Hi, I tried to "View Postcript" on a file today and LyX just aborted. However, when I exported the file as LaTeX and used LaTeX, I had no problems. I'm therefore attaching two copies of the file:- the first attachment is a version that worked OK, the second attachment is the file that caused LyX to abort. Alastair -- Alastair Farrugia | e-mail: [EMAIL PROTECTED] PhD student | snail mail: Dept. of Combinatorics, Faculty of Maths MC 6101 x6655 | University of Waterloo, Waterloo ON home: 519-885-7122 | Canada N2L 3G1
#This file was created by <afarrugi> Mon Feb 28 01:35:44 2000 #LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team \lyxformat 2.15 \textclass article \language default \inputencoding default \fontscheme default \graphics default \paperfontsize default \spacing single \papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Standard \align center Topological Graph Theory \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator C&0 749 Z \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator Winter 2000 \newline \layout Standard \align right \bar under Assignment 2 \bar default \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator Alastair Farrugia ID: 99803095 \newline \layout Description Definitions. A \emph on branch-decomposition \emph default \begin_inset Formula \( (T,z) \) \end_inset of a graph \begin_inset Formula \( G \) \end_inset consists of a tree \begin_inset Formula \( T \) \end_inset in which every vertex has degree \begin_inset Formula \( 3 \) \end_inset or \begin_inset Formula \( 1; \) \end_inset and a 1-1 function \begin_inset Formula \( z \) \end_inset from the edges of \begin_inset Formula \( G \) \end_inset to the leaves of \begin_inset Formula \( T \) \end_inset . (That is, each edge of \begin_inset Formula \( G \) \end_inset is assigned to a unique leaf, and each leaf is assigned either \begin_inset Formula \( \emptyset \) \end_inset or a unique edge of \begin_inset Formula \( G \) \end_inset ). For any two edges \begin_inset Formula \( e,f \) \end_inset of \begin_inset Formula \( T, \) \end_inset we define \layout Standard \align left \begin_inset Formula \( A=A_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident only to \begin_inset Formula \( e \) \end_inset \layout Standard \align left \begin_inset Formula \( C=C_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident to both \begin_inset Formula \( e \) \end_inset and \begin_inset Formula \( f \) \end_inset \layout Standard \align left \begin_inset Formula \( B=B_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident only to \begin_inset Formula \( f \) \end_inset \layout Standard \align left \begin_inset Formula \( P=P_{e,f} \) \end_inset to be the unique path in \begin_inset Formula \( T \) \end_inset starting with \begin_inset Formula \( e \) \end_inset and ending with \begin_inset Formula \( f \) \end_inset \layout Standard \align left \begin_inset Formula \( \lambda (A,B)=\lambda _{e,f}(A,B) \) \end_inset to be the maximum number of vertex disjoint paths \begin_inset Quotes eld \end_inset from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset \begin_inset Quotes erd \end_inset . (That is, the maximum number of vertex-disjoint paths with one end-vertex incident to an edge in \begin_inset Formula \( A \) \end_inset , the other incident to an edge in \begin_inset Formula \( B \) \end_inset . Note: if some edge of \begin_inset Formula \( A \) \end_inset is incident to an edge of \begin_inset Formula \( B \) \end_inset , then the common end-vertex will be a trivial path from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset ). \layout Standard \align left \begin_inset Formula \( \lambda _{e} \) \end_inset is defined to be \begin_inset Formula \( \lambda _{e,e}(A,B) \) \end_inset , for each edge \begin_inset Formula \( e\in T \) \end_inset (Note: In this case we have \begin_inset Formula \( C_{e,e}=\emptyset \) \end_inset , \begin_inset Formula \( P_{e,e}=e \) \end_inset and \begin_inset Formula \( B_{e,e}=E(G)\setminus A_{e,e} \) \end_inset , so \begin_inset Formula \( \lambda _{e} \) \end_inset can also be defined as the number of vertices incident with an edge in \begin_inset Formula \( A_{e,e} \) \end_inset and an edge not in \begin_inset Formula \( A_{e,e} \) \end_inset . To prove this, we note that these vertices form an \begin_inset Formula \( (A,B) \) \end_inset -cut, so by Menger's Theorem their number is equal to the maximum number of vertex disjoint paths from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset ; but each of these vertices \emph on is \emph default a path from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset ). \layout Standard \align left So, in this form, we can extend the definition to any set of edges of \begin_inset Formula \( G \) \end_inset . \newline \protected_separator \layout Standard \align left By Menger's Theorem, for any two edges \begin_inset Formula \( e,f\in E(T) \) \end_inset , and any edge \begin_inset Formula \( g\in P_{e,f} \) \end_inset , \begin_inset Formula \[ \lambda _{g}\leq \lambda _{e,f}(A,B)\] \end_inset \layout Standard \align left If this inequality is sharp for all \begin_inset Formula \( e,f \) \end_inset , then we say that \begin_inset Formula \( (T,z) \) \end_inset is a \emph on linked \emph default branch decomposition. \newline The \emph on width \emph default of a branch decomposition is \begin_inset Formula \( \max \{\lambda _{e}|e\in E(T)\} \) \end_inset , and the \emph on branch width \emph default of \begin_inset Formula \( G \) \end_inset is the minimum width over all branch decompositions. \layout Standard \align left \protected_separator \layout Standard \align left \series bold Theorem. \series default Every graph \begin_inset Formula \( G \) \end_inset has a linked branch decomposition \begin_inset Formula \( (T,z) \) \end_inset such that the width of \begin_inset Formula \( (T,z) \) \end_inset is the branch width of \begin_inset Formula \( G \) \end_inset . \layout Description Proof: \protected_separator (a) Let \begin_inset Formula \( \cal B \) \end_inset be the set of branch decompositions of \begin_inset Formula \( G \) \end_inset having width \begin_inset Formula \( b \) \end_inset , the branch width of \begin_inset Formula \( G \) \end_inset . For each \begin_inset Formula \( (T,z)\in \cal B \) \end_inset , and each \begin_inset Formula \( i=0,1,\ldots ,b \) \end_inset : \newline let \begin_inset Formula \( T_{i} \) \end_inset be the subgraph of \begin_inset Formula \( T \) \end_inset induced by the edges of \begin_inset Formula \( T \) \end_inset with label at least \begin_inset Formula \( i \) \end_inset \newline let \begin_inset Formula \( n_{i} \) \end_inset and \begin_inset Formula \( c_{i} \) \end_inset denote the number of edges and the number of components, respectively, of \begin_inset Formula \( T_{i} \) \end_inset \newline let \begin_inset Formula \( \sum (T,z) \) \end_inset denote the sequence of \begin_inset Formula \( n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots ,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \) \end_inset . \newline We shall prove that if \begin_inset Formula \( (T,z)\in \cal B \) \end_inset is not linked, then there is a \begin_inset Formula \( (T',z')\in \cal B \) \end_inset such that \begin_inset Formula \( \sum (T',z') \) \end_inset is lexicographically smaller than \begin_inset Formula \( \sum (T,z) \) \end_inset . Therefore a decomposition with lexicographically minimal \begin_inset Formula \( \sum \) \end_inset must be linked. \layout Description (b) If \begin_inset Formula \( (T,z) \) \end_inset is not linked, then by definition there exist \begin_inset Formula \( e,f\in E(T) \) \end_inset such that \begin_inset Formula \( \lambda (A,B)<\min \{\lambda _{g}|g\in E(P)\} \) \end_inset . \layout Description (c) Let \begin_inset Formula \( V_{A,}V_{B} \) \end_inset be the set of end-vertices of edges in \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset , respectively. By Menger's Theorem there is a \begin_inset Formula \( (V_{A},V_{B}) \) \end_inset -separating cut \begin_inset Formula \( S \) \end_inset with exactly \begin_inset Formula \( \lambda (A,B) \) \end_inset vertices (see Diestel, \emph on Graph Theory \emph default , Electronic Edition 2000, p. 50). That is, every path which intersects \begin_inset Formula \( V_{A} \) \end_inset and \begin_inset Formula \( V_{B} \) \end_inset must also intersect \begin_inset Formula \( S \) \end_inset . \newline Then, in \begin_inset Formula \( G\setminus S \) \end_inset , no component contains edges from both \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset . And (in \begin_inset Formula \( G \) \end_inset ) no edge of \begin_inset Formula \( A \) \end_inset is incident to a component (of \begin_inset Formula \( G\setminus S \) \end_inset ) containing edges of \begin_inset Formula \( B \) \end_inset . \newline Note that every edge of \begin_inset Formula \( G \) \end_inset is either in a component of \begin_inset Formula \( G\setminus S \) \end_inset , or is incident to a unique component (it cannot be incident to two components of \begin_inset Formula \( G\setminus S \) \end_inset ), or joins two vertices of \begin_inset Formula \( S \) \end_inset . \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline Let \begin_inset Formula \( X:=\{e\in E(G)|e\in A \) \end_inset , or \begin_inset Formula \( e \) \end_inset is in a component of \begin_inset Formula \( G\setminus S \) \end_inset which contains edges of \begin_inset Formula \( A \) \end_inset , or is incident to such a component \begin_inset Formula \( \} \) \end_inset . \newline \begin_inset Formula \( X \) \end_inset is intuitively the set of edges on the \begin_inset Formula \( A \) \end_inset side of a smallest vertex-cut separating \begin_inset Formula \( A \) \end_inset from \begin_inset Formula \( B \) \end_inset . Then it is easy to see that \begin_inset Formula \( A\subseteq X\subseteq E(G)\setminus B \) \end_inset . It can also be checked that the vertices common to \begin_inset Formula \( X \) \end_inset and \begin_inset Formula \( E(G)\setminus X \) \end_inset are precisely \begin_inset Formula \( S \) \end_inset : \newline To show inclusion, we note that an edge in one of the specified components cannot be incident to any edge not in \begin_inset Formula \( X \) \end_inset (because we defined all the edges incident to those components to be in \begin_inset Formula \( X \) \end_inset too); similarly any edge incident to one of the specified components can only meet an edge not in \begin_inset Formula \( X \) \end_inset at the \begin_inset Quotes eld \end_inset \begin_inset Formula \( S \) \end_inset end-vertex \begin_inset Quotes erd \end_inset ; and any other edge in \begin_inset Formula \( X \) \end_inset has both its end-vertices in \begin_inset Formula \( S \) \end_inset anyway. Now if \begin_inset Formula \( v\in S \) \end_inset is not incident to any edge of \begin_inset Formula \( X \) \end_inset (or not incident to any vertex not in \begin_inset Formula \( X \) \end_inset ), it can be seen that there are no paths from \begin_inset Formula \( V_{A} \) \end_inset to \begin_inset Formula \( V_{B} \) \end_inset in \begin_inset Formula \( G\setminus (S\setminus \{v\}) \) \end_inset , so that \begin_inset Formula \( S \) \end_inset is not minimal, which is impossible. \newline Of all the possible sets \begin_inset Formula \( X \) \end_inset , we choose the one that crosses as few of the tree partitions as possible. Here a tree-partition is a partition \begin_inset Formula \( (A_{e,e},B_{e,e}) \) \end_inset of the edge-set of \begin_inset Formula \( G \) \end_inset , corresponding to some edge \begin_inset Formula \( e\in T. \) \end_inset And two partitions \begin_inset Formula \( (P,Q) \) \end_inset , \begin_inset Formula \( (R,S) \) \end_inset are said to cross if none of \begin_inset Formula \( P\cap R \) \end_inset , \begin_inset Formula \( P\cap S \) \end_inset , \begin_inset Formula \( Q\cap R \) \end_inset , \begin_inset Formula \( Q\cap S \) \end_inset is empty. \layout Description (d) \begin_inset Formula \( T \) \end_inset can be thought of as \begin_inset Formula \( A_{e,f}-e-C_{e,f}-f-B_{e,f} \) \end_inset . We create a new branch decomposition \begin_inset Formula \( (T',z') \) \end_inset of \begin_inset Formula \( G \) \end_inset where \begin_inset Formula \( T' \) \end_inset is \begin_inset Formula \( A_{e,f}-e-C^{e}_{e,f}-a-C^{f}_{e,f}-f-B_{e,f} \) \end_inset , or just \begin_inset Formula \( A-e-C^{e}-a-C^{f}-f-B \) \end_inset , where \begin_inset Formula \( C^{e} \) \end_inset and \begin_inset Formula \( C^{f} \) \end_inset are copies of \begin_inset Formula \( C_{e,e} \) \end_inset (the notation is slightly different from that used in the notes). The assignment of edges to leaves is the same for \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset as it was in \begin_inset Formula \( T \) \end_inset . But an edge assigned to \begin_inset Formula \( C \) \end_inset in \begin_inset Formula \( T \) \end_inset is now assigned to the corresponding leaf of \begin_inset Formula \( C^{e} \) \end_inset if the edge is in \begin_inset Formula \( X, \) \end_inset and to the leaf of \begin_inset Formula \( C^{f} \) \end_inset otherwise. \newline (i) For any edge \begin_inset Formula \( e'\in E(T') \) \end_inset , it is easy to see that if \begin_inset Formula \( e' \) \end_inset is in \begin_inset Formula \( A\cup \{e\} \) \end_inset then \begin_inset Formula \( A_{e',e'} \) \end_inset is the same in \begin_inset Formula \( T \) \end_inset and in \begin_inset Formula \( T'; \) \end_inset while for \begin_inset Formula \( g \) \end_inset in \begin_inset Formula \( \{f\}\cup B \) \end_inset , \begin_inset Formula \( B_{e',e'} \) \end_inset is the same (actually, either condition implies the other). Thus \begin_inset Formula \( \lambda _{e'} \) \end_inset is unchanged too. \newline (ii) Now let \begin_inset Formula \( e' \) \end_inset be in \begin_inset Formula \( C^{e}\cup \{a\}\cup C^{f} \) \end_inset . We consider first what happens if \begin_inset Formula \( e'\in E(P_{e,f}) \) \end_inset . We denote \begin_inset Formula \( A_{e',e'} \) \end_inset by \begin_inset Formula \( A' \) \end_inset . \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline Then in \begin_inset Formula \( T' \) \end_inset we have the following situation: \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline (iii) If \begin_inset Formula \( e'\not \in E(P_{e,f}) \) \end_inset , then the picture in \begin_inset Formula \( T \) \end_inset looks like this: \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline while in \begin_inset Formula \( T' \) \end_inset we have: \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \layout Description (e) The copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{e} \) \end_inset always has label \begin_inset Formula \( \lambda (A'\cap X) \) \end_inset . Now, by submodularity, we have \begin_inset Formula \[ \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\] \end_inset But \begin_inset Formula \( A\subseteq X\subseteq A'\cup X\subseteq E(G)\setminus B\Rightarrow \lambda (A'\cup X)\geq \lambda (X) \) \end_inset , because \begin_inset Formula \( X \) \end_inset is a minimal \begin_inset Formula \( A,B \) \end_inset -separating set. So \begin_inset Formula \[ \lambda (A'\cap X)+\lambda (X)\leq \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\Rightarrow \lambda (A'\cap X)\leq \lambda (A')\] \end_inset So the label on the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{e} \) \end_inset is no larger than the original label of \begin_inset Formula \( e' \) \end_inset . \newline If \begin_inset Formula \( e'\in E(P) \) \end_inset , then the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{f} \) \end_inset has label \begin_inset Formula \( \lambda (\overline{A'}\cap \overline{X}) \) \end_inset , so an analogous argument shows that even this copy has label no larger than \begin_inset Formula \( \lambda (\overline{A})=\lambda (A) \) \end_inset . \newline If \begin_inset Formula \( e'\not \in E(P) \) \end_inset , then \newline So the label on each edge does not increase; in particular \begin_inset Formula \( n_{b}\geq {n'}_{b} \) \end_inset , and the width of \begin_inset Formula \( (T',z') \) \end_inset is \begin_inset Formula \( b \) \end_inset . \layout Description (f) Now suppose the label on the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{e} \) \end_inset is the same as the original label, that is \begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \) \end_inset . Then, by the previous equation, we have \begin_inset Formula \( \lambda (X)\leq \lambda (A'\cup X)\leq \lambda (X) \) \end_inset . So if \begin_inset Formula \( e'\in E(P) \) \end_inset we know that the label on the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{f} \) \end_inset is exactly \begin_inset Formula \( \lambda (X) \) \end_inset . \layout Description (g) Suppose we have \begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \) \end_inset , but now \begin_inset Formula \( e'\not \in E(P) \) \end_inset . Then . \newline So we have shown that for any edge \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( T \) \end_inset with label \begin_inset Formula \( \lambda (A') \) \end_inset , we either get \newline (i) a single edge in \begin_inset Formula \( T' \) \end_inset labelled \begin_inset Formula \( \lambda (A') \) \end_inset (if \begin_inset Formula \( e' \) \end_inset is in \begin_inset Formula \( A \) \end_inset or \begin_inset Formula \( B \) \end_inset ), \newline (ii) one edge labelled \begin_inset Formula \( \lambda (A') \) \end_inset and one labelled at most \begin_inset Formula \( \lambda (X) \) \end_inset , or \newline (iii) two edges in \begin_inset Formula \( T' \) \end_inset whose labels are both strictly less than \begin_inset Formula \( \lambda (A') \) \end_inset . \layout Description (h, \protected_separator i) We want to show that \begin_inset Formula \( \sum (T,z)=n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots ,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \) \end_inset is lexicographically larger than \begin_inset Formula \( \sum (T',z')={n'}_{b},{n'}_{b}-{c'}_{b,}{n'}_{b-1,}{n'}_{b-1}-{c'}_{b-1},\ldots ,{n'}_{1,}{n'}_{1}-{c'}_{1,}{n'}_{0,}{n'}_{0}-{c'}_{0} \) \end_inset . \layout Description Case \protected_separator 1: All the terms are equal up to (but not including) some \begin_inset Formula \( n_{i} \) \end_inset , \begin_inset Formula \( i>\lambda (X) \) \end_inset . \newline If \begin_inset Formula \( i=b \) \end_inset , then by (e) we must have \begin_inset Formula \( n_{b}>{n'}_{b} \) \end_inset , so we are done. Otherwise, in \begin_inset Formula \( {T'}_{i} \) \end_inset we have exactly \begin_inset Formula \( n_{b} \) \end_inset edges labelled \begin_inset Formula \( b \) \end_inset ; so case (g)(iii) cannot occur for label \begin_inset Formula \( b \) \end_inset , and thus each edge in \begin_inset Formula \( T_{i} \) \end_inset labelled \begin_inset Formula \( b \) \end_inset gives rise in \begin_inset Formula \( {T'}_{i} \) \end_inset only to edges labelled \begin_inset Formula \( b \) \end_inset [it may give rise to other edges with label at most \begin_inset Formula \( \lambda (X) \) \end_inset , but these will not be in \begin_inset Formula \( {T'}_{i} \) \end_inset ]. Then in \begin_inset