Hi Juan Ramon, Please find attached the demo as I imported it into LyX using the ejour2 class file. This is not appropriate, but it contains many of the things you need for this document class. The more or less successfully imported file is attached. However, note that I broke a lot of things in doing so. The proper thing to do is to add this document class to LyX. That is quite a bit of work, involving the following: 1. Place the file llncs.cls in the directory where also article.cls, book.cls etc. are. Then, run (as root) texhash, to make TeX find the file. 2. Create a file llncs.layout in the same directory that contains all the other .layout files. You can copy ejour2.layout to llncs.layout, and edit it. First thing to do is to edit the second line to read # \DeclareLaTeXClass{Springer - Lecture Notes in Comp. Sci.} Editing the llncs.layout file to contain all the commands and environments present in the llncs class, is a big job. Study the example files. Once this work is done, everybody will be able to use LyX for this class of document. 3. Then run configure from within LyX, exit and start again. You should now have the llncs document class in layout->document menu. Good luck, Martin
#This file was created by <mv> Mon Jun 7 22:11:37 1999 #LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team \lyxformat 2.15 \textclass ejour2 \begin_preamble % \usepackage{makeidx} % allows for indexgeneration % \usepackage{multicol} \def\bbbr{{\rm I\!R}} %reelle Zahlen \def\bbbz{{\mathchoice {\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}} \@onecolumn \end_preamble \language default \inputencoding default \fontscheme default \graphics default \paperfontsize default \spacing single \papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Standard \layout Standard \latex latex % \backslash frontmatter \layout Standard \latex latex \backslash pagestyle{headings} \layout Standard \latex latex % \backslash addtocmark{Hamiltonian Mechanics} \layout Standard Preface \layout Standard This textbook is intended for use by students of physics, physical chemistry, and theoretical chemistry. The reader is presumed to have a basic knowledge of atomic and quantum physics at the level provided, for example, by the first few chapters in our book \shape italic The Physics of Atoms and Quanta \shape default . The student of physics will find here material which should be included in the basic education of every physicist. This book should furthermore allow students to acquire an appreciation of the breadth and variety within the field of molecular physics and its future as a fascinating area of research. \layout Standard For the student of chemistry, the concepts introduced in this book will provide a theoretical framework for that entire field of study. With the help of these concepts, it is at least in principle possible to reduce the enormous body of empirical chemical knowledge to a few basic principles: those of quantum mechanics. In addition, modern physical methods whose fundamentals are introduced here are becoming increasingly important in chemistry and now represent indispensable tools for the chemist. As examples, we might mention the structural analysis of complex organic compounds, spectroscopic investigation of very rapid reaction processes or, as a practical application, the remote detection of pollutants in the air. \layout Standard \latex latex \backslash vspace{1cm} \layout Standard \noindent \align right April 1995 \hfill Walter Olthoff \newline Program Chair \newline ECOOP'95 \layout Standard Organization \layout Standard ECOOP'95 is organized by the department of Computer Science, Univeristy of \latex latex \backslash AA \latex default rhus and AITO (association Internationa pour les Technologie Object) in cooperation with ACM/SIGPLAN. \layout Section* Executive Commitee \layout Standard \LyXTable multicol5 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 "" "@{}p{5cm}@{}" 8 0 0 "" "p{7.2cm}@{}" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" Conference Chair: \newline Ole Lehrmann Madsen ( \latex latex \backslash AA \latex default rhus University, DK) \newline Program Chair: \newline Walter Olthoff (DFKI GmbH, Germany) \newline Organizing Chair: \newline J \latex latex \backslash o \latex default rgen Lindskov Knudsen ( \latex latex \backslash AA \latex default rhus University, DK) \newline Tutorials: \newline Birger M \latex latex \backslash o \latex default ller-Pedersen \latex latex \backslash hfil \backslash break \newline \latex default (Norwegian Computing Center, Norway) \newline Workshops: \newline Eric Jul (University of Kopenhagen, Denmark) \newline Panels: \newline Boris Magnusson (Lund University, Sweden) \newline Exhibition: \newline Elmer Sandvad ( \latex latex \backslash AA \latex default rhus University, DK) \newline Demonstrations: \newline Kurt N \latex latex \backslash o \latex default rdmark ( \latex latex \backslash AA \latex default rhus University, DK) \layout Section* Program Commitee \layout Standard \LyXTable multicol5 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 "" "@{}p{5cm}@{}" 8 0 0 "" "p{7.2cm}@{}" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" Conference Chair: \newline Ole Lehrmann Madsen ( \latex latex \backslash AA \latex default rhus University, DK) \newline Program Chair: \newline Walter Olthoff (DFKI GmbH, Germany) \newline Organizing Chair: \newline J \latex latex \backslash o \latex default rgen Lindskov Knudsen ( \latex latex \backslash AA \latex default rhus University, DK) \newline Tutorials: \newline Birger M \latex latex \backslash o \latex default ller-Pedersen \latex latex \backslash hfil \backslash break \newline \latex default (Norwegian Computing Center, Norway) \newline Workshops: \newline Eric Jul (University of Kopenhagen, Denmark) \newline Panels: \newline Boris Magnusson (Lund University, Sweden) \newline Exhibition: \newline Elmer Sandvad ( \latex latex \backslash AA \latex default rhus University, DK) \newline Demonstrations: \newline Kurt N \latex latex \backslash o \latex default rdmark ( \latex latex \backslash AA \latex default rhus University, DK) \layout Standard \latex latex \backslash begin{multicols}{3}[ \backslash section*{Referees}] \newline V.