Hi,
        I tried to "View Postcript" on a file today and LyX just aborted.
However, when I exported the file as LaTeX and used LaTeX, I had no
problems. I'm therefore attaching two copies of the file:- the first
attachment is a version that worked OK, the second attachment is the
file that caused LyX to abort.

Alastair
 
-- 
Alastair Farrugia  | e-mail:      [EMAIL PROTECTED]
PhD student        | snail mail:  Dept. of Combinatorics, Faculty of
Maths
MC 6101 x6655      |              University of Waterloo, Waterloo ON
home: 519-885-7122 |              Canada N2L 3G1
#This file was created by <afarrugi> Mon Feb 28 01:35:44 2000
#LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team
\lyxformat 2.15
\textclass article
\language default
\inputencoding default
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Standard
\align center 
Topological Graph Theory 
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
C&0 749 Z
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
Winter 2000
\newline 

\layout Standard
\align right 

\bar under 
Assignment 2
\bar default 
 
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
Alastair Farrugia ID: 99803095
\newline 

\layout Description

Definitions.
 A 
\emph on 
branch-decomposition
\emph default 
 
\begin_inset Formula \( (T,z) \)
\end_inset 

 of a graph 
\begin_inset Formula \( G \)
\end_inset 

 consists of a tree 
\begin_inset Formula \( T \)
\end_inset 

 in which every vertex has degree 
\begin_inset Formula \( 3 \)
\end_inset 

 or 
\begin_inset Formula \( 1; \)
\end_inset 

 and a 1-1 function 
\begin_inset Formula \( z \)
\end_inset 

 from the edges of 
\begin_inset Formula \( G \)
\end_inset 

 to the leaves of 
\begin_inset Formula \( T \)
\end_inset 

.
 (That is, each edge of 
\begin_inset Formula \( G \)
\end_inset 

 is assigned to a unique leaf, and each leaf is assigned either 
\begin_inset Formula \( \emptyset  \)
\end_inset 

 or a unique edge of 
\begin_inset Formula \( G \)
\end_inset 

).
 For any two edges 
\begin_inset Formula \( e,f \)
\end_inset 

 of 
\begin_inset Formula \( T, \)
\end_inset 

 we define
\layout Standard
\align left 

\begin_inset Formula \( A=A_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident only to 
\begin_inset Formula \( e \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( C=C_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident to both 
\begin_inset Formula \( e \)
\end_inset 

 and 
\begin_inset Formula \( f \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( B=B_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident only to 
\begin_inset Formula \( f \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( P=P_{e,f} \)
\end_inset 

 to be the unique path in 
\begin_inset Formula \( T \)
\end_inset 

 starting with 
\begin_inset Formula \( e \)
\end_inset 

 and ending with 
\begin_inset Formula \( f \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( \lambda (A,B)=\lambda _{e,f}(A,B) \)
\end_inset 

 to be the maximum number of vertex disjoint paths 
\begin_inset Quotes eld
\end_inset 

from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 


\begin_inset Quotes erd
\end_inset 

.
 (That is, the maximum number of vertex-disjoint paths with one end-vertex
 incident to an edge in 
\begin_inset Formula \( A \)
\end_inset 

, the other incident to an edge in 
\begin_inset Formula \( B \)
\end_inset 

.
 Note: if some edge of 
\begin_inset Formula \( A \)
\end_inset 

 is incident to an edge of 
\begin_inset Formula \( B \)
\end_inset 

, then the common end-vertex will be a trivial path from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

).
 
\layout Standard
\align left 

\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 is defined to be 
\begin_inset Formula \( \lambda _{e,e}(A,B) \)
\end_inset 

, for each edge 
\begin_inset Formula \( e\in T \)
\end_inset 

 (Note: In this case we have 
\begin_inset Formula \( C_{e,e}=\emptyset  \)
\end_inset 

, 
\begin_inset Formula \( P_{e,e}=e \)
\end_inset 

 and 
\begin_inset Formula \( B_{e,e}=E(G)\setminus A_{e,e} \)
\end_inset 

, so 
\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 can also be defined as the number of vertices incident with an edge in
 
\begin_inset Formula \( A_{e,e} \)
\end_inset 

 and an edge not in 
\begin_inset Formula \( A_{e,e} \)
\end_inset 

.
 To prove this, we note that these vertices form an 
\begin_inset Formula \( (A,B) \)
\end_inset 

-cut, so by Menger's Theorem their number is equal to the maximum number
 of vertex disjoint paths from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

; but each of these vertices 
\emph on 
is
\emph default 
 a path from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

).
\layout Standard
\align left 
So, in this form, we can extend the definition to any set of edges of 
\begin_inset Formula \( G \)
\end_inset 

.
\newline 

\protected_separator 

\layout Standard
\align left 
By Menger's Theorem, for any two edges 
\begin_inset Formula \( e,f\in E(T) \)
\end_inset 

, and any edge 
\begin_inset Formula \( g\in P_{e,f} \)
\end_inset 

 , 
\begin_inset Formula 
\[
\lambda _{g}\leq \lambda _{e,f}(A,B)\]

\end_inset 


\layout Standard
\align left 
If this inequality is sharp for all 
\begin_inset Formula \( e,f \)
\end_inset 

, then we say that 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is a 
\emph on 
linked
\emph default 
 branch decomposition.
\newline 
The 
\emph on 
width
\emph default 
 of a branch decomposition is 
\begin_inset Formula \( \max \{\lambda _{e}|e\in E(T)\} \)
\end_inset 

, and the 
\emph on 
branch width
\emph default 
 of 
\begin_inset Formula \( G \)
\end_inset 

 is the minimum width over all branch decompositions.
\layout Standard
\align left 

\protected_separator 

\layout Standard
\align left 

\series bold 
Theorem.

\series default 
 Every graph 
\begin_inset Formula \( G \)
\end_inset 

 has a linked branch decomposition 
\begin_inset Formula \( (T,z) \)
\end_inset 

 such that the width of 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is the branch width of 
\begin_inset Formula \( G \)
\end_inset 

.
\layout Description

Proof:
\protected_separator 
(a) Let 
\begin_inset Formula \( \cal B \)
\end_inset 

 be the set of branch decompositions of 
\begin_inset Formula \( G \)
\end_inset 

 having width 
\begin_inset Formula \( b \)
\end_inset 

, the branch width of 
\begin_inset Formula \( G \)
\end_inset 

.
 For each 
\begin_inset Formula \( (T,z)\in \cal B \)
\end_inset 

, and each 
\begin_inset Formula \( i=0,1,\ldots ,b \)
\end_inset 

 : 
\newline 
let 
\begin_inset Formula \( T_{i} \)
\end_inset 

 be the subgraph of 
\begin_inset Formula \( T \)
\end_inset 

 induced by the edges of 
\begin_inset Formula \( T \)
\end_inset 

 with label at least 
\begin_inset Formula \( i \)
\end_inset 

 
\newline 
let 
\begin_inset Formula \( n_{i} \)
\end_inset 

 and 
\begin_inset Formula \( c_{i} \)
\end_inset 

 denote the number of edges and the number of components, respectively,
 of 
\begin_inset Formula \( T_{i} \)
\end_inset 