Formula \( {T'}_{i} \) \end_inset all edges labelled \begin_inset Formula \( b-1 \) \end_inset must come from edges labelled \begin_inset Formula \( b-1 \) \end_inset in \begin_inset Formula \( T \) \end_inset ; and since there are exactly \begin_inset Formula \( {n'}_{b-1}-{n'}_{b}=n_{b-1}-n_{b} \) \end_inset such edges, case (g)(iii) cannot occur for label \begin_inset Formula \( b-1 \) \end_inset , so each edge in \begin_inset Formula \( T_{i} \) \end_inset labelled \begin_inset Formula \( b-1 \) \end_inset gives rise in \begin_inset Formula \( {T'}_{i} \) \end_inset only to edges labelled \begin_inset Formula \( b-1 \) \end_inset . \newline Continuing in this manner we see that the number of edges of each label \begin_inset Formula \( b,b-1,\ldots ,i+1 \) \end_inset is the same in \begin_inset Formula \( T_{i} \) \end_inset and \begin_inset Formula \( {T'}_{i} \) \end_inset ; and the edges labelled \begin_inset Formula \( i \) \end_inset in \begin_inset Formula \( {T'}_{i} \) \end_inset must come from edges labelled \begin_inset Formula \( i \) \end_inset in \begin_inset Formula \( T_{i} \) \end_inset . But then number of such edges cannot be larger in \begin_inset Formula \( {T'}_{i} \) \end_inset than in \begin_inset Formula \( T_{i} \) \end_inset , so it must be smaller, and we have \begin_inset Formula \( n_{i}>{n'}_{i} \) \end_inset . \layout Description Case \protected_separator 2: All the terms are equal up to (but not including) some \begin_inset Formula \( n_{i}-c_{i} \) \end_inset , \begin_inset Formula \( i>\lambda (X) \) \end_inset . \newline So in \begin_inset Formula \( T_{i} \) \end_inset and \begin_inset Formula \( {T'}_{i} \) \end_inset there are the same number of edges of each label \begin_inset Formula \( b,b-1,\ldots ,i \) \end_inset . And so, by the arguments for Case 1, each edge in \begin_inset Formula \( {T'}_{i} \) \end_inset corresponds to an edge in \begin_inset Formula \( T_{i} \) \end_inset with the same label. But two edges which are not adjacent in \begin_inset Formula \( T_{i} \) \end_inset will not be adjacent in \begin_inset Formula \( {T'}_{i} \) \end_inset either, as all the edges separating them from each other in \begin_inset Formula \( T_{i} \) \end_inset will still be there in \begin_inset Formula \( {T'}_{i} \) \end_inset (and there might even be new edges inserted in between). Thus, components of \begin_inset Formula \( T_{i} \) \end_inset are unions of components of \begin_inset Formula \( {T'}_{i} \) \end_inset , and so \begin_inset Formula \( c_{i}\leq {c'}_{i} \) \end_inset . Since we have inequality in the \begin_inset Formula \( n_{i}-c_{i} \) \end_inset term, it must be \begin_inset Formula \( n_{i}-c_{i}>{n'}_{i}-{c'}_{i} \) \end_inset . \layout Description Case \protected_separator 3: All the terms are equal at least up to \begin_inset Formula \( n_{\lambda (X)} \) \end_inset . \newline We will show that this is impossible. For in \begin_inset Formula \( T_{i} \) \end_inset all edges on the path from \begin_inset Formula \( e \) \end_inset to \begin_inset Formula \( f \) \end_inset had label at least \begin_inset Formula \( \lambda (X)+1 \) \end_inset , so they were all in the same component of \begin_inset Formula \( T_{\lambda (X)+1} \) \end_inset . Now, these edges cannot all have mapped to \begin_inset Formula \( C^{e} \) \end_inset , or all to \begin_inset Formula \( C^{f} \) \end_inset , for then either \begin_inset Formula \( \lambda _{e} \) \end_inset or \begin_inset Formula \( \lambda _{f} \) \end_inset would have been equal to \begin_inset Formula \( \lambda (X) \) \end_inset . So some edges go to \begin_inset Formula \( C^{e} \) \end_inset and some to \begin_inset Formula \( C^{f} \) \end_inset ; and now they cannot be in the same component of \begin_inset Formula \( {T'}_{\lambda (X)+1} \) \end_inset , because the edge \begin_inset Formula \( a \) \end_inset has label \begin_inset Formula \( \lambda (X) \) \end_inset . So \begin_inset Formula \( c_{\lambda (X)+1}\leq {c'}_{\lambda (X)+1} \) \end_inset . \layout Description Note: We only have \begin_inset Formula \( n_{j}\geq {n'}_{j} \) \end_inset and \begin_inset Formula \( c_{j}\geq {c'}_{j} \) \end_inset for \begin_inset Formula \( j\geq i \) \end_inset , where strict inequality first occurs, and not necessarily all the way up to \begin_inset Formula \( \lambda (X). \) \end_inset \the_end
#This file was created by <afarrugi> Mon Feb 28 13:52:11 2000 #LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team \lyxformat 2.15 \textclass article \language default \inputencoding default \fontscheme default \graphics default \paperfontsize default \spacing single \papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Standard \align center Topological Graph Theory \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator C&0 749 Z \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator Winter 2000 \newline \layout Standard \align right \bar under Assignment 2 \bar default \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator Alastair Farrugia ID: 99803095 \newline \layout Description Definitions. A \emph on branch-decomposition \emph default \begin_inset Formula \( (T,z) \) \end_inset of a graph \begin_inset Formula \( G \) \end_inset consists of a tree \begin_inset Formula \( T \) \end_inset in which every vertex has degree \begin_inset Formula \( 3 \) \end_inset or \begin_inset Formula \( 1; \) \end_inset and a 1-1 function \begin_inset Formula \( z \) \end_inset from the edges of \begin_inset Formula \( G \) \end_inset to the leaves of \begin_inset Formula \( T \) \end_inset . (That is, each edge of \begin_inset Formula \( G \) \end_inset is assigned to a unique leaf, and each leaf is assigned either \begin_inset Formula \( \emptyset \) \end_inset or a unique edge of \begin_inset Formula \( G \) \end_inset ). For any two edges \begin_inset Formula \( e,f \) \end_inset of \begin_inset Formula \( T, \) \end_inset we define \layout Standard \align left \begin_inset Formula \( A=A_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident only to \begin_inset Formula \( e \) \end_inset \layout Standard \align left \begin_inset Formula \( C=C_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident to both \begin_inset Formula \( e \) \end_inset and \begin_inset Formula \( f \) \end_inset \layout Standard \align left \begin_inset Formula \( B=B_{e,f} \) \end_inset to be the set of edges of \begin_inset Formula \( G \) \end_inset in the component