~Andreev \backslash \backslash \newline B \backslash "{a}rwolff \backslash \backslash \newline E.~Barrelet \backslash \backslash \newline H.P.~Beck \backslash \backslash \newline G.~Bernardi \backslash \backslash \newline E.~Binder \backslash \backslash \newline P.C.~Bosetti \backslash \backslash \newline Braunschweig \backslash \backslash \newline F.W.~B \backslash "{u}sser \backslash \backslash \newline T.~Carli \backslash \backslash \newline A.B.~Clegg \backslash \backslash \newline G.~Cozzika \backslash \backslash \newline S.~Dagoret \backslash \backslash \newline Del~Buono \backslash \backslash \newline P.~Dingus \backslash \backslash \newline H.~Duhm \backslash \backslash \newline J.~Ebert \backslash \backslash \newline S.~Eichenberger \backslash \backslash \newline R.J.~Ellison \backslash \backslash \newline Feltesse \backslash \backslash \newline W.~Flauger \backslash \backslash \newline A.~Fomenko \backslash \backslash \newline G.~Franke \backslash \backslash \newline J.~Garvey \backslash \backslash \newline M.~Gennis \backslash \backslash \newline L.~Goerlich \backslash \backslash \newline P.~Goritchev \backslash \backslash \newline H.~Greif \backslash \backslash \newline E.M.~Hanlon \backslash \backslash \newline R.~Haydar \backslash \backslash \newline R.C.W.~Henderso \backslash \backslash \newline P.~Hill \backslash \backslash \newline H.~Hufnagel \backslash \backslash \newline A.~Jacholkowska \backslash \backslash \newline Johannsen \backslash \backslash \newline S.~Kasarian \backslash \backslash \newline I.R.~Kenyon \backslash \backslash \newline C.~Kleinwort \backslash \backslash \newline T.~K \backslash "{o}hler \backslash \backslash \newline S.D.~Kolya \backslash \backslash \newline P.~Kostka \backslash \backslash \newline U.~Kr \backslash "{u}ger \backslash \backslash \newline J.~Kurzh \backslash "{o}fer \backslash \backslash \newline M.P.J.~Landon \backslash \backslash \newline A.~Lebedev \backslash \backslash \newline Ch.~Ley \backslash \backslash \newline F.~Linsel \backslash \backslash \newline H.~Lohmand \backslash \backslash \newline Martin \backslash \backslash \newline S.~Masson \backslash \backslash \newline K.~Meier \backslash \backslash \newline C.A.~Meyer \backslash \backslash \newline S.~Mikocki \backslash \backslash \newline J.V.~Morris \backslash \backslash \newline B.~Naroska \backslash \backslash \newline Nguyen \backslash \backslash \newline U.~Obrock \backslash \backslash \newline G.D.~Patel \backslash \backslash \newline Ch.~Pichler \backslash \backslash \newline S.~Prell \backslash \backslash \newline F.~Raupach \backslash \backslash \newline V.~Riech \backslash \backslash \newline P.~Robmann \backslash \backslash \newline N.~Sahlmann \backslash \backslash \newline P.~Schleper \backslash \backslash \newline Sch \backslash "{o}ning \backslash \backslash \newline B.~Schwab \backslash \backslash \newline A.~Semenov \backslash \backslash \newline G.~Siegmon \backslash \backslash \newline J.R.~Smith \backslash \backslash \newline M.~Steenbock \backslash \backslash \newline U.~Straumann \backslash \backslash \newline C.~Thiebaux \backslash \backslash \newline P.~Van~Esch \backslash \backslash \newline from Yerevan Ph \backslash \backslash \newline L.R.~West \backslash \backslash \newline G.-G.~Winter \backslash \backslash \newline T.P.~Yiou \backslash \backslash \newline M.~Zimmer \backslash end{multicols} \layout Section* Sponsoring Institutions \layout Standard Bernauer-Budiman Inc., Reading, Mass. \newline The Hofmann-International Company, San Louis Obispo, Cal. \newline Kramer Industries, Heidelberg, Germany \begin_inset LatexCommand \tableofcontents{} \end_inset \latex latex % \backslash mainmatter \layout Title Hamiltonian Mechanics unter besonderer Ber\i \"{u} cksichtigung der h\i \"{o} hreren Lehranstalten \layout Running LaTeX Title Hamiltonian Mechanics \layout Author Ivar Ekeland \latex latex \backslash inst{1} \backslash and \latex default Roger Temam \latex latex \backslash inst{2} \latex default Jeffrey Dean \latex latex \backslash and \latex default David Grove \latex latex \backslash and \latex default Craig Chambers \latex latex \backslash and \latex default Kim \protected_separator B. \protected_separator Bruce \latex latex \backslash and \newline \latex default Elsa Bertino \layout Author Running Ivar Ekeland et al. \layout Standard \latex latex % \backslash tocauthor{Ivar Ekeland (Universit \backslash '{e} de Paris-Sud), \newline Jeffrey Dean, David Grove, Craig Chambers (Universit \backslash `{a} di Geova), \newline Kim B. Bruce (Stanford University), \newline %Elisa Bertino (Digita Research Center)} \layout Institute Princeton University, Princeton NJ 08544, USA, \newline \latex latex \backslash email{[EMAIL PROTECTED]} \latex default , \newline WWW home page: \family typewriter http://users/ \latex latex \backslash homedir \latex default iekeland/web/welcome.html \family default \latex latex \backslash and \newline \latex default Universit\i \'{e} de Paris-Sud, Laboratoire d'Analyse Num\i \'{e} rique, B\i \^{a} timent 425, \newline F-91405 Orsay Cedex, France \layout Abstract The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. \latex latex \backslash