+c\\ F\left( 0\right) & = & \int _{0}^{1}\frac{1}{1+x^{2}}dx=arctan\, x|_{0}^{1}=\frac{\pi }{4}-0\\ F\left( t\right) & = & -\left[ \int _{0}^{t}e^{-u^{2}}du\right] ^{2}+\frac{\pi }{4} \end{eqnarray*} \end_inset \layout Enumerate \begin_inset Formula \begin{eqnarray*} \left| f\left( t\right) \right| & = & \int _{0}^{1}\frac{e^{-t^{2}}e^{-t^{2}x^{2}}}{1+x^{2}}dx\leq \int _{0}^{1}\frac{e^{-t^{2}\cdot 1}}{1}=e^{-t^{2}}\rightarrow 0\textrm{ f}\ddot{\textrm{u}}\textrm{r t}\rightarrow \infty \\ & \Rightarrow & \int _{0}^{\infty }e^{-u^{2}}du=\frac{\sqrt{\pi }}{2}\\ & \Rightarrow & \int _{-\infty }^{\infty }e^{-u^{2}}du=\sqrt{\pi } \end{eqnarray*} \end_inset \layout Standard \begin_inset LatexCommand \printindex{} \end_inset \the_end