 
\newline 
let 
\begin_inset Formula \( \sum (T,z) \)
\end_inset 

 denote the sequence of 
\begin_inset Formula \( n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots 
,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \)
\end_inset 

.
\newline 
We shall prove that if 
\begin_inset Formula \( (T,z)\in \cal B \)
\end_inset 

 is not linked, then there is a 
\begin_inset Formula \( (T',z')\in \cal B \)
\end_inset 

 such that 
\begin_inset Formula \( \sum (T',z') \)
\end_inset 

 is lexicographically smaller than 
\begin_inset Formula \( \sum (T,z) \)
\end_inset 

.
 Therefore a decomposition with lexicographically minimal 
\begin_inset Formula \( \sum  \)
\end_inset 

 must be linked.
\layout Description

(b) If 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is not linked, then by definition there exist 
\begin_inset Formula \( e,f\in E(T) \)
\end_inset 

 such that 
\begin_inset Formula \( \lambda (A,B)<\min \{\lambda _{g}|g\in E(P)\} \)
\end_inset 

.
\layout Description

(c) Let 
\begin_inset Formula \( V_{A,}V_{B} \)
\end_inset 

 be the set of end-vertices of edges in 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

, respectively.
 By Menger's Theorem there is a 
\begin_inset Formula \( (V_{A},V_{B}) \)
\end_inset 

-separating cut 
\begin_inset Formula \( S \)
\end_inset 

 with exactly 
\begin_inset Formula \( \lambda (A,B) \)
\end_inset 

 vertices (see Diestel, 
\emph on 
Graph Theory
\emph default 
, Electronic Edition 2000, p.
 50).
 That is, every path which intersects 
\begin_inset Formula \( V_{A} \)
\end_inset 

 and 
\begin_inset Formula \( V_{B} \)
\end_inset 

 must also intersect 
\begin_inset Formula \( S \)
\end_inset 

.
\newline 
Then, in 
\begin_inset Formula \( G\setminus S \)
\end_inset 

, no component contains edges from both 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

.
 And (in 
\begin_inset Formula \( G \)
\end_inset 

) no edge of 
\begin_inset Formula \( A \)
\end_inset 

 is incident to a component (of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

) containing edges of 
\begin_inset Formula \( B \)
\end_inset 

.
 
\newline 
Note that every edge of 
\begin_inset Formula \( G \)
\end_inset 

 is either in a component of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

, or is incident to a unique component (it cannot be incident to two components
 of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

), or joins two vertices of 
\begin_inset Formula \( S \)
\end_inset 

.
 
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 
Let 
\begin_inset Formula \( X:=\{e\in E(G)|e\in A \)
\end_inset 

, or 
\begin_inset Formula \( e \)
\end_inset 

 is in a component of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

 which contains edges of 
\begin_inset Formula \( A \)
\end_inset 

, or is incident to such a component
\begin_inset Formula \( \} \)
\end_inset 

.
\newline 

\begin_inset Formula \( X \)
\end_inset 

 is intuitively the set of edges on the 
\begin_inset Formula \( A \)
\end_inset 

 side of a smallest vertex-cut separating 
\begin_inset Formula \( A \)
\end_inset 

 from 
\begin_inset Formula \( B \)
\end_inset 

.
 Then it is easy to see that 
\begin_inset Formula \( A\subseteq X\subseteq E(G)\setminus B \)
\end_inset 

.
 It can also be checked that the vertices common to 
\begin_inset Formula \( X \)
\end_inset 

 and 
\begin_inset Formula \( E(G)\setminus X \)
\end_inset 

 are precisely 
\begin_inset Formula \( S \)
\end_inset 

: 
\newline 
To show inclusion, we note that an edge in one of the specified components
 cannot be incident to any edge not in 
\begin_inset Formula \( X \)
\end_inset 

 (because we defined all the edges incident to those components to be in
 
\begin_inset Formula \( X \)
\end_inset 

 too); similarly any edge incident to one of the specified components can
 only meet an edge not in 
\begin_inset Formula \( X \)
\end_inset 

 at the 
\begin_inset Quotes eld
\end_inset 


\begin_inset Formula \( S \)
\end_inset 

 end-vertex
\begin_inset Quotes erd
\end_inset 

; and any other edge in 
\begin_inset Formula \( X \)
\end_inset 

 has both its end-vertices in 
\begin_inset Formula \( S \)
\end_inset 

 anyway.
 Now if 
\begin_inset Formula \( v\in S \)
\end_inset 

 is not incident to any edge of 
\begin_inset Formula \( X \)
\end_inset 

 (or not incident to any vertex not in 
\begin_inset Formula \( X \)
\end_inset 

), it can be seen that there are no paths from 
\begin_inset Formula \( V_{A} \)
\end_inset 

 to 
\begin_inset Formula \( V_{B} \)
\end_inset 

 in 
\begin_inset Formula \( G\setminus (S\setminus \{v\}) \)
\end_inset 

, so that 
\begin_inset Formula \( S \)
\end_inset 

 is not minimal, which is impossible.
\newline 
Of all the possible sets 
\begin_inset Formula \( X \)
\end_inset 

, we choose the one that crosses as few of the tree partitions as possible.
 Here a tree-partition is a partition 
\begin_inset Formula \( (A_{e,e},B_{e,e}) \)
\end_inset 

 of the edge-set of 
\begin_inset Formula \( G \)
\end_inset 

, corresponding to some edge 
\begin_inset Formula \( e\in T. \)
\end_inset 

 And two partitions 
\begin_inset Formula \( (P,Q) \)
\end_inset 

, 
\begin_inset Formula \( (R,S) \)
\end_inset 

 are said to cross if none of 
\begin_inset Formula \( P\cap R \)
\end_inset 

, 
\begin_inset Formula \( P\cap S \)
\end_inset 

, 
\begin_inset Formula \( Q\cap R \)
\end_inset 

, 
\begin_inset Formula \( Q\cap S \)
\end_inset 

 is empty.
\layout Description

(d) 
\begin_inset Formula \( T \)
\end_inset 

 can be thought of as 
\begin_inset Formula \( A_{e,f}-e-C_{e,f}-f-B_{e,f} \)
\end_inset 

.
 We create a new branch decomposition 
\begin_inset Formula \( (T',z') \)
\end_inset 

 of 
\begin_inset Formula \( G \)
\end_inset 

 where 
\begin_inset Formula \( T' \)
\end_inset 

 is 
\begin_inset Formula \( A_{e,f}-e-C^{e}_{e,f}-a-C^{f}_{e,f}-f-B_{e,f} \)
\end_inset 

, or just 
\begin_inset Formula \( A-e-C^{e}-a-C^{f}-f-B \)
\end_inset 

, where 
\begin_inset Formula \( C^{e} \)
\end_inset 

 and 
\begin_inset Formula \( C^{f} \)
\end_inset 

 are copies of 
\begin_inset Formula \( C_{e,e} \)
\end_inset 

 (the notation is slightly different from that used in the notes).
 The assignment of edges to leaves is the same for 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

 as it was in 
\begin_inset Formula \( T \)
\end_inset 

.
 But an edge assigned to 
\begin_inset Formula \( C \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

 is now assigned to the corresponding leaf of 
\begin_inset Formula \( C^{e} \)
\end_inset 

 if the edge is in 
\begin_inset Formula \( X, \)
\end_inset 

 and to the leaf of 
\begin_inset Formula \( C^{f} \)
\end_inset 

 otherwise.
\newline 
(i) For any edge 
\begin_inset Formula \( e'\in E(T') \)
\end_inset 

, it is easy to see that if 
\begin_inset Formula \( e' \)
\end_inset 

 is in 
\begin_inset Formula \( A\cup \{e\} \)
\end_inset 

 then 
\begin_inset Formula \( A_{e',e'} \)
\end_inset 

 is the same in 
\begin_inset Formula \( T \)
\end_inset 

 and in 
\begin_inset Formula \( T'; \)
\end_inset 

 while for 
\begin_inset Formula \( g \)
\end_inset 

 in 
\begin_inset Formula \( \{f\}\cup B \)
\end_inset 

, 
\begin_inset Formula \( B_{e',e'} \)
\end_inset 

 is the same (actually, either condition implies the other).
 Thus 
\begin_inset Formula \( \lambda _{e'} \)
\end_inset 

 is unchanged too.
 