dots \newline \layout Section Fixed-Period Problems: The Sublinear Case \layout Standard With this chapter, the preliminaries are over, and we begin the search for periodic solutions to Hamiltonian systems. All this will be done in the convex case; that is, we shall study the boundary- value problem \begin_inset Formula \begin{eqnarray*} \dot{x} & = & JH'(t,x)\\ x(0) & = & x(T) \end{eqnarray*} \end_inset with \begin_inset Formula \( H(t,\cdot ) \) \end_inset a convex function of \begin_inset Formula \( x \) \end_inset , going to \begin_inset Formula \( +\infty \) \end_inset when \begin_inset Formula \( \left\Vert x\right\Vert \rightarrow \infty \) \end_inset . \layout Subsection Autonomous Systems \layout Standard In this section, we will consider the case when the Hamiltonian \begin_inset Formula \( H(x) \) \end_inset is autonomous. For the sake of simplicity, we shall also assume that it is \begin_inset Formula \( C^{1} \) \end_inset . \layout Standard We shall first consider the question of nontriviality, within the general framework of \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset -subquadratic Hamiltonians. In the second subsection, we shall look into the special case when \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( 0,b_{\infty }\right) \) \end_inset -subquadratic, and we shall try to derive additional information. \layout Subsubsection The General Case: Nontriviality. \layout Standard We assume that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset -sub\SpecialChar \- qua\SpecialChar \- dra\SpecialChar \- tic at infinity, for some constant symmetric matrices \begin_inset Formula \( A_{\infty } \) \end_inset and \begin_inset Formula \( B_{\infty } \) \end_inset , with \begin_inset Formula \( B_{\infty }-A_{\infty } \) \end_inset positive definite. Set: \begin_inset Formula \begin{eqnarray} \gamma : & = & {\textrm{smallest}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, \, \, B_{\infty }-A_{\infty }\\ \lambda : & = & {\textrm{largest}\, \, \textrm{negative}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, J\frac{d}{dt}+A_{\infty }\, \, . \end{eqnarray} \end_inset \layout Standard Theorem \protected_separator \begin_inset LatexCommand \ref{ghou:pre} \end_inset tells us that if \begin_inset Formula \( \lambda +\gamma <0 \) \end_inset , the boundary-value problem: \begin_inset Formula \begin{equation} \begin{array}{rcl} \dot{x} & = & JH'(x)\\ x(0) & = & x(T) \end{array} \end{equation} \end_inset has at least one solution \begin_inset Formula \( \overline{x} \) \end_inset , which is found by minimizing the dual action functional: \begin_inset Formula \begin{equation} \psi (u)=\int _{o}^{T}\left[ \frac{1}{2}\left( \Lambda _{o}^{-1}u,u\right) +N^{\ast }(-u)\right] dt \end{equation} \end_inset on the range of \begin_inset Formula \( \Lambda \) \end_inset , which is a subspace \begin_inset Formula \( R(\Lambda )_{L}^{2} \) \end_inset with finite codimension. Here \begin_inset Formula \begin{equation} N(x):=H(x)-\frac{1}{2}\left( A_{\infty }x,x\right) \end{equation} \end_inset is a convex function, and \begin_inset Formula \begin{equation} N(x)\leq \frac{1}{2}\left( \left( B_{\infty }-A_{\infty }\right) x,x\right) +c\, \, \, \, \, \, \forall x\, \, . \end{equation} \end_inset \layout Proposition Assume \begin_inset Formula \( H'(0)=0 \) \end_inset and \begin_inset Formula \( H(0)=0 \) \end_inset . Set: \begin_inset Formula \begin{equation} \label{eq:one} \delta :=\liminf _{x\rightarrow 0}2N(x)\left\Vert x\right\Vert ^{-2}\, \, . \end{equation} \end_inset \layout Proposition If \begin_inset Formula \( \gamma <-\lambda <\delta \) \end_inset , the solution \begin_inset Formula \( \overline{u} \) \end_inset is non-zero: \begin_inset Formula \begin{equation} \overline{x}(t)\ne 0\, \, \, \, \, \, \forall t\, \, . \end{equation} \end_inset \layout Proof Condition ( \begin_inset LatexCommand \ref{eq:one} \end_inset ) means that, for every \begin_inset Formula \( \delta '>\delta \) \end_inset , there is some \begin_inset Formula \( \varepsilon >0 \) \end_inset such that \begin_inset Formula \begin{equation} \left\Vert x\right\Vert \leq \varepsilon \Rightarrow N(x)\leq \frac{\delta '}{2}\left\Vert x\right\Vert ^{2}\, \, . \end{equation} \end_inset \layout Proof It is an exercise in convex analysis, into which we shall not go, to show that this implies that there is an \begin_inset Formula \( \eta >0 \) \end_inset such that \begin_inset Formula \begin{equation} \label{eq:two} f\left\Vert x\right\Vert \leq \eta \Rightarrow N^{\ast }(y)\leq \frac{1}{2\delta '}\left\Vert y\right\Vert ^{2}\, \, . \end{equation} \end_inset \begin_float fig \layout Proof \latex latex \backslash vspace{2.5cm} \begin_deeper \layout Caption This is the caption of the figure displaying a white eagle and a white horse on a snow field \end_float \end_deeper \layout Proof Since \begin_inset Formula \( u_{1} \) \end_inset is a smooth function, we will have \begin_inset Formula \( \left\Vert hu_{1}\right\Vert _{\infty }\leq \eta \) \end_inset for \begin_inset Formula \( h \) \end_inset small enough, and inequality ( \begin_inset LatexCommand \ref{eq:two} \end_inset ) will hold, yielding thereby: \begin_inset Formula \begin{equation} \psi (hu_{1})\leq \frac{h^{2}}{2}\frac{1}{\lambda }\left\Vert u_{1}\right\Vert _{2}^{2}+\frac{h^{2}}{2}\frac{1}{\delta '}\left\Vert u_{1}\right\Vert ^{2}\, \, . \end{equation} \end_inset \layout Proof If we choose \begin_inset Formula \( \delta ' \) \end_inset close enough to \begin_inset Formula \( \delta \) \end_inset , the quantity \begin_inset Formula \( \left( \frac{1}{\lambda }+\frac{1}{\delta '}\right) \) \end_inset will be negative, and we end up with \begin_inset Formula \begin{equation} \psi (hu_{1})<0\, \, \, \, \, \, \, \, \, \, {\textrm{for}}\, \, \, \, h\ne 0\, \, \, \, {\textrm{small}}\, \, . \end{equation} \end_inset \layout Proof On the other hand, we check directly that \begin_inset Formula \( \psi (0)=0 \) \end_inset . This shows that 0 cannot be a minimizer of \begin_inset Formula \( \psi \) \end_inset , not even a local one. So \begin_inset Formula \( \overline{u}\ne 0 \) \end_inset and \begin_inset Formula \( \overline{u}\ne \Lambda _{o}^{-1}(0)=0 \) \end_inset . \latex latex \backslash qed \newline \layout Corollary Assume \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset and \begin_inset Formula \( \left( a_{\infty },b_{\infty }\right) \) \end_inset -subquadratic at infinity. Let \begin_inset Formula \( \xi _{1},\allowbreak \dots ,\allowbreak \xi _{N} \) \end_inset be the equilibria, that is, the solutions of \begin_inset Formula \( H'(\xi )=0 \) \end_inset . Denote by \begin_inset Formula \( \omega _{k} \) \end_inset the smallest eigenvalue of \begin_inset Formula \( H''\left( \xi _{k}\right) \) \end_inset , and set: \begin_inset Formula \begin{equation} \omega :={\textrm{Min}\, }\left\{ \omega _{1},\dots ,\omega _{k}\right\} \, \, . \end{equation} \end_inset If: \begin_inset Formula \begin{equation} \label{eq:three} \frac{T}{2\pi }b_{\infty }<-E\left[ -\frac{T}{2\pi }a_{\infty }\right] <\frac{T}{2\pi }\omega \end{equation} \end_inset then minimization of \begin_inset Formula \( \psi \) \end_inset yields a non-constant \begin_inset Formula \( T \) \end_inset -periodic solution \begin_inset Formula \( \overline{x} \) \end_inset . \layout Standard We recall once more that by the integer part \begin_inset Formula \( E[\alpha ] \) \end_inset of \begin_inset Formula \( \alpha \in \bbbr \) \end_inset , we mean the \begin_inset Formula \( a\in \bbbz \) \end_inset such that \begin_inset Formula \( a<\alpha \leq a+1 \) \end_inset . For instance, if we take \begin_inset Formula \( a_{\infty }=0 \) \end_inset , Corollary 2 tells us that \begin_inset Formula \( \overline{x} \) \end_inset exists and is non-constant provided that: \layout Standard \begin_inset Formula \begin{equation} \frac{T}{2\pi }b_{\infty }<1<\frac{T}{2\pi } \end{equation} \end_inset or \begin_inset Formula \begin{equation} \label{eq:four} T\in \left( \frac{2\pi }{\omega },\frac{2\pi }{b_{\infty }}\right) \, \, . \end{equation} \end_inset \layout Proof The spectrum of \begin_inset Formula \( \Lambda \) \end_inset is \begin_inset Formula \( \frac{2\pi }{T}\bbbz +a_{\infty } \) \end_inset . The largest negative eigenvalue \begin_inset Formula \( \lambda \) \end_inset is given by \begin_inset Formula \( \frac{2\pi }{T}k_{o}+a_{\infty } \) \end_inset , where \begin_inset Formula \begin{equation} \frac{2\pi }{T}k_{o}+a_{\infty }<0\leq \frac{2\pi }{T}(k_{o}+1)+a_{\infty }\, \, . \end{equation} \end_inset Hence: \begin_inset Formula \begin{equation} k_{o}=E\left[ -\frac{T}{2\pi }a_{\infty }\right] \, \, . \end{equation} \end_inset \layout Proof The condition \begin_inset Formula \( \gamma <-\lambda <\delta \) \end_inset now becomes: \begin_inset Formula \begin{equation} b_{\infty }-a_{\infty }<-\frac{2\pi }{T}k_{o}-a_{\infty }<\omega -a_{\infty } \end{equation} \end_inset which is precisely condition ( \begin_inset LatexCommand \ref{eq:three} \end_inset ). \latex latex \backslash qed \newline \layout Lemma Assume that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset on \begin_inset Formula \( \bbbr ^{2n}\setminus \{0\} \) \end_inset and that \begin_inset Formula \( H''(x) \) \end_inset is non-de\SpecialChar \- gen\SpecialChar \- er\SpecialChar \- ate for any \begin_inset Formula \( x\ne 0 \) \end_inset . Then any local minimizer \begin_inset Formula \( \widetilde{x} \) \end_inset of \begin_inset Formula \( \psi \) \end_inset has minimal period \begin_inset Formula \( T \) \end_inset . \layout Proof We know that \begin_inset Formula \( \widetilde{x} \) \end_inset , or \begin_inset Formula \( \widetilde{x}+\xi \) \end_inset for some constant \begin_inset Formula \( \xi \in \bbbr ^{2n} \) \end_inset , is a \begin_inset Formula \( T \) \end_inset -periodic solution of the Hamiltonian system: \begin_inset Formula \begin{equation} \dot{x}=JH'(x)\, \, . \end{equation} \end_inset \layout Proof There is no loss of generality in taking \begin_inset Formula \( \xi =0 \) \end_inset . So \begin_inset Formula \( \psi (x)\geq \psi (\widetilde{x}) \) \end_inset for all \begin_inset Formula \( \widetilde{x} \) \end_inset in some neighbourhood of \begin_inset Formula \( x \) \end_inset in \begin_inset Formula \( W^{1,2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \) \end_inset . \layout Proof But this index is precisely the index \begin_inset Formula \( i_{T}(\widetilde{x}) \) \end_inset of the \begin_inset Formula \( T \) \end_inset -periodic solution \begin_inset Formula \( \widetilde{x} \) \end_inset over the interval \begin_inset Formula \( (0,T) \) \end_inset , as defined in Sect. \protected_separator 2.6. So \begin_inset Formula \begin{equation} \label{eq:five} i_{T}(\widetilde{x})=0\, \, . \end{equation} \end_inset \layout Proof Now if \begin_inset Formula \( \widetilde{x} \) \end_inset has a lower period, \begin_inset Formula \( T/k \) \end_inset say, we would have, by Corollary 31: \begin_inset Formula \begin{equation} i_{T}(\widetilde{x})=i_{kT/k}(\widetilde{x})\geq ki_{T/k}(\widetilde{x})+k-1\geq k-1\geq 1\, \, . \end{equation} \end_inset \layout Proof This would contradict ( \begin_inset LatexCommand \ref{eq:five} \end_inset ), and thus cannot happen. \latex latex \backslash qed \newline \layout Paragraph Notes and Comments. \layout Standard The results in this section are a refined version of \begin_inset LatexCommand \cite{clar:eke} \end_inset ; the minimality result of Proposition 14 was the first of its kind. \layout Standard To understand the nontriviality conditions, such as the one in formula ( \begin_inset LatexCommand \ref{eq:four} \end_inset ), one may think of a one-parameter family \begin_inset Formula \( x_{T} \) \end_inset , \begin_inset Formula \( T\in \left( 2\pi \omega ^{-1},2\pi b_{\infty }^{-1}\right) \) \end_inset of periodic solutions, \begin_inset Formula \( x_{T}(0)=x_{T}(T) \) \end_inset , with \begin_inset Formula \( x_{T} \) \end_inset going away to infinity when \begin_inset Formula \( T\rightarrow 2\pi \omega ^{-1} \) \end_inset , which is the period of the linearized system at 0. \begin_float tab \layout Caption This is the example table taken out of \shape italic The TeXbook, \shape default p. \latex latex \backslash , \latex default 246 \layout Standard \align center \LyXTable multicol5 6 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 "" "r@{\quad}" 4 0 0 "" "" 2 0 0 "" "" 1 2 1 1 0 0 0 "" "" 1 2 1 1 0 0 0 "" "" 2 2 1 1 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 1 0 0 0 "" "" 0 4 0 1 0 0 0 "" "" 0 2 0 1 0 0 0 "" "" \latex latex \backslash rule{0pt}{12pt} \latex default Year \newline World population \newline \latex latex \backslash rule{0pt}{12pt} \latex default 8000 B.C. \newline 5,000,000 \newline \newline 50 A.D. \newline 200,000,000 \newline \newline 1650 A.D. \newline 500,000,000 \newline \newline 1945 A.D. \newline 2,300,000,000 \newline \newline 1980 A.D. \newline 4,400,000,000 \newline \end_float \layout Theorem [Ghoussoub-Preiss] \begin_inset LatexCommand \label{ghou:pre} \end_inset Assume \begin_inset Formula \( H(t,x) \) \end_inset is \begin_inset Formula \( (0,\varepsilon ) \) \end_inset -subquadratic at infinity for all \begin_inset Formula \( \varepsilon >0 \) \end_inset , and \begin_inset Formula \( T \) \end_inset -periodic in \begin_inset Formula \( t \) \end_inset \begin_inset Formula \begin{equation} H(t,\cdot )\, \, \, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}}\, \, \, \, \forall t \end{equation} \end_inset \begin_inset Formula \begin{equation} H(\cdot ,x)\, \, \, \, \, \, \, \, \, \, {\textrm{is}}\, \, \, \, T{-\textrm{periodic}}\, \, \, \, \forall x \end{equation} \end_inset \begin_inset Formula \begin{equation} H(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow \infty \, \, \, \, {\textrm{as}}\, \, \, \, s\rightarrow \infty \end{equation} \end_inset \begin_inset Formula \begin{equation} \forall \varepsilon >0\, \, ,\, \, \, \, \, \, \exists c\, \, :H(t,x)\leq \frac{\varepsilon }{2}\left\Vert x\right\Vert ^{2}+c\, \, . \end{equation} \end_inset \layout Theorem Assume also that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset , and \begin_inset Formula \( H''(t,x) \) \end_inset is positive definite everywhere. Then there is a sequence \begin_inset Formula \( x_{k} \) \end_inset , \begin_inset Formula \( k\in \bbbn \) \end_inset , of \begin_inset Formula \( kT \) \end_inset -periodic solutions of the system \begin_inset Formula \begin{equation} \dot{x}=JH'(t,x) \end{equation} \end_inset such that, for every \begin_inset Formula \( k\in \bbbn \) \end_inset , there is some \begin_inset Formula \( p_{o}\in \bbbn \) \end_inset with: \begin_inset Formula \begin{equation} p\geq p_{o}\Rightarrow x_{pk}\ne x_{k}\, \, . \end{equation} \end_inset \latex latex \backslash qed \newline \layout Example [ \family roman External forcing \family default ] Consider the system: \begin_inset Formula \begin{equation} \dot{x}=JH'(x)+f(t) \end{equation} \end_inset where the Hamiltonian \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( 0,b_{\infty }\right) \) \end_inset -subquadratic, and the forcing term is a distribution on the circle: \begin_inset Formula \begin{equation} f=\frac{d}{dt}F+f_{o}\, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, F\in L^{2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \, \, , \end{equation} \end_inset where \begin_inset Formula \( f_{o}:=T^{-1}\int _{o}^{T}f(t)dt \) \end_inset . For instance, \begin_inset Formula \begin{equation} f(t)=\sum _{k\in \bbbn }\delta _{k}\xi \, \, , \end{equation} \end_inset where \begin_inset Formula \( \delta _{k} \) \end_inset is the Dirac mass at \begin_inset Formula \( t=k \) \end_inset and \begin_inset Formula \( \xi \in \bbbr ^{2n} \) \end_inset is a constant, fits the prescription. This means that the system \begin_inset Formula \( \dot{x}=JH'(x) \) \end_inset is being excited by a series of identical shocks at interval \begin_inset Formula \( T \) \end_inset . \layout Definition Let \begin_inset Formula \( A_{\infty }(t) \) \end_inset and \begin_inset Formula \( B_{\infty }(t) \) \end_inset be symmetric operators in \begin_inset Formula \( \bbbr ^{2n} \) \end_inset , depending continuously on \begin_inset Formula \( t\in [0,T] \) \end_inset , such that \begin_inset Formula \( A_{\infty }(t)\leq B_{\infty }(t) \) \end_inset for all \begin_inset Formula \( t \) \end_inset . \layout Definition A Borelian function \begin_inset Formula \( H:[0,T]\times \bbbr ^{2n}\rightarrow \bbbr \) \end_inset is called \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset - \shape italic subquadratic at infinity \shape default if there exists a function \begin_inset Formula \( N(t,x) \) \end_inset such that: \begin_inset Formula \begin{equation} H(t,x)=\frac{1}{2}\left( A_{\infty }(t)x,x\right) +N(t,x) \end{equation} \end_inset \begin_inset Formula \begin{equation} \forall t\, \, ,\, \, \, \, \, \, N(t,x)\, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}\, \, \textrm{with}\, \, \textrm{ respect}\, \, \textrm{ to}}\, \, \, \, x \end{equation} \end_inset \begin_inset Formula \begin{equation} N(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow +\infty \, \, \, \, {\textrm{as}}\, \, \, \, s\rightarrow +\infty \end{equation} \end_inset \begin_inset Formula \begin{equation} \exists c\in \bbbr \, \, :\, \, \, \, \, \, H(t,x)\leq \frac{1}{2}\left( B_{\infty }(t)x,x\right) +c\, \, \, \, \, \, \forall x\, \, . \end{equation} \end_inset \layout Definition If \begin_inset Formula \( A_{\infty }(t)=a_{\infty }I \) \end_inset and \begin_inset Formula \( B_{\infty }(t)=b_{\infty }I \) \end_inset , with \begin_inset Formula \( a_{\infty }\leq b_{\infty }\in \bbbr \) \end_inset , we shall say that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( a_{\infty },b_{\infty }\right) \) \end_inset -subquadratic at infinity. As an example, the function \begin_inset Formula \( \left\Vert x\right\Vert ^{\alpha } \) \end_inset , with \begin_inset Formula \( 1\leq \alpha <2 \) \end_inset , is \begin_inset Formula \( (0,\varepsilon ) \) \end_inset -subquadratic at infinity for every \begin_inset Formula \( \varepsilon >0 \) \end_inset . Similarly, the Hamiltonian \begin_inset Formula \begin{equation} H(t,x)=\frac{1}{2}k\left\Vert k\right\Vert ^{2}+\left\Vert x\right\Vert ^{\alpha } \end{equation} \end_inset is \begin_inset Formula \( (k,k+\varepsilon ) \) \end_inset -subquadratic for every \begin_inset Formula \( \varepsilon >0 \) \end_inset . Note that, if \begin_inset Formula \( k<0 \) \end_inset , it is not convex. \layout Paragraph Notes and Comments. \layout Standard The first results on subharmonics were obtained by Rabinowitz in \begin_inset LatexCommand \cite{rab} \end_inset , who showed the existence of infinitely many subharmonics both in the subquadra tic and superquadratic case, with suitable growth conditions on \begin_inset Formula \( H' \) \end_inset . Again the duality approach enabled Clarke and Ekeland in \begin_inset LatexCommand \cite{clar:eke:2} \end_inset to treat the same problem in the convex-subquadratic case, with growth conditions on \begin_inset Formula \( H \) \end_inset only. \layout Standard Recently, Michalek and Tarantello (see \begin_inset LatexCommand \cite{mich:tar} \end_inset and \begin_inset LatexCommand \cite{tar} \end_inset ) have obtained lower bound on the number of subharmonics of period \begin_inset Formula \( kT \) \end_inset , based on symmetry considerations and on pinching estimates, as in Sect. \protected_separator 5.2 of this article. \layout Standard \latex latex \backslash begin{thebibliography}{5} \newline \backslash bibitem {clar:eke} \newline Clarke, F., Ekeland, I.: \newline Nonlinear oscillations and \newline boundary-value problems for Hamiltonian systems. \newline Arch. Rat. Mech. Anal. { \backslash textbf{78}} (1982) 315--333 \newline \newline \backslash bibitem {clar:eke:2} \newline Clarke, F., Ekeland, I.: \newline Solutions p \backslash '{e}riodiques, du \newline p \backslash '{e}riode donn \backslash '{e}e, des \backslash '{e}quations hamiltoniennes. \newline Note CRAS Paris { \backslash textbf{287}} (1978) 1013--1015 \newline \newline \backslash bibitem {mich:tar} \newline Michalek, R., Tarantello, G.: \newline Subharmonic solutions with prescribed minimal \newline period for nonautonomous Hamiltonian systems. \newline J. Diff. Eq. { \backslash textbf{72}} (1988) 28--55 \newline \newline \backslash bibitem {tar} \newline Tarantello, G.: \newline Subharmonic solutions for Hamiltonian \newline systems via a \backslash ( \backslash bbbz_{p} \backslash ) pseudoindex theory. \newline Annali di Matematica Pura (to appear) \newline \newline \backslash bibitem {rab} \newline Rabinowitz, P.: \newline On subharmonic solutions of a Hamiltonian system. \newline Comm. Pure Appl. Math. { \backslash textbf{33}} (1980) 609--633 \newline \newline \backslash end{thebibliography} \layout Title Hamiltonian Mechanics2 \layout Author Ivar Ekeland \latex latex \backslash inst{1} \backslash and \latex default Roger Temam \latex latex \backslash inst{2} \layout Institute Princeton University, Princeton NJ 08544, USA \latex latex \backslash and \newline \latex default Universit\i \'{e} de Paris-Sud, Laboratoire d'Analyse Num\i \'{e} rique, B\i \^{a} timent 425, \newline F-91405 Orsay Cedex, France \layout Standard \latex latex \backslash makeatletter \newline \backslash renewenvironment{thebibliography}[1]{ \newline \backslash section*{ \backslash refname \newline \backslash small \newline \backslash list{}{ \backslash settowidth{ \backslash labelwidth}{} \backslash leftmargin \backslash parindent \newline \backslash itemindent=- \backslash parindent \newline \backslash labelsep= \backslash z@ \newline \backslash if@openbib \newline \backslash advance \backslash leftmargin \backslash bibindent \newline \backslash itemindent - \backslash bibindent \newline \backslash listparindent \backslash itemindent \newline \backslash parsep \backslash z@ \newline \backslash fi \newline \backslash usecounter{enumiv} \backslash let \backslash p@enumiv \backslash @empty \newline \backslash renewcommand{ \backslash theenumiv}{}} \backslash if@openbib \newline \backslash renewcommand{ \backslash newblock}{ \backslash par} \backslash else \newline \backslash renewcommand{ \backslash newblock}{ \backslash hskip .11em \backslash @plus.33em \backslash @minus.07em} \backslash fi \newline \backslash sloppy \backslash clubpenalty4000 \backslash widowpenalty4000 \backslash sfcode` \backslash .