of \begin_inset Formula \( T-\{e,f\} \) \end_inset incident only to \begin_inset Formula \( f \) \end_inset \layout Standard \align left \begin_inset Formula \( P=P_{e,f} \) \end_inset to be the unique path in \begin_inset Formula \( T \) \end_inset starting with \begin_inset Formula \( e \) \end_inset and ending with \begin_inset Formula \( f \) \end_inset . \layout Standard \align left \begin_inset Formula \( \lambda (A,B)=\lambda _{e,f}(A,B) \) \end_inset is defined to be the maximum number of vertex disjoint paths \begin_inset Quotes eld \end_inset from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset \begin_inset Quotes erd \end_inset . (That is, the maximum number of vertex-disjoint paths with one end-vertex incident to an edge in \begin_inset Formula \( A \) \end_inset , the other incident to an edge in \begin_inset Formula \( B \) \end_inset . Note: if some edge of \begin_inset Formula \( A \) \end_inset is incident to an edge of \begin_inset Formula \( B \) \end_inset , then the common end-vertex will be a trivial path from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset ). \layout Standard \align left \begin_inset Formula \( \lambda _{e} \) \end_inset is defined to be \begin_inset Formula \( \lambda _{e,e}(A,B) \) \end_inset , for each edge \begin_inset Formula \( e\in T \) \end_inset . (Note: In this case we have \begin_inset Formula \( C_{e,e}=\emptyset \) \end_inset , \begin_inset Formula \( P_{e,e}=e \) \end_inset and \begin_inset Formula \( B_{e,e}=E(G)\setminus A_{e,e} \) \end_inset , so \begin_inset Formula \( \lambda _{e} \) \end_inset can also be defined as the number of vertices incident with an edge in \begin_inset Formula \( A_{e,e} \) \end_inset and an edge not in \begin_inset Formula \( A_{e,e} \) \end_inset . To prove this, we note that these vertices form an \begin_inset Formula \( (A,B) \) \end_inset -cut, so by Menger's Theorem their number is equal to the maximum number of vertex disjoint paths from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset ; but each of these vertices \emph on is \emph default a path from \begin_inset Formula \( A \) \end_inset to \begin_inset Formula \( B \) \end_inset . So, in this form, we can extend the definition to any set of edges of \begin_inset Formula \( G \) \end_inset .) \newline \protected_separator \layout Standard \align left By Menger's Theorem, for any two edges \begin_inset Formula \( e,f\in E(T) \) \end_inset , and any edge \begin_inset Formula \( g\in P_{e,f} \) \end_inset , \begin_inset Formula \[ \lambda _{e,f}(A,B)\leq \lambda _{g.}\] \end_inset \layout Standard \align left If this inequality is sharp for all \begin_inset Formula \( e,f \) \end_inset , then we say that \begin_inset Formula \( (T,z) \) \end_inset is a \emph on linked \emph default branch decomposition. \newline The \emph on width \emph default of a branch decomposition is \begin_inset Formula \( \max \{\lambda _{e}|e\in E(T)\} \) \end_inset , and the \emph on branch width \emph default of \begin_inset Formula \( G \) \end_inset is the minimum width over all its branch decompositions. \layout Standard \align left \protected_separator \layout Standard \align left \series bold Theorem. \series default Every graph \begin_inset Formula \( G \) \end_inset has a linked branch decomposition \begin_inset Formula \( (T,z) \) \end_inset such that the width of \begin_inset Formula \( (T,z) \) \end_inset is the branch width of \begin_inset Formula \( G \) \end_inset . \layout Description Proof: \protected_separator (a) Let \begin_inset Formula \( \cal B \) \end_inset be the set of branch decompositions of \begin_inset Formula \( G \) \end_inset having width \begin_inset Formula \( b \) \end_inset , the branch width of \begin_inset Formula \( G \) \end_inset . For each \begin_inset Formula \( (T,z)\in \cal B \) \end_inset , and each \begin_inset Formula \( i=0,1,\ldots ,b \) \end_inset : \newline let \begin_inset Formula \( T_{i} \) \end_inset be the subgraph of \begin_inset Formula \( T \) \end_inset induced by the edges of \begin_inset Formula \( T \) \end_inset with label at least \begin_inset Formula \( i \) \end_inset \newline let \begin_inset Formula \( n_{i} \) \end_inset and \begin_inset Formula \( c_{i} \) \end_inset denote the number of edges and the number of components, respectively, of \begin_inset Formula \( T_{i} \) \end_inset \newline let \begin_inset Formula \( \sum (T,z) \) \end_inset denote the sequence of \begin_inset Formula \( n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots ,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \) \end_inset . \newline We shall prove that if \begin_inset Formula \( (T,z)\in \cal B \) \end_inset is not linked, then there is a \begin_inset Formula \( (T',z')\in \cal B \) \end_inset such that \begin_inset Formula \( \sum (T',z') \) \end_inset is lexicographically smaller than \begin_inset Formula \( \sum (T,z) \) \end_inset . Therefore a decomposition with lexicographically minimal \begin_inset Formula \( \sum \) \end_inset must be linked. \layout Description (b) If \begin_inset Formula \( (T,z) \) \end_inset is not linked, then by definition there exist \begin_inset Formula \( e,f\in E(T) \) \end_inset such that \begin_inset Formula \( \lambda (A,B)<\min \{\lambda _{g}|g\in E(P)\} \) \end_inset . \layout Description (c) Let \begin_inset Formula \( V_{A,}V_{B} \) \end_inset be the set of end-vertices of edges in \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset , respectively. By Menger's Theorem there is a \begin_inset Formula \( (V_{A},V_{B}) \) \end_inset -separating cut \begin_inset Formula \( S \) \end_inset with exactly \begin_inset Formula \( \lambda (A,B) \) \end_inset vertices (see Diestel, \emph on Graph Theory \emph default , Electronic Edition 2000, p. 50). That is, every path from \begin_inset Formula \( V_{A} \) \end_inset to \begin_inset Formula \( V_{B} \) \end_inset must pass through \begin_inset Formula \( S \) \end_inset . \newline Then, in \begin_inset Formula \( G\setminus S \) \end_inset , no component contains edges from both \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset . And (in \begin_inset Formula \( G \) \end_inset ) no edge of \begin_inset Formula \( A \) \end_inset is incident to a component (of \begin_inset Formula \( G\setminus S \) \end_inset ) containing edges of \begin_inset Formula \( B \) \end_inset . \newline Note that every edge of \begin_inset Formula \( G \) \end_inset is either in a component