\newline 
(ii) Now let 
\begin_inset Formula \( e' \)
\end_inset 

 be in 
\begin_inset Formula \( C^{e}\cup \{a\}\cup C^{f} \)
\end_inset 

.
 We consider first what happens if 
\begin_inset Formula \( e'\in E(P_{e,f}) \)
\end_inset 

.
 We denote 
\begin_inset Formula \( A_{e',e'} \)
\end_inset 

 by 
\begin_inset Formula \( A' \)
\end_inset 

.
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 
Then in 
\begin_inset Formula \( T' \)
\end_inset 

 we have the following situation:
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 
(iii) If 
\begin_inset Formula \( e'\not \in E(P_{e,f}) \)
\end_inset 

, then the picture in 
\begin_inset Formula \( T \)
\end_inset 

 looks like this: 
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 
while in 
\begin_inset Formula \( T' \)
\end_inset 

 we have:
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\layout Description

(e) The copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{e} \)
\end_inset 

 always has label 
\begin_inset Formula \( \lambda (A'\cap X) \)
\end_inset 

.
 Now, by submodularity, we have
\begin_inset Formula 
\[
\lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\]

\end_inset 

 But 
\begin_inset Formula \( A\subseteq X\subseteq A'\cup X\subseteq E(G)\setminus 
B\Rightarrow \lambda (A'\cup X)\geq \lambda (X) \)
\end_inset 

, because 
\begin_inset Formula \( X \)
\end_inset 

 is a minimal 
\begin_inset Formula \( A,B \)
\end_inset 

-separating set.
 So
\begin_inset Formula 
\[
\lambda (A'\cap X)+\lambda (X)\leq \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda 
(A')+\lambda (X)\Rightarrow \lambda (A'\cap X)\leq \lambda (A')\]

\end_inset 

So the label on the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{e} \)
\end_inset 

 is no larger than the original label of 
\begin_inset Formula \( e' \)
\end_inset 

.
 
\newline 
If 
\begin_inset Formula \( e'\in E(P) \)
\end_inset 

, then the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{f} \)
\end_inset 

 has label 
\begin_inset Formula \( \lambda (\overline{A'}\cap \overline{X}) \)
\end_inset 

, so an analogous argument shows that even this copy has label no larger
 than 
\begin_inset Formula \( \lambda (\overline{A})=\lambda (A) \)
\end_inset 

.
 
\newline 
If 
\begin_inset Formula \( e'\not \in E(P) \)
\end_inset 

, then
\newline 
So the label on each edge does not increase; in particular 
\begin_inset Formula \( n_{b}\geq {n'}_{b} \)
\end_inset 

, and the width of 
\begin_inset Formula \( (T',z') \)
\end_inset 

 is 
\begin_inset Formula \( b \)
\end_inset 

.
\layout Description

(f) Now suppose the label on the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{e} \)
\end_inset 

 is the same as the original label, that is 
\begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \)
\end_inset 

.
 Then, by the previous equation, we have 
\begin_inset Formula \( \lambda (X)\leq \lambda (A'\cup X)\leq \lambda (X) \)
\end_inset 

.
 So if 
\begin_inset Formula \( e'\in E(P) \)
\end_inset 

 we know that the label on the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{f} \)
\end_inset 

 is exactly 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
\layout Description

(g) Suppose we have 
\begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \)
\end_inset 

, but now 
\begin_inset Formula \( e'\not \in E(P) \)
\end_inset 

.
 Then .
 
\newline 
So we have shown that for any edge 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

 with label 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

, we either get 
\newline 
(i) a single edge in 
\begin_inset Formula \( T' \)
\end_inset 

 labelled 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

 (if 
\begin_inset Formula \( e' \)
\end_inset 

 is in 
\begin_inset Formula \( A \)
\end_inset 

 or 
\begin_inset Formula \( B \)
\end_inset 

), 
\newline 
(ii) one edge labelled 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

 and one labelled at most 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

, or
\newline 
(iii) two edges in 
\begin_inset Formula \( T' \)
\end_inset 

 whose labels are both strictly less than 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

.
\layout Description

(h,
\protected_separator 
i) We want to show that 
\begin_inset Formula \( \sum (T,z)=n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots 
,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \)
\end_inset 

 is lexicographically larger than 
\begin_inset Formula \( \sum 
(T',z')={n'}_{b},{n'}_{b}-{c'}_{b,}{n'}_{b-1,}{n'}_{b-1}-{c'}_{b-1},\ldots 
,{n'}_{1,}{n'}_{1}-{c'}_{1,}{n'}_{0,}{n'}_{0}-{c'}_{0} \)
\end_inset 

.
 
\layout Description

Case
\protected_separator 
1: All the terms are equal up to (but not including) some 
\begin_inset Formula \( n_{i} \)
\end_inset 

, 
\begin_inset Formula \( i>\lambda (X) \)
\end_inset 

.
\newline 
If 
\begin_inset Formula \( i=b \)
\end_inset 

, then by (e) we must have 
\begin_inset Formula \( n_{b}>{n'}_{b} \)
\end_inset 

, so we are done.
 Otherwise, in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 we have exactly 
\begin_inset Formula \( n_{b} \)
\end_inset 

 edges labelled 
\begin_inset Formula \( b \)
\end_inset 

; so case (g)(iii) cannot occur for label 
\begin_inset Formula \( b \)
\end_inset 

, and thus each edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 labelled 
\begin_inset Formula \( b \)
\end_inset 

 gives rise in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 only to edges labelled 
\begin_inset Formula \( b \)
\end_inset 

 [it may give rise to other edges with label at most 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

, but these will not be in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

].
 Then in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 all edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 must come from edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

; and since there are exactly 
\begin_inset Formula \( {n'}_{b-1}-{n'}_{b}=n_{b-1}-n_{b} \)
\end_inset 

 such edges, case (g)(iii) cannot occur for label 
\begin_inset Formula \( b-1 \)
\end_inset 

, so each edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 gives rise in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 only to edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

.
\newline 
Continuing in this manner we see that the number of edges of each label
 
\begin_inset Formula \( b,b-1,\ldots ,i+1 \)
\end_inset 

 is the same in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 and 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

; and the edges labelled 
\begin_inset Formula \( i \)
\end_inset 

 in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 must come from edges labelled 
\begin_inset Formula \( i \)
\end_inset 

 in 
\begin_inset Formula \( T_{i} \)
\end_inset 

.
 But then number of such edges cannot be larger in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 than in 
\begin_inset Formula \( T_{i} \)
\end_inset 

, so it must be smaller, and we have 
\begin_inset Formula \( n_{i}>{n'}_{i} \)
\end_inset 

.
  