{=} \backslash @m}}{ \newline { \backslash def \backslash @noitemerr \newline \backslash @latex@warning{Empty `thebibliography' environment}} \backslash endlist} \backslash def \latex default cite#1#1 \latex latex \backslash def \latex default lbibitem[#1]#2 \layout Standard \latex latex \backslash if \latex default @filesw \latex latex \backslash def \backslash protect \latex default ##1 \latex latex \backslash string \latex default ##1 \latex latex \backslash space{} \backslash immediate \newline \backslash write \latex default auxout \latex latex \backslash string \backslash bibcite{#2}{#1} \backslash fi \backslash ignorespaces{} \backslash makeatother \newline \layout Abstract The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. \latex latex \backslash dots \newline \layout Section Fixed-Period Problems: The Sublinear Case \layout Standard With this chapter, the preliminaries are over, and we begin the search for periodic solutions to Hamiltonian systems. All this will be done in the convex case; that is, we shall study the boundary- value problem \begin_inset Formula \begin{eqnarray*} \dot{x} & = & JH'(t,x)\\ x(0) & = & x(T) \end{eqnarray*} \end_inset with \begin_inset Formula \( H(t,\cdot ) \) \end_inset a convex function of \begin_inset Formula \( x \) \end_inset , going to \begin_inset Formula \( +\infty \) \end_inset when \begin_inset Formula \( \left\Vert x\right\Vert \rightarrow \infty \) \end_inset . \layout Subsection Autonomous Systems \layout Standard In this section, we will consider the case when the Hamiltonian \begin_inset Formula \( H(x) \) \end_inset is autonomous. For the sake of simplicity, we shall also assume that it is \begin_inset Formula \( C^{1} \) \end_inset . \layout Standard We shall first consider the question of nontriviality, within the general framework of \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset -subquadratic Hamiltonians. In the second subsection, we shall look into the special case when \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( 0,b_{\infty }\right) \) \end_inset -subquadratic, and we shall try to derive additional information. \layout Subsubsection The General Case: Nontriviality. \layout Standard We assume that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset -sub\SpecialChar \- qua\SpecialChar \- dra\SpecialChar \- tic at infinity, for some constant symmetric matrices \begin_inset Formula \( A_{\infty } \) \end_inset and \begin_inset Formula \( B_{\infty } \) \end_inset , with \begin_inset Formula \( B_{\infty }-A_{\infty } \) \end_inset positive definite. Set: \begin_inset Formula \begin{eqnarray} \gamma : & = & {\textrm{smallest}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, \, \, B_{\infty }-A_{\infty }\\ \lambda : & = & {\textrm{largest}\, \, \textrm{negative}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, J\frac{d}{dt}+A_{\infty }\, \, . \end{eqnarray} \end_inset \layout Standard Theorem 21 tells us that if \begin_inset Formula \( \lambda +\gamma <0 \) \end_inset , the boundary-value problem: \begin_inset Formula \begin{equation} \begin{array}{rcl} \dot{x} & = & JH'(x)\\ x(0) & = & x(T) \end{array} \end{equation} \end_inset has at least one solution \begin_inset Formula \( \overline{x} \) \end_inset , which is found by minimizing the dual action functional: \begin_inset Formula \begin{equation} \psi (u)=\int _{o}^{T}\left[ \frac{1}{2}\left( \Lambda _{o}^{-1}u,u\right) +N^{\ast }(-u)\right] dt \end{equation} \end_inset on the range of \begin_inset Formula \( \Lambda \) \end_inset , which is a subspace \begin_inset Formula \( R(\Lambda )_{L}^{2} \) \end_inset with finite codimension. Here \begin_inset Formula \begin{equation} N(x):=H(x)-\frac{1}{2}\left( A_{\infty }x,x\right) \end{equation} \end_inset is a convex function, and \begin_inset Formula \begin{equation} N(x)\leq \frac{1}{2}\left( \left( B_{\infty }-A_{\infty }\right) x,x\right) +c\, \, \, \, \, \, \forall x\, \, . \end{equation} \end_inset \layout Proposition Assume \begin_inset Formula \( H'(0)=0 \) \end_inset and \begin_inset Formula \( H(0)=0 \) \end_inset . Set: \begin_inset Formula \begin{equation} \label{2eq:one} \delta :=\liminf _{x\rightarrow 0}2N(x)\left\Vert x\right\Vert ^{-2}\, \, . \end{equation} \end_inset \layout Proposition If \begin_inset Formula \( \gamma <-\lambda <\delta \) \end_inset , the solution \begin_inset Formula \( \overline{u} \) \end_inset is non-zero: \begin_inset Formula \begin{equation} \overline{x}(t)\ne 0\, \, \, \, \, \, \forall t\, \, . \end{equation} \end_inset \layout Proof Condition ( \begin_inset LatexCommand \ref{2eq:one} \end_inset ) means that, for every \begin_inset Formula \( \delta '>\delta \) \end_inset , there is some \begin_inset Formula \( \varepsilon >0 \) \end_inset such that \begin_inset Formula \begin{equation} \left\Vert x\right\Vert \leq \varepsilon \Rightarrow N(x)\leq \frac{\delta '}{2}\left\Vert x\right\Vert ^{2}\, \, . \end{equation} \end_inset \layout Proof It is an exercise in convex analysis, into which we shall not go, to show that this implies that there is an \begin_inset Formula \( \eta >0 \) \end_inset such that \begin_inset Formula \begin{equation} \label{2eq:two} f\left\Vert x\right\Vert \leq \eta \Rightarrow N^{\ast }(y)\leq \frac{1}{2\delta '}\left\Vert y\right\Vert ^{2}\, \, . \end{equation} \end_inset \begin_float fig \layout Proof \latex latex \backslash vspace{2.5cm} \layout Caption This is the caption of the figure displaying a white eagle and a white horse on a snow field \end_float \layout Proof Since \begin_inset Formula \( u_{1} \) \end_inset is a smooth function, we will have \begin_inset Formula \( \left\Vert hu_{1}\right\Vert _{\infty }\leq \eta \) \end_inset for \begin_inset Formula \( h \) \end_inset small enough, and inequality ( \begin_inset LatexCommand \ref{2eq:two} \end_inset ) will hold, yielding thereby: \begin_inset Formula \begin{equation} \psi (hu_{1})\leq \frac{h^{2}}{2}\frac{1}{\lambda }\left\Vert u_{1}\right\Vert _{2}^{2}+\frac{h^{2}}{2}\frac{1}{\delta '}\left\Vert u_{1}\right\Vert ^{2}\, \, . \end{equation} \end_inset \layout Proof