of \begin_inset Formula \( G\setminus S \) \end_inset , or is incident to a unique component (it cannot be incident to two components of \begin_inset Formula \( G\setminus S \) \end_inset ), or joins two vertices of \begin_inset Formula \( S \) \end_inset . \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline \protected_separator \newline Let \begin_inset Formula \( X:=\{e\in E(G)|e\in A \) \end_inset , or \begin_inset Formula \( e \) \end_inset is in a component of \begin_inset Formula \( G\setminus S \) \end_inset which contains edges of \begin_inset Formula \( A \) \end_inset , or is incident to such a component \begin_inset Formula \( \} \) \end_inset . \newline \begin_inset Formula \( X \) \end_inset is intuitively the set of edges in \begin_inset Formula \( A \) \end_inset , or on the \begin_inset Formula \( A \) \end_inset side of a smallest vertex-cut separating \begin_inset Formula \( A \) \end_inset from \begin_inset Formula \( B \) \end_inset . Then it is easy to see that \begin_inset Formula \( A\subseteq X\subseteq \overline{B} \) \end_inset . It can also be checked that the vertices common to \begin_inset Formula \( X \) \end_inset and \begin_inset Formula \( \overline{X} \) \end_inset are precisely \begin_inset Formula \( S \) \end_inset : \newline To show inclusion, we note that an edge in one of the specified components cannot be incident to any edge not in \begin_inset Formula \( X \) \end_inset (because we defined all the edges incident to those components to be in \begin_inset Formula \( X \) \end_inset too); similarly any edge incident to one of the specified components can only meet an edge not in \begin_inset Formula \( X \) \end_inset at the \begin_inset Quotes eld \end_inset \begin_inset Formula \( S \) \end_inset end-vertex \begin_inset Quotes erd \end_inset ; and any other edge in \begin_inset Formula \( X \) \end_inset has both its end-vertices in \begin_inset Formula \( S \) \end_inset anyway. To show equality we note that removing the vertices common to \begin_inset Formula \( X \) \end_inset and \begin_inset Formula \( \overline{X} \) \end_inset separates \begin_inset Formula \( V_{A} \) \end_inset from \begin_inset Formula \( V_{B} \) \end_inset ; but \begin_inset Formula \( S \) \end_inset is a minimal separating set. \newline Of all the possible sets \begin_inset Formula \( X \) \end_inset , we choose the one that crosses as few of the tree partitions as possible. Here a tree-partition is a partition \begin_inset Formula \( (A_{e,e},B_{e,e}) \) \end_inset of the edge-set of \begin_inset Formula \( G \) \end_inset , corresponding to some edge \begin_inset Formula \( e\in T. \) \end_inset And two partitions \begin_inset Formula \( (P,Q) \) \end_inset , \begin_inset Formula \( (R,S) \) \end_inset are said to cross if none of \begin_inset Formula \( P\cap R \) \end_inset , \begin_inset Formula \( P\cap S \) \end_inset , \begin_inset Formula \( Q\cap R \) \end_inset , \begin_inset Formula \( Q\cap S \) \end_inset is empty. \layout Description (d) \begin_inset Formula \( T \) \end_inset can be thought of as \begin_inset Formula \( A_{e,f}-e-C_{e,f}-f-B_{e,f} \) \end_inset . We create a new branch decomposition \begin_inset Formula \( (T',z') \) \end_inset of \begin_inset Formula \( G \) \end_inset where \begin_inset Formula \( T' \) \end_inset is \begin_inset Formula \( A_{e,f}-e-C^{e}_{e,f}-a-C^{f}_{e,f}-f-B_{e,f} \) \end_inset , or for simplicity just \begin_inset Formula \( A-e-C^{e}-a-C^{f}-f-B \) \end_inset , where \begin_inset Formula \( C^{e} \) \end_inset and \begin_inset Formula \( C^{f} \) \end_inset are copies of \begin_inset Formula \( C_{e,f} \) \end_inset (the notation is slightly different from that used in the notes). The assignment of edges to leaves is the same for \begin_inset Formula \( A \) \end_inset and \begin_inset Formula \( B \) \end_inset as it was in \begin_inset Formula \( T \) \end_inset . But an edge assigned to \begin_inset Formula \( C \) \end_inset in \begin_inset Formula \( T \) \end_inset is now assigned to the corresponding leaf of \begin_inset Formula \( C^{e} \) \end_inset if the edge is in \begin_inset Formula \( X, \) \end_inset and to the leaf of \begin_inset Formula \( C^{f} \) \end_inset otherwise. \newline (i) For any edge \begin_inset Formula \( e'\in E(T) \) \end_inset , it is easy to see that if \begin_inset Formula \( e' \) \end_inset is in \begin_inset Formula \( A\cup \{e\} \) \end_inset then \begin_inset Formula \( A_{e',e'} \) \end_inset is the same in \begin_inset Formula \( T \) \end_inset and in \begin_inset Formula \( T'; \) \end_inset while for \begin_inset Formula \( g \) \end_inset in \begin_inset Formula \( \{f\}\cup B \) \end_inset , \begin_inset Formula \( B_{e',e'} \) \end_inset is the same (actually, either condition implies the other). Thus \begin_inset Formula \( \lambda _{e'} \) \end_inset is unchanged for these edges. \newline (ii) Now let \begin_inset Formula \( e' \) \end_inset be in \begin_inset Formula \( C \) \end_inset , and consider first what happens if \begin_inset Formula \( e'\in E(P_{e,f}) \) \end_inset . We denote \begin_inset Formula \( A_{e',e'} \) \end_inset by \begin_inset Formula \( A' \) \end_inset ; then we have the situation shown below: \newline \protected_separator \newline \protected_separator \layout Standard \align center \begin_inset Formula \( A \) \end_inset ------ \begin_inset Formula \( C_{1} \) \end_inset ------ \begin_inset Formula \( C_{2} \) \end_inset ------ \begin_inset Formula \( B \) \end_inset \layout Description . \protected_separator \newline \protected_separator \newline while in \begin_inset Formula \( T' \) \end_inset we have the following situation: \newline \protected_separator \newline \layout Standard \align center \begin_inset Formula \( A \) \end_inset ------ \begin_inset Formula \( C_{1,e} \) \end_inset ------ \begin_inset Formula \( C_{2,e} \) \end_inset ------ \begin_inset Formula \( C_{1,f} \) \end_inset ------ \begin_inset Formula \( C_{2,f} \) \end_inset ------ \begin_inset Formula \( B \) \end_inset \layout Description . \protected_separator \newline \protected_separator \newline Now we have \begin_inset Formula \( A'=A\cup C_{1} \) \end_inset , \begin_inset Formula \( C_{1,e}=C_{1}\cap X \) \end_inset , \begin_inset Formula \( C_{2,e}=C_{2}\cap X \) \end_inset , \begin_inset Formula \( C_{1,f}=C_{1}\cap \overline{X} \) \end_inset , \begin_inset Formula \( C_{2,e}=C_{2}\cap \overline{X} \) \end_inset , and so \begin_inset Formula \[ \lambda ({e'}_{e})=\lambda (A\cup C_{1,e})=\lambda (A'\cap X)\] \end_inset \begin_inset Formula \[ \lambda ({e'}_{f})=\lambda (A\cup C_{1,e}\cup C_{2,e}\cup C_{1,f})=\lambda (A'\cup X).