\layout Description

Case
\protected_separator 
2: All the terms are equal up to (but not including) some 
\begin_inset Formula \( n_{i}-c_{i} \)
\end_inset 

, 
\begin_inset Formula \( i>\lambda (X) \)
\end_inset 

.
\newline 
So in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 and 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 there are the same number of edges of each label 
\begin_inset Formula \( b,b-1,\ldots ,i \)
\end_inset 

.
 And so, by the arguments for Case 1, each edge in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 corresponds to an edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 with the same label.
 But two edges which are not adjacent in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 will not be adjacent in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 either, as all the edges separating them from each other in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 will still be there in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 (and there might even be new edges inserted in between).
 Thus, components of 
\begin_inset Formula \( T_{i} \)
\end_inset 

 are unions of components of 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

, and so 
\begin_inset Formula \( c_{i}\leq {c'}_{i} \)
\end_inset 

.
 Since we have inequality in the 
\begin_inset Formula \( n_{i}-c_{i} \)
\end_inset 

 term, it must be 
\begin_inset Formula \( n_{i}-c_{i}>{n'}_{i}-{c'}_{i} \)
\end_inset 

.
\layout Description

Case
\protected_separator 
3: All the terms are equal at least up to 
\begin_inset Formula \( n_{\lambda (X)} \)
\end_inset 

.
\newline 
We will show that this is impossible.
 For in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 all edges on the path from 
\begin_inset Formula \( e \)
\end_inset 

 to 
\begin_inset Formula \( f \)
\end_inset 

 had label at least 
\begin_inset Formula \( \lambda (X)+1 \)
\end_inset 

, so they were all in the same component of 
\begin_inset Formula \( T_{\lambda (X)+1} \)
\end_inset 

.
 Now, these edges cannot all have mapped to 
\begin_inset Formula \( C^{e} \)
\end_inset 

, or all to 
\begin_inset Formula \( C^{f} \)
\end_inset 

, for then either 
\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 or 
\begin_inset Formula \( \lambda _{f} \)
\end_inset 

 would have been equal to 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
 So some edges go to 
\begin_inset Formula \( C^{e} \)
\end_inset 

 and some to 
\begin_inset Formula \( C^{f} \)
\end_inset 

; and now they cannot be in the same component of 
\begin_inset Formula \( {T'}_{\lambda (X)+1} \)
\end_inset 

, because the edge 
\begin_inset Formula \( a \)
\end_inset 

 has label 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
 So 
\begin_inset Formula \( c_{\lambda (X)+1}\leq {c'}_{\lambda (X)+1} \)
\end_inset 

.
\layout Description

Note: We only have 
\begin_inset Formula \( n_{j}\geq {n'}_{j} \)
\end_inset 

 and 
\begin_inset Formula \( c_{j}\geq {c'}_{j} \)
\end_inset 

 for 
\begin_inset Formula \( j\geq i \)
\end_inset 

, where strict inequality first occurs, and not necessarily all the way
 up to 
\begin_inset Formula \( \lambda (X). \)
\end_inset 


\the_end
#This file was created by <afarrugi> Mon Feb 28 13:52:11 2000
#LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team
\lyxformat 2.15
\textclass article
\language default
\inputencoding default
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Standard
\align center 
Topological Graph Theory 
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
C&0 749 Z
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
Winter 2000
\newline 

\layout Standard
\align right 

\bar under 
Assignment 2
\bar default 
 
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
Alastair Farrugia ID: 99803095
\newline 

\layout Description

Definitions.
 A 
\emph on 
branch-decomposition
\emph default 
 
\begin_inset Formula \( (T,z) \)
\end_inset 

 of a graph 
\begin_inset Formula \( G \)
\end_inset 

 consists of a tree 
\begin_inset Formula \( T \)
\end_inset 

 in which every vertex has degree 
\begin_inset Formula \( 3 \)
\end_inset 

 or 
\begin_inset Formula \( 1; \)
\end_inset 

 and a 1-1 function 
\begin_inset Formula \( z \)
\end_inset 

 from the edges of 
\begin_inset Formula \( G \)
\end_inset 

 to the leaves of 
\begin_inset Formula \( T \)
\end_inset 

.
 (That is, each edge of 
\begin_inset Formula \( G \)
\end_inset 

 is assigned to a unique leaf, and each leaf is assigned either 
\begin_inset Formula \( \emptyset  \)
\end_inset 

 or a unique edge of 
\begin_inset Formula \( G \)
\end_inset 

).
 For any two edges 
\begin_inset Formula \( e,f \)
\end_inset 

 of 
\begin_inset Formula \( T, \)
\end_inset 

 we define
\layout Standard
\align left 

\begin_inset Formula \( A=A_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident only to 
\begin_inset Formula \( e \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( C=C_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident to both 
\begin_inset Formula \( e \)
\end_inset 

 and 
\begin_inset Formula \( f \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( B=B_{e,f} \)
\end_inset 

 to be the set of edges of 
\begin_inset Formula \( G \)
\end_inset 

 in the component of 
\begin_inset Formula \( T-\{e,f\} \)
\end_inset 

 incident only to 
\begin_inset Formula \( f \)
\end_inset 

 
\layout Standard
\align left 

\begin_inset Formula \( P=P_{e,f} \)
\end_inset 

 to be the unique path in 
\begin_inset Formula \( T \)
\end_inset 

 starting with 
\begin_inset Formula \( e \)
\end_inset 

 and ending with 
\begin_inset Formula \( f \)
\end_inset 

.
\layout Standard
\align left 

\begin_inset Formula \( \lambda (A,B)=\lambda _{e,f}(A,B) \)
\end_inset 

 is defined to be the maximum number of vertex disjoint paths 
\begin_inset Quotes eld
\end_inset 

from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 


\begin_inset Quotes erd
\end_inset 

.
 (That is, the maximum number of vertex-disjoint paths with one end-vertex
 incident to an edge in 
\begin_inset Formula \( A \)
\end_inset 

, the other incident to an edge in 
\begin_inset Formula \( B \)
\end_inset 

.
 Note: if some edge of 
\begin_inset Formula \( A \)
\end_inset 

 is incident to an edge of 
\begin_inset Formula \( B \)
\end_inset 

, then the common end-vertex will be a trivial path from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

).
 