If we choose \begin_inset Formula \( \delta ' \) \end_inset close enough to \begin_inset Formula \( \delta \) \end_inset , the quantity \begin_inset Formula \( \left( \frac{1}{\lambda }+\frac{1}{\delta '}\right) \) \end_inset will be negative, and we end up with \begin_inset Formula \begin{equation} \psi (hu_{1})<0\, \, \, \, \, \, \, \, \, \, {\textrm{for}}\, \, \, \, h\ne 0\, \, \, \, {\textrm{small}}\, \, . \end{equation} \end_inset \layout Proof On the other hand, we check directly that \begin_inset Formula \( \psi (0)=0 \) \end_inset . This shows that 0 cannot be a minimizer of \begin_inset Formula \( \psi \) \end_inset , not even a local one. So \begin_inset Formula \( \overline{u}\ne 0 \) \end_inset and \begin_inset Formula \( \overline{u}\ne \Lambda _{o}^{-1}(0)=0 \) \end_inset . \latex latex \backslash qed \newline \layout Corollary Assume \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset and \begin_inset Formula \( \left( a_{\infty },b_{\infty }\right) \) \end_inset -subquadratic at infinity. Let \begin_inset Formula \( \xi _{1},\allowbreak \dots ,\allowbreak \xi _{N} \) \end_inset be the equilibria, that is, the solutions of \begin_inset Formula \( H'(\xi )=0 \) \end_inset . Denote by \begin_inset Formula \( \omega _{k} \) \end_inset the smallest eigenvalue of \begin_inset Formula \( H''\left( \xi _{k}\right) \) \end_inset , and set: \begin_inset Formula \begin{equation} \omega :={\textrm{Min}\, }\left\{ \omega _{1},\dots ,\omega _{k}\right\} \, \, . \end{equation} \end_inset If: \begin_inset Formula \begin{equation} \label{2eq:three} \frac{T}{2\pi }b_{\infty }<-E\left[ -\frac{T}{2\pi }a_{\infty }\right] <\frac{T}{2\pi }\omega \end{equation} \end_inset then minimization of \begin_inset Formula \( \psi \) \end_inset yields a non-constant \begin_inset Formula \( T \) \end_inset -periodic solution \begin_inset Formula \( \overline{x} \) \end_inset . \layout Standard We recall once more that by the integer part \begin_inset Formula \( E[\alpha ] \) \end_inset of \begin_inset Formula \( \alpha \in \bbbr \) \end_inset , we mean the \begin_inset Formula \( a\in \bbbz \) \end_inset such that \begin_inset Formula \( a<\alpha \leq a+1 \) \end_inset . For instance, if we take \begin_inset Formula \( a_{\infty }=0 \) \end_inset , Corollary 2 tells us that \begin_inset Formula \( \overline{x} \) \end_inset exists and is non-constant provided that: \layout Standard \begin_inset Formula \begin{equation} \frac{T}{2\pi }b_{\infty }<1<\frac{T}{2\pi } \end{equation} \end_inset or \begin_inset Formula \begin{equation} \label{2eq:four} T\in \left( \frac{2\pi }{\omega },\frac{2\pi }{b_{\infty }}\right) \, \, . \end{equation} \end_inset \layout Proof The spectrum of \begin_inset Formula \( \Lambda \) \end_inset is \begin_inset Formula \( \frac{2\pi }{T}\bbbz +a_{\infty } \) \end_inset . The largest negative eigenvalue \begin_inset Formula \( \lambda \) \end_inset is given by \begin_inset Formula \( \frac{2\pi }{T}k_{o}+a_{\infty } \) \end_inset , where \begin_inset Formula \begin{equation} \frac{2\pi }{T}k_{o}+a_{\infty }<0\leq \frac{2\pi }{T}(k_{o}+1)+a_{\infty }\, \, . \end{equation} \end_inset Hence: \begin_inset Formula \begin{equation} k_{o}=E\left[ -\frac{T}{2\pi }a_{\infty }\right] \, \, . \end{equation} \end_inset \layout Proof The condition \begin_inset Formula \( \gamma <-\lambda <\delta \) \end_inset now becomes: \begin_inset Formula \begin{equation} b_{\infty }-a_{\infty }<-\frac{2\pi }{T}k_{o}-a_{\infty }<\omega -a_{\infty } \end{equation} \end_inset which is precisely condition ( \begin_inset LatexCommand \ref{2eq:three} \end_inset ). \latex latex \backslash qed \newline \layout Lemma Assume that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset on \begin_inset Formula \( \bbbr ^{2n}\setminus \{0\} \) \end_inset and that \begin_inset Formula \( H''(x) \) \end_inset is non-de\SpecialChar \- gen\SpecialChar \- er\SpecialChar \- ate for any \begin_inset Formula \( x\ne 0 \) \end_inset . Then any local minimizer \begin_inset Formula \( \widetilde{x} \) \end_inset of \begin_inset Formula \( \psi \) \end_inset has minimal period \begin_inset Formula \( T \) \end_inset . \layout Proof We know that \begin_inset Formula \( \widetilde{x} \) \end_inset , or \begin_inset Formula \( \widetilde{x}+\xi \) \end_inset for some constant \begin_inset Formula \( \xi \in \bbbr ^{2n} \) \end_inset , is a \begin_inset Formula \( T \) \end_inset -periodic solution of the Hamiltonian system: \begin_inset Formula \begin{equation} \dot{x}=JH'(x)\, \, . \end{equation} \end_inset \layout Proof There is no loss of generality in taking \begin_inset Formula \( \xi =0 \) \end_inset . So \begin_inset Formula \( \psi (x)\geq \psi (\widetilde{x}) \) \end_inset for all \begin_inset Formula \( \widetilde{x} \) \end_inset in some neighbourhood of \begin_inset Formula \( x \) \end_inset in \begin_inset Formula \( W^{1,2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \) \end_inset . \layout Proof But this index is precisely the index \begin_inset Formula \( i_{T}(\widetilde{x}) \) \end_inset of the \begin_inset Formula \( T \) \end_inset -periodic solution \begin_inset Formula \( \widetilde{x} \) \end_inset over the interval \begin_inset Formula \( (0,T) \) \end_inset , as defined in Sect. \protected_separator 2.6. So \begin_inset Formula \begin{equation} \label{2eq:five} i_{T}(\widetilde{x})=0\, \, . \end{equation} \end_inset \layout Proof Now if \begin_inset Formula \( \widetilde{x} \) \end_inset has a lower period, \begin_inset Formula \( T/k \) \end_inset say, we would have, by Corollary 31: \begin_inset Formula \begin{equation} i_{T}(\widetilde{x})=i_{kT/k}(\widetilde{x})\geq ki_{T/k}(\widetilde{x})+k-1\geq k-1\geq 1\, \, . \end{equation} \end