\] \end_inset Note that \begin_inset Formula \( \lambda (A'\cup X)=\lambda (\overline{A'\cup X})=\lambda (\overline{A'}\cap \overline{X}) \) \end_inset . \layout Description (iii) If \begin_inset Formula \( e'\not \in E(P_{e,f}) \) \end_inset , then the picture in \begin_inset Formula \( T \) \end_inset looks like this: \newline \protected_separator \newline \protected_separator \layout Standard \align center \begin_inset Formula \( A \) \end_inset ------ \begin_inset Formula \( C_{1} \) \end_inset ------ \begin_inset Formula \( B \) \end_inset \newline | \newline \begin_inset Formula \( C_{2} \) \end_inset \layout Description . \protected_separator \newline \protected_separator \newline while in \begin_inset Formula \( T' \) \end_inset we have: \newline \protected_separator \newline \protected_separator \layout Standard \align center \begin_inset Formula \( A \) \end_inset ------ \begin_inset Formula \( C_{1,e} \) \end_inset ------ \begin_inset Formula \( C_{1,f} \) \end_inset ------ \begin_inset Formula \( B \) \end_inset \newline | \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator | \newline \begin_inset Formula \( C_{2,e} \) \end_inset \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \protected_separator \begin_inset Formula \( C_{2,f} \) \end_inset \layout Description . \protected_separator \newline \protected_separator \newline We now have \begin_inset Formula \( A'=C_{2} \) \end_inset , \begin_inset Formula \( C_{1,e}=C_{1}\cap X \) \end_inset , \begin_inset Formula \( C_{2,e}=C_{2}\cap X \) \end_inset , \begin_inset Formula \( C_{1,f}=C_{1}\cap \overline{X} \) \end_inset , \begin_inset Formula \( C_{2,e}=C_{2}\cap \overline{X} \) \end_inset , so \begin_inset Formula \[ \lambda ({e'}_{e})=\lambda (C_{2,e})=\lambda (A'\cap X)\] \end_inset \begin_inset Formula \[ \lambda ({e'}_{f})=\lambda (C_{2,f})=\lambda (A'\cap \overline{X})=\lambda (A'\setminus X).\] \end_inset \layout Description (e) The edge \begin_inset Formula \( {e'}_{e} \) \end_inset always has label \begin_inset Formula \( \lambda (A'\cap X) \) \end_inset . Now, by submodularity, we have \begin_inset Formula \[ \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\] \end_inset But \begin_inset Formula \( A\subseteq X\subseteq A'\cup X\subseteq \overline{B}\Rightarrow \lambda (A'\cup X)\geq \lambda (X) \) \end_inset , because \begin_inset Formula \( X \) \end_inset is a minimal \begin_inset Formula \( A,B \) \end_inset -separating set. So \begin_inset Formula \[ \lambda (A'\cap X)+\lambda (X)\leq \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\Rightarrow \lambda (A'\cap X)\leq \lambda (A')\] \end_inset So the label on \begin_inset Formula \( {e'}_{e} \) \end_inset is no larger than the original label of \begin_inset Formula \( e' \) \end_inset . \newline If \begin_inset Formula \( e'\in E(P) \) \end_inset , then \begin_inset Formula \( {e'}_{f} \) \end_inset has label \begin_inset Formula \( \lambda (\overline{A'}\cap \overline{X}) \) \end_inset , and \begin_inset Formula \( \overline{A}\supseteq \overline{A'}\cup \overline{X}\supseteq \overline{X}\supseteq B \) \end_inset , so an analogous argument shows that even this copy has label no larger than \begin_inset Formula \( \lambda (\overline{A})=\lambda (A) \) \end_inset . \newline If \begin_inset Formula \( e'\not \in E(P) \) \end_inset , then \begin_inset Formula \( {e'}_{f} \) \end_inset has label \begin_inset Formula \( \lambda (A'\cap \overline{X}) \) \end_inset , and \begin_inset Formula \( \overline{A}\supseteq A'\cup \overline{X}\supseteq \overline{X}\supseteq B \) \end_inset , so \begin_inset Formula \( \lambda (A'\cup \overline{X})\geq \lambda (X) \) \end_inset . Then using submodularity we get \begin_inset Formula \[ \lambda (A'\cap \overline{X})+\lambda (X)\leq \lambda (A'\cap \overline{X})+\lambda (A'\cup \overline{X})\leq \lambda (A')+\lambda (\overline{X})\Rightarrow \lambda (A'\cap \overline{X})\leq \lambda (A')\] \end_inset The edge \begin_inset Formula \( a \) \end_inset does not correspond to any edge in \begin_inset Formula \( T \) \end_inset , but we know that \begin_inset Formula \( \lambda (a)=\lambda (X)<b \) \end_inset . \newline So the label on each edge does not increase; in particular the width of \begin_inset Formula \( (T',z') \) \end_inset is \begin_inset Formula \( b \) \end_inset , and \begin_inset Formula \( n_{b}\geq {n'}_{b} \) \end_inset . \layout Description (f) Now suppose the label on the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{e} \) \end_inset is the same as the original label, that is \begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \) \end_inset . Then, by the previous equation, we have \begin_inset Formula \( \lambda (X)\leq \lambda (A'\cup X)\leq \lambda (X) \) \end_inset . So if \begin_inset Formula \( e'\in E(P) \) \end_inset we know that the label on the copy of \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( C^{f} \) \end_inset is exactly \begin_inset Formula \( \lambda (X) \) \end_inset . \layout Description (g) Suppose we have \begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \) \end_inset , but now \begin_inset Formula \( e'\not \in E(P) \) \end_inset . Then we want to show that \begin_inset Formula \( \lambda (A'\cap \overline{X})\leq \lambda (X) \) \end_inset , or equivalently \begin_inset Formula \( \lambda (\overline{A'}\cup X)\leq \lambda (X) \) \end_inset . Now the second equation of (e) gives us \begin_inset Formula \( \lambda (A'\cup X)=\lambda (X) \) \end_inset . If this occurs because \begin_inset Formula \( A'\cup X=X \) \end_inset , then \begin_inset Formula \( A'\cap \overline{X}=\emptyset \) \end_inset , and so \begin_inset Formula \( \lambda (A'\cup \overline{X})=\lambda (\emptyset )=0\leq \lambda (X) \) \end_inset . \newline We will show that the alternative is impossible, as then \begin_inset Formula \( (A'\cup X,\overline{A'\cup X}) \) \end_inset crosses fewer tree-partitions than \begin_inset Formula \( (X,\overline{X}) \) \end_inset , which contradicts the choice of \begin_inset Formula \( X \) \end_inset . \newline \newline \newline So we have shown that for any edge \begin_inset Formula \( e' \) \end_inset in \begin_inset Formula \( T \) \end_inset with label \begin_inset Formula \( \lambda (A') \) \end_inset , we