\layout Standard
\align left 

\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 is defined to be 
\begin_inset Formula \( \lambda _{e,e}(A,B) \)
\end_inset 

, for each edge 
\begin_inset Formula \( e\in T \)
\end_inset 

.
 (Note: In this case we have 
\begin_inset Formula \( C_{e,e}=\emptyset  \)
\end_inset 

, 
\begin_inset Formula \( P_{e,e}=e \)
\end_inset 

 and 
\begin_inset Formula \( B_{e,e}=E(G)\setminus A_{e,e} \)
\end_inset 

, so 
\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 can also be defined as the number of vertices incident with an edge in
 
\begin_inset Formula \( A_{e,e} \)
\end_inset 

 and an edge not in 
\begin_inset Formula \( A_{e,e} \)
\end_inset 

.
 To prove this, we note that these vertices form an 
\begin_inset Formula \( (A,B) \)
\end_inset 

-cut, so by Menger's Theorem their number is equal to the maximum number
 of vertex disjoint paths from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

; but each of these vertices 
\emph on 
is
\emph default 
 a path from 
\begin_inset Formula \( A \)
\end_inset 

 to 
\begin_inset Formula \( B \)
\end_inset 

.
 So, in this form, we can extend the definition to any set of edges of 
\begin_inset Formula \( G \)
\end_inset 

.)
\newline 

\protected_separator 

\layout Standard
\align left 
By Menger's Theorem, for any two edges 
\begin_inset Formula \( e,f\in E(T) \)
\end_inset 

, and any edge 
\begin_inset Formula \( g\in P_{e,f} \)
\end_inset 

 , 
\begin_inset Formula 
\[
\lambda _{e,f}(A,B)\leq \lambda _{g.}\]

\end_inset 


\layout Standard
\align left 
If this inequality is sharp for all 
\begin_inset Formula \( e,f \)
\end_inset 

, then we say that 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is a 
\emph on 
linked
\emph default 
 branch decomposition.
\newline 
The 
\emph on 
width
\emph default 
 of a branch decomposition is 
\begin_inset Formula \( \max \{\lambda _{e}|e\in E(T)\} \)
\end_inset 

, and the 
\emph on 
branch width
\emph default 
 of 
\begin_inset Formula \( G \)
\end_inset 

 is the minimum width over all its branch decompositions.
\layout Standard
\align left 

\protected_separator 

\layout Standard
\align left 

\series bold 
Theorem.

\series default 
 Every graph 
\begin_inset Formula \( G \)
\end_inset 

 has a linked branch decomposition 
\begin_inset Formula \( (T,z) \)
\end_inset 

 such that the width of 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is the branch width of 
\begin_inset Formula \( G \)
\end_inset 

.
\layout Description

Proof:
\protected_separator 
(a) Let 
\begin_inset Formula \( \cal B \)
\end_inset 

 be the set of branch decompositions of 
\begin_inset Formula \( G \)
\end_inset 

 having width 
\begin_inset Formula \( b \)
\end_inset 

, the branch width of 
\begin_inset Formula \( G \)
\end_inset 

.
 For each 
\begin_inset Formula \( (T,z)\in \cal B \)
\end_inset 

, and each 
\begin_inset Formula \( i=0,1,\ldots ,b \)
\end_inset 

 : 
\newline 
let 
\begin_inset Formula \( T_{i} \)
\end_inset 

 be the subgraph of 
\begin_inset Formula \( T \)
\end_inset 

 induced by the edges of 
\begin_inset Formula \( T \)
\end_inset 

 with label at least 
\begin_inset Formula \( i \)
\end_inset 

 
\newline 
let 
\begin_inset Formula \( n_{i} \)
\end_inset 

 and 
\begin_inset Formula \( c_{i} \)
\end_inset 

 denote the number of edges and the number of components, respectively,
 of 
\begin_inset Formula \( T_{i} \)
\end_inset 

 
\newline 
let 
\begin_inset Formula \( \sum (T,z) \)
\end_inset 

 denote the sequence of 
\begin_inset Formula \( n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots 
,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \)
\end_inset 

.
\newline 
We shall prove that if 
\begin_inset Formula \( (T,z)\in \cal B \)
\end_inset 

 is not linked, then there is a 
\begin_inset Formula \( (T',z')\in \cal B \)
\end_inset 

 such that 
\begin_inset Formula \( \sum (T',z') \)
\end_inset 

 is lexicographically smaller than 
\begin_inset Formula \( \sum (T,z) \)
\end_inset 

.
 Therefore a decomposition with lexicographically minimal 
\begin_inset Formula \( \sum  \)
\end_inset 

 must be linked.
\layout Description

(b) If 
\begin_inset Formula \( (T,z) \)
\end_inset 

 is not linked, then by definition there exist 
\begin_inset Formula \( e,f\in E(T) \)
\end_inset 

 such that 
\begin_inset Formula \( \lambda (A,B)<\min \{\lambda _{g}|g\in E(P)\} \)
\end_inset 

.
\layout Description

(c) Let 
\begin_inset Formula \( V_{A,}V_{B} \)
\end_inset 

 be the set of end-vertices of edges in 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

, respectively.
 By Menger's Theorem there is a 
\begin_inset Formula \( (V_{A},V_{B}) \)
\end_inset 

-separating cut 
\begin_inset Formula \( S \)
\end_inset 

 with exactly 
\begin_inset Formula \( \lambda (A,B) \)
\end_inset 

 vertices (see Diestel, 
\emph on 
Graph Theory
\emph default 
, Electronic Edition 2000, p.
 50).
 That is, every path from 
\begin_inset Formula \( V_{A} \)
\end_inset 

 to 
\begin_inset Formula \( V_{B} \)
\end_inset 

 must pass through 
\begin_inset Formula \( S \)
\end_inset 

.
\newline 
Then, in 
\begin_inset Formula \( G\setminus S \)
\end_inset 

, no component contains edges from both 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

.
 And (in 
\begin_inset Formula \( G \)
\end_inset 

) no edge of 
\begin_inset Formula \( A \)
\end_inset 

 is incident to a component (of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

) containing edges of 
\begin_inset Formula \( B \)
\end_inset 

.
 
\newline 
Note that every edge of 
\begin_inset Formula \( G \)
\end_inset 

 is either in a component of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

, or is incident to a unique component (it cannot be incident to two components
 of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

), or joins two vertices of 
\begin_inset Formula \( S \)
\end_inset 

.
 
\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 

\protected_separator 

\newline 
Let 
\begin_inset Formula \( X:=\{e\in E(G)|e\in A \)
\end_inset 

, or 
\begin_inset Formula \( e \)
\end_inset 

 is in a component of 
\begin_inset Formula \( G\setminus S \)
\end_inset 

 which contains edges of 
\begin_inset Formula \( A \)
\end_inset 

, or is incident to such a component
\begin_inset Formula \( \} \)
\end_inset 

.
\newline 

\begin_inset Formula \( X \)
\end_inset 

 is intuitively the set of edges in 
\begin_inset Formula \( A \)
\end_inset 

, or on the 
\begin_inset Formula \( A \)
\end_inset 

 side of a smallest vertex-cut separating 
\begin_inset Formula \( A \)
\end_inset 

 from 
\begin_inset Formula \( B \)
\end_inset 

.
 Then it is easy to see that 
\begin_inset Formula \( A\subseteq X\subseteq \overline{B} \)
\end_inset 

.
 It can also be checked that the vertices common to 
\begin_inset Formula \( X \)
\end_inset 

 and 
\begin_inset Formula \( \overline{X} \)
\end_inset 

 are precisely 
\begin_inset Formula \( S \)
\end_inset 

: 
\newline 
To show inclusion, we note that an edge in one of the specified components
 cannot be incident to any edge not in 
\begin_inset Formula \( X \)
\end_inset 

 (because we defined all the edges incident to those components to be in
 
\begin_inset Formula \( X \)
\end_inset 

 too); similarly any edge incident to one of the specified components can
 only meet an edge not in 
\begin_inset Formula \( X \)
\end_inset 

 at the 
\begin_inset Quotes eld
\end_inset 


\begin_inset Formula \( S \)
\end_inset 

 end-vertex
\begin_inset Quotes erd
\end_inset 

; and any other edge in 
\begin_inset Formula \( X \)
\end_inset 

 has both its end-vertices in 
\begin_inset Formula \( S \)
\end_inset 

 anyway.
 To show equality we note that removing the vertices common to 
\begin_inset Formula \( X \)
\end_inset 

 and 
\begin_inset Formula \( \overline{X} \)
\end_inset 

 separates 
\begin_inset Formula \( V_{A} \)
\end_inset 

 from 
\begin_inset Formula \( V_{B} \)
\end_inset 

; but 
\begin_inset Formula \( S \)
\end_inset 

 is a minimal separating set.
\newline 
Of all the possible sets 
\begin_inset Formula \( X \)
\end_inset 

, we choose the one that crosses as few of the tree partitions as possible.
 Here a tree-partition is a partition 
\begin_inset Formula \( (A_{e,e},B_{e,e}) \)
\end_inset 

 of the edge-set of 
\begin_inset Formula \( G \)
\end_inset 

, corresponding to some edge 
\begin_inset Formula \( e\in T. \)
\end_inset 

 And two partitions 
\begin_inset Formula \( (P,Q) \)
\end_inset 

, 
\begin_inset Formula \( (R,S) \)
\end_inset 

 are said to cross if none of 
\begin_inset Formula \( P\cap R \)
\end_inset 

, 
\begin_inset Formula \( P\cap S \)
\end_inset 

, 
\begin_inset Formula \( Q\cap R \)
\end_inset 

, 
\begin_inset Formula \( Q\cap S \)
\end_inset 

 is empty.
\layout Description

(d) 
\begin_inset Formula \( T \)
\end_inset 

 can be thought of as 
\begin_inset Formula \( A_{e,f}-e-C_{e,f}-f-B_{e,f} \)
\end_inset 

.
 We create a new branch decomposition 
\begin_inset Formula \( (T',z') \)
\end_inset 

 of 
\begin_inset Formula \( G \)
\end_inset 

 where 
\begin_inset Formula \( T' \)
\end_inset 

 is 
\begin_inset Formula \( A_{e,f}-e-C^{e}_{e,f}-a-C^{f}_{e,f}-f-B_{e,f} \)
\end_inset 

, or for simplicity just 
\begin_inset Formula \( A-e-C^{e}-a-C^{f}-f-B \)
\end_inset 

, where 
\begin_inset Formula \( C^{e} \)
\end_inset 

 and 
\begin_inset Formula \( C^{f} \)
\end_inset 

 are copies of 
\begin_inset Formula \( C_{e,f} \)
\end_inset 

 (the notation is slightly different from that used in the notes).
 The assignment of edges to leaves is the same for 
\begin_inset Formula \( A \)
\end_inset 

 and 
\begin_inset Formula \( B \)
\end_inset 

 as it was in 
\begin_inset Formula \( T \)
\end_inset 

.
 But an edge assigned to 
\begin_inset Formula \( C \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

 is now assigned to the corresponding leaf of 
\begin_inset Formula \( C^{e} \)
\end_inset 

 if the edge is in 
\begin_inset Formula \( X, \)
\end_inset 

 and to the leaf of 
\begin_inset Formula \( C^{f} \)
\end_inset 

 otherwise.
\newline 
(i) For any edge 
\begin_inset Formula \( e'\in E(T) \)
\end_inset 

, it is easy to see that if 
\begin_inset Formula \( e' \)
\end_inset 

 is in 
\begin_inset Formula \( A\cup \{e\} \)
\end_inset 

 then 
\begin_inset Formula \( A_{e',e'} \)
\end_inset 

 is the same in 
\begin_inset Formula \( T \)
\end_inset 

 and in 
\begin_inset Formula \( T'; \)
\end_inset 

 while for 
\begin_inset Formula \( g \)
\end_inset 

 in 
\begin_inset Formula \( \{f\}\cup B \)
\end_inset 

, 
\begin_inset Formula \( B_{e',e'} \)
\end_inset 

 is the same (actually, either condition implies the other).
 Thus 
\begin_inset Formula \( \lambda _{e'} \)
\end_inset 

 is unchanged for these edges.
 
\newline 
(ii) Now let 
\begin_inset Formula \( e' \)
\end_inset 

 be in 
\begin_inset Formula \( C \)
\end_inset 

, and consider first what happens if 
\begin_inset Formula \( e'\in E(P_{e,f}) \)
\end_inset 

.
 We denote 
\begin_inset Formula \( A_{e',e'} \)
\end_inset 

 by 
\begin_inset Formula \( A' \)
\end_inset 

; then we have the situation shown below:
\newline 

\protected_separator 

\newline 

\protected_separator 

\layout Standard
\align center 

\begin_inset Formula \( A \)
\end_inset 

 ------
\begin_inset Formula \( C_{1} \)
\end_inset 

------
\begin_inset Formula \( C_{2} \)
\end_inset 

------
\begin_inset Formula \( B \)
\end_inset 


\layout Description

.
 
\protected_separator 

\newline 

\protected_separator 

\newline 
while in 
\begin_inset Formula \( T' \)
\end_inset 

 we have the following situation:
\newline 

\protected_separator 

\newline 

\layout Standard
\align center 

\begin_inset Formula \( A \)
\end_inset 

 ------
\begin_inset Formula \( C_{1,e} \)
\end_inset 

------
\begin_inset Formula \( C_{2,e} \)
\end_inset 

------
\begin_inset Formula \( C_{1,f} \)
\end_inset 

------
\begin_inset Formula \( C_{2,f} \)
\end_inset 

------
\begin_inset Formula \( B \)
\end_inset 


\layout Description

.
 
\protected_separator 

\newline 

\protected_separator 

\newline 
Now we have 
\begin_inset Formula \( A'=A\cup C_{1} \)
\end_inset 

, 
\begin_inset Formula \( C_{1,e}=C_{1}\cap X \)
\end_inset 

, 
\begin_inset Formula \( C_{2,e}=C_{2}\cap X \)
\end_inset 

, 
\begin_inset Formula \( C_{1,f}=C_{1}\cap \overline{X} \)
\end_inset 

, 
\begin_inset Formula \( C_{2,e}=C_{2}\cap \overline{X} \)
\end_inset 

, and so
\begin_inset Formula 
\[
\lambda ({e'}_{e})=\lambda (A\cup C_{1,e})=\lambda (A'\cap X)\]

\end_inset 


\begin_inset Formula 
\[
\lambda ({e'}_{f})=\lambda (A\cup C_{1,e}\cup C_{2,e}\cup C_{1,f})=\lambda (A'\cup 
X).\]

\end_inset 

 Note that 
\begin_inset Formula \( \lambda (A'\cup X)=\lambda (\overline{A'\cup X})=\lambda 
(\overline{A'}\cap \overline{X}) \)
\end_inset 

.
\layout Description

(iii) If 
\begin_inset Formula \( e'\not \in E(P_{e,f}) \)
\end_inset 

, then the picture in 
\begin_inset Formula \( T \)
\end_inset 

 looks like this: 
\newline 

\protected_separator 

\newline 

\protected_separator 

\layout Standard
\align center 

\begin_inset Formula \( A \)
\end_inset 

 ------
\begin_inset Formula \( C_{1} \)
\end_inset 

------
\begin_inset Formula \( B \)
\end_inset 


\newline 
|
\newline 

\begin_inset Formula \( C_{2} \)
\end_inset 


\layout Description

.
 