either get \newline (i) a single edge in \begin_inset Formula \( T' \) \end_inset labelled \begin_inset Formula \( \lambda (A') \) \end_inset (if \begin_inset Formula \( e' \) \end_inset is in \begin_inset Formula \( A \) \end_inset or \begin_inset Formula \( B \) \end_inset ), \newline (ii) one edge labelled \begin_inset Formula \( \lambda (A') \) \end_inset and one labelled at most \begin_inset Formula \( \lambda (X) \) \end_inset , or \newline (iii) two edges in \begin_inset Formula \( T' \) \end_inset whose labels are both strictly less than \begin_inset Formula \( \lambda (A') \) \end_inset . \layout Description (h, \protected_separator i) We want to show that \begin_inset Formula \( \sum (T,z)=n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots ,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \) \end_inset is lexicographically larger than \begin_inset Formula \( \sum (T',z')={n'}_{b},{n'}_{b}-{c'}_{b,}{n'}_{b-1,}{n'}_{b-1}-{c'}_{b-1},\ldots ,{n'}_{1,}{n'}_{1}-{c'}_{1,}{n'}_{0,}{n'}_{0}-{c'}_{0} \) \end_inset . \layout Description Case \protected_separator 1: All the terms are equal up to (but not including) some \begin_inset Formula \( n_{i} \) \end_inset , \begin_inset Formula \( i>\lambda (X) \) \end_inset . \newline If \begin_inset Formula \( i=b \) \end_inset , then by (e) we must have \begin_inset Formula \( n_{b}>{n'}_{b} \) \end_inset , so we are done. Otherwise, in \begin_inset Formula \( {T'}_{i} \) \end_inset we have exactly \begin_inset Formula \( n_{b} \) \end_inset edges labelled \begin_inset Formula \( b \) \end_inset ; so case (g)(iii) cannot occur for label \begin_inset Formula \( b \) \end_inset , and thus each edge in \begin_inset Formula \( T_{i} \) \end_inset labelled \begin_inset Formula \( b \) \end_inset gives rise in \begin_inset Formula \( {T'}_{i} \) \end_inset only to edges labelled \begin_inset Formula \( b \) \end_inset [it may give rise to other edges with label at most \begin_inset Formula \( \lambda (X) \) \end_inset , but these will not be in \begin_inset Formula \( {T'}_{i} \) \end_inset ]. Then in \begin_inset Formula \( {T'}_{i} \) \end_inset all edges labelled \begin_inset Formula \( b-1 \) \end_inset must come from edges labelled \begin_inset Formula \( b-1 \) \end_inset in \begin_inset Formula \( T \) \end_inset ; and since there are exactly \begin_inset Formula \( {n'}_{b-1}-{n'}_{b}=n_{b-1}-n_{b} \) \end_inset such edges, case (g)(iii) cannot occur for label \begin_inset Formula \( b-1 \) \end_inset , so each edge in \begin_inset Formula \( T_{i} \) \end_inset labelled \begin_inset Formula \( b-1 \) \end_inset gives rise in \begin_inset Formula \( {T'}_{i} \) \end_inset only to edges labelled \begin_inset Formula \( b-1 \) \end_inset . \newline Continuing in this manner we see that the number of edges of each label \begin_inset Formula \( b,b-1,\ldots ,i+1 \) \end_inset is the same in \begin_inset Formula \( T_{i} \) \end_inset and \begin_inset Formula \( {T'}_{i} \) \end_inset ; and the edges labelled \begin_inset Formula \( i \) \end_inset in \begin_inset Formula \( {T'}_{i} \) \end_inset must come from edges labelled \begin_inset Formula \( i \) \end_inset in \begin_inset Formula \( T_{i} \) \end_inset . But then number of such edges cannot be larger in \begin_inset Formula \( {T'}_{i} \) \end_inset than in \begin_inset Formula \( T_{i} \) \end_inset , so it must be smaller, and we have \begin_inset Formula \( n_{i}>{n'}_{i} \) \end_inset . \layout Description Case \protected_separator 2: All the terms are equal up to (but not including) some \begin_inset Formula \( n_{i}-c_{i} \) \end_inset , \begin_inset Formula \( i>\lambda (X) \) \end_inset . \newline So in \begin_inset Formula \( T_{i} \) \end_inset and \begin_inset Formula \( {T'}_{i} \) \end_inset there are the same number of edges of each label \begin_inset Formula \( b,b-1,\ldots ,i \) \end_inset . And so, by the arguments for Case 1, each edge in \begin_inset Formula \( {T'}_{i} \) \end_inset corresponds to an edge in \begin_inset Formula \( T_{i} \) \end_inset with the same label. But two edges which are not adjacent in \begin_inset Formula \( T_{i} \) \end_inset will not be adjacent in \begin_inset Formula \( {T'}_{i} \) \end_inset either, as all the edges separating them from each other in \begin_inset Formula \( T_{i} \) \end_inset will still be there in \begin_inset Formula \( {T'}_{i} \) \end_inset (and there might even be new edges inserted in between). Thus, components of \begin_inset Formula \( T_{i} \) \end_inset are unions of components of \begin_inset Formula \( {T'}_{i} \) \end_inset , and so \begin_inset Formula \( c_{i}\leq {c'}_{i} \) \end_inset . Since we have inequality in the \begin_inset Formula \( n_{i}-c_{i} \) \end_inset term, it must be \begin_inset Formula \( n_{i}-c_{i}>{n'}_{i}-{c'}_{i} \) \end_inset . \layout Description Case \protected_separator 3: All the terms are equal at least up to \begin_inset Formula \( n_{\lambda (X)} \) \end_inset . \newline We will show that this is impossible. For in \begin_inset Formula \( T_{i} \) \end_inset all edges on the path from \begin_inset Formula \( e \) \end_inset to \begin_inset Formula \( f \) \end_inset had label at least \begin_inset Formula \( \lambda (X)+1 \) \end_inset , so they were all in the same component of \begin_inset Formula \( T_{\lambda (X)+1} \) \end_inset . Now, these edges cannot all have mapped to \begin_inset Formula \( C^{e} \) \end_inset , or all to \begin_inset Formula \( C^{f} \) \end_inset , for then either \begin_inset Formula \( \lambda _{e} \) \end_inset or \begin_inset Formula \( \lambda _{f} \) \end_inset would have been equal to \begin_inset Formula \( \lambda (X) \) \end_inset . So some edges go to \begin_inset Formula \( C^{e} \) \end_inset and some to \begin_inset Formula \( C^{f} \) \end_inset ; and now they cannot be in the same component of \begin_inset Formula \( {T'}_{\lambda (X)+1} \) \end_inset , because the edge \begin_inset Formula \( a \) \end_inset has label \begin_inset Formula \( \lambda (X) \) \end_inset . So \begin_inset Formula \( c_{\lambda (X)+1}\leq {c'}_{\lambda (X)+1} \) \end_inset . \layout Description Note: We only have \begin_inset Formula \( n_{j}\geq {n'}_{j} \) \end_inset and \begin_inset Formula \( c_{j}\geq {c'}_{j} \) \end_inset for \begin_inset Formula \( j\geq i \) \end_inset , where strict inequality first occurs, and not necessarily all the way up to \begin_inset Formula \( \lambda (X). \) \end_inset \the_end