\protected_separator 

\newline 

\protected_separator 

\newline 
 while in 
\begin_inset Formula \( T' \)
\end_inset 

 we have:
\newline 

\protected_separator 

\newline 

\protected_separator 

\layout Standard
\align center 

\begin_inset Formula \( A \)
\end_inset 

 ------
\begin_inset Formula \( C_{1,e} \)
\end_inset 

------
\begin_inset Formula \( C_{1,f} \)
\end_inset 

------
\begin_inset Formula \( B \)
\end_inset 


\newline 
|
\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
|
\newline 

\begin_inset Formula \( C_{2,e} \)
\end_inset 


\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 

\begin_inset Formula \( C_{2,f} \)
\end_inset 


\layout Description

.
 
\protected_separator 

\newline 

\protected_separator 

\newline 
We now have 
\begin_inset Formula \( A'=C_{2} \)
\end_inset 

, 
\begin_inset Formula \( C_{1,e}=C_{1}\cap X \)
\end_inset 

, 
\begin_inset Formula \( C_{2,e}=C_{2}\cap X \)
\end_inset 

, 
\begin_inset Formula \( C_{1,f}=C_{1}\cap \overline{X} \)
\end_inset 

, 
\begin_inset Formula \( C_{2,e}=C_{2}\cap \overline{X} \)
\end_inset 

, so 
\begin_inset Formula 
\[
\lambda ({e'}_{e})=\lambda (C_{2,e})=\lambda (A'\cap X)\]

\end_inset 


\begin_inset Formula 
\[
\lambda ({e'}_{f})=\lambda (C_{2,f})=\lambda (A'\cap \overline{X})=\lambda 
(A'\setminus X).\]

\end_inset 


\layout Description

(e) The edge 
\begin_inset Formula \( {e'}_{e} \)
\end_inset 

 always has label 
\begin_inset Formula \( \lambda (A'\cap X) \)
\end_inset 

.
 Now, by submodularity, we have
\begin_inset Formula 
\[
\lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda (A')+\lambda (X)\]

\end_inset 

 But 
\begin_inset Formula \( A\subseteq X\subseteq A'\cup X\subseteq 
\overline{B}\Rightarrow \lambda (A'\cup X)\geq \lambda (X) \)
\end_inset 

, because 
\begin_inset Formula \( X \)
\end_inset 

 is a minimal 
\begin_inset Formula \( A,B \)
\end_inset 

-separating set.
 So
\begin_inset Formula 
\[
\lambda (A'\cap X)+\lambda (X)\leq \lambda (A'\cap X)+\lambda (A'\cup X)\leq \lambda 
(A')+\lambda (X)\Rightarrow \lambda (A'\cap X)\leq \lambda (A')\]

\end_inset 

So the label on 
\begin_inset Formula \( {e'}_{e} \)
\end_inset 

 is no larger than the original label of 
\begin_inset Formula \( e' \)
\end_inset 

.
 
\newline 
If 
\begin_inset Formula \( e'\in E(P) \)
\end_inset 

, then 
\begin_inset Formula \( {e'}_{f} \)
\end_inset 

 has label 
\begin_inset Formula \( \lambda (\overline{A'}\cap \overline{X}) \)
\end_inset 

, and 
\begin_inset Formula \( \overline{A}\supseteq \overline{A'}\cup \overline{X}\supseteq 
\overline{X}\supseteq B \)
\end_inset 

, so an analogous argument shows that even this copy has label no larger
 than 
\begin_inset Formula \( \lambda (\overline{A})=\lambda (A) \)
\end_inset 

.
 
\newline 
If 
\begin_inset Formula \( e'\not \in E(P) \)
\end_inset 

, then 
\begin_inset Formula \( {e'}_{f} \)
\end_inset 

 has label 
\begin_inset Formula \( \lambda (A'\cap \overline{X}) \)
\end_inset 

, and 
\begin_inset Formula \( \overline{A}\supseteq A'\cup \overline{X}\supseteq 
\overline{X}\supseteq B \)
\end_inset 

, so 
\begin_inset Formula \( \lambda (A'\cup \overline{X})\geq \lambda (X) \)
\end_inset 

.
 Then using submodularity we get 
\begin_inset Formula 
\[
\lambda (A'\cap \overline{X})+\lambda (X)\leq \lambda (A'\cap \overline{X})+\lambda 
(A'\cup \overline{X})\leq \lambda (A')+\lambda (\overline{X})\Rightarrow \lambda 
(A'\cap \overline{X})\leq \lambda (A')\]

\end_inset 

 The edge 
\begin_inset Formula \( a \)
\end_inset 

 does not correspond to any edge in 
\begin_inset Formula \( T \)
\end_inset 

, but we know that 
\begin_inset Formula \( \lambda (a)=\lambda (X)<b \)
\end_inset 

.
 
\newline 
So the label on each edge does not increase; in particular the width of
 
\begin_inset Formula \( (T',z') \)
\end_inset 

 is 
\begin_inset Formula \( b \)
\end_inset 

, and 
\begin_inset Formula \( n_{b}\geq {n'}_{b} \)
\end_inset 

.
\layout Description

(f) Now suppose the label on the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{e} \)
\end_inset 

 is the same as the original label, that is 
\begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \)
\end_inset 

.
 Then, by the previous equation, we have 
\begin_inset Formula \( \lambda (X)\leq \lambda (A'\cup X)\leq \lambda (X) \)
\end_inset 

.
 So if 
\begin_inset Formula \( e'\in E(P) \)
\end_inset 

 we know that the label on the copy of 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( C^{f} \)
\end_inset 

 is exactly 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
\layout Description

(g) Suppose we have 
\begin_inset Formula \( \lambda (A'\cap X)=\lambda (A') \)
\end_inset 

, but now 
\begin_inset Formula \( e'\not \in E(P) \)
\end_inset 

.
 Then we want to show that 
\begin_inset Formula \( \lambda (A'\cap \overline{X})\leq \lambda (X) \)
\end_inset 

, or equivalently 
\begin_inset Formula \( \lambda (\overline{A'}\cup X)\leq \lambda (X) \)
\end_inset 

.
 Now the second equation of (e) gives us 
\begin_inset Formula \( \lambda (A'\cup X)=\lambda (X) \)
\end_inset 

.
 If this occurs because 
\begin_inset Formula \( A'\cup X=X \)
\end_inset 

, then 
\begin_inset Formula \( A'\cap \overline{X}=\emptyset  \)
\end_inset 

, and so 
\begin_inset Formula \( \lambda (A'\cup \overline{X})=\lambda (\emptyset )=0\leq 
\lambda (X) \)
\end_inset 

.
 
\newline 
We will show that the alternative is impossible, as then 
\begin_inset Formula \( (A'\cup X,\overline{A'\cup X}) \)
\end_inset 

 crosses fewer tree-partitions than 
\begin_inset Formula \( (X,\overline{X}) \)
\end_inset 

, which contradicts the choice of 
\begin_inset Formula \( X \)
\end_inset 

.
\newline 

\newline 

\newline 
So we have shown that for any edge 
\begin_inset Formula \( e' \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

 with label 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

, we either get 
\newline 
(i) a single edge in 
\begin_inset Formula \( T' \)
\end_inset 

 labelled 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

 (if 
\begin_inset Formula \( e' \)
\end_inset 

 is in 
\begin_inset Formula \( A \)
\end_inset 

 or 
\begin_inset Formula \( B \)
\end_inset 

), 
\newline 
(ii) one edge labelled 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

 and one labelled at most 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

, or
\newline 
(iii) two edges in 
\begin_inset Formula \( T' \)
\end_inset 

 whose labels are both strictly less than 
\begin_inset Formula \( \lambda (A') \)
\end_inset 

.
\layout Description

(h,
\protected_separator 
i) We want to show that 
\begin_inset Formula \( \sum (T,z)=n_{b},n_{b}-c_{b,}n_{b-1,}n_{b-1}-c_{b-1},\ldots 
,n_{1,}n_{1}-c_{1,}n_{0,}n_{0}-c_{0} \)
\end_inset 

 is lexicographically larger than 
\begin_inset Formula \( \sum 
(T',z')={n'}_{b},{n'}_{b}-{c'}_{b,}{n'}_{b-1,}{n'}_{b-1}-{c'}_{b-1},\ldots 
,{n'}_{1,}{n'}_{1}-{c'}_{1,}{n'}_{0,}{n'}_{0}-{c'}_{0} \)
\end_inset 

.
 
\layout Description

Case
\protected_separator 
1: All the terms are equal up to (but not including) some 
\begin_inset Formula \( n_{i} \)
\end_inset 

, 
\begin_inset Formula \( i>\lambda (X) \)
\end_inset 

.
\newline 
If 
\begin_inset Formula \( i=b \)
\end_inset 

, then by (e) we must have 
\begin_inset Formula \( n_{b}>{n'}_{b} \)
\end_inset 

, so we are done.
 Otherwise, in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 we have exactly 
\begin_inset Formula \( n_{b} \)
\end_inset 

 edges labelled 
\begin_inset Formula \( b \)
\end_inset 

; so case (g)(iii) cannot occur for label 
\begin_inset Formula \( b \)
\end_inset 

, and thus each edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 labelled 
\begin_inset Formula \( b \)
\end_inset 

 gives rise in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 only to edges labelled 
\begin_inset Formula \( b \)
\end_inset 

 [it may give rise to other edges with label at most 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

, but these will not be in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

].
 Then in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 all edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 must come from edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 in 
\begin_inset Formula \( T \)
\end_inset 

; and since there are exactly 
\begin_inset Formula \( {n'}_{b-1}-{n'}_{b}=n_{b-1}-n_{b} \)
\end_inset 

 such edges, case (g)(iii) cannot occur for label 
\begin_inset Formula \( b-1 \)
\end_inset 

, so each edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

 gives rise in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 only to edges labelled 
\begin_inset Formula \( b-1 \)
\end_inset 

.
\newline 
Continuing in this manner we see that the number of edges of each label
 
\begin_inset Formula \( b,b-1,\ldots ,i+1 \)
\end_inset 

 is the same in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 and 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

; and the edges labelled 
\begin_inset Formula \( i \)
\end_inset 

 in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 must come from edges labelled 
\begin_inset Formula \( i \)
\end_inset 

 in 
\begin_inset Formula \( T_{i} \)
\end_inset 

.
 But then number of such edges cannot be larger in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 than in 
\begin_inset Formula \( T_{i} \)
\end_inset 

, so it must be smaller, and we have 
\begin_inset Formula \( n_{i}>{n'}_{i} \)
\end_inset 

.
  
\layout Description

Case
\protected_separator 
2: All the terms are equal up to (but not including) some 
\begin_inset Formula \( n_{i}-c_{i} \)
\end_inset 

, 
\begin_inset Formula \( i>\lambda (X) \)
\end_inset 

.
\newline 
So in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 and 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 there are the same number of edges of each label 
\begin_inset Formula \( b,b-1,\ldots ,i \)
\end_inset 

.
 And so, by the arguments for Case 1, each edge in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 corresponds to an edge in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 with the same label.
 But two edges which are not adjacent in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 will not be adjacent in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 either, as all the edges separating them from each other in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 will still be there in 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

 (and there might even be new edges inserted in between).
 Thus, components of 
\begin_inset Formula \( T_{i} \)
\end_inset 

 are unions of components of 
\begin_inset Formula \( {T'}_{i} \)
\end_inset 

, and so 
\begin_inset Formula \( c_{i}\leq {c'}_{i} \)
\end_inset 

.
 Since we have inequality in the 
\begin_inset Formula \( n_{i}-c_{i} \)
\end_inset 

 term, it must be 
\begin_inset Formula \( n_{i}-c_{i}>{n'}_{i}-{c'}_{i} \)
\end_inset 

.
\layout Description

Case
\protected_separator 
3: All the terms are equal at least up to 
\begin_inset Formula \( n_{\lambda (X)} \)
\end_inset 

.
\newline 
We will show that this is impossible.
 For in 
\begin_inset Formula \( T_{i} \)
\end_inset 

 all edges on the path from 
\begin_inset Formula \( e \)
\end_inset 

 to 
\begin_inset Formula \( f \)
\end_inset 

 had label at least 
\begin_inset Formula \( \lambda (X)+1 \)
\end_inset 

, so they were all in the same component of 
\begin_inset Formula \( T_{\lambda (X)+1} \)
\end_inset 

.
 Now, these edges cannot all have mapped to 
\begin_inset Formula \( C^{e} \)
\end_inset 

, or all to 
\begin_inset Formula \( C^{f} \)
\end_inset 

, for then either 
\begin_inset Formula \( \lambda _{e} \)
\end_inset 

 or 
\begin_inset Formula \( \lambda _{f} \)
\end_inset 

 would have been equal to 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
 So some edges go to 
\begin_inset Formula \( C^{e} \)
\end_inset 

 and some to 
\begin_inset Formula \( C^{f} \)
\end_inset 

; and now they cannot be in the same component of 
\begin_inset Formula \( {T'}_{\lambda (X)+1} \)
\end_inset 

, because the edge 
\begin_inset Formula \( a \)
\end_inset 

 has label 
\begin_inset Formula \( \lambda (X) \)
\end_inset 

.
 So 
\begin_inset Formula \( c_{\lambda (X)+1}\leq {c'}_{\lambda (X)+1} \)
\end_inset 

.
\layout Description

Note: We only have 
\begin_inset Formula \( n_{j}\geq {n'}_{j} \)
\end_inset 

 and 
\begin_inset Formula \( c_{j}\geq {c'}_{j} \)
\end_inset 

 for 
\begin_inset Formula \( j\geq i \)
\end_inset 

, where strict inequality first occurs, and not necessarily all the way
 up to 
\begin_inset Formula \( \lambda (X). \)
\end_inset 


\the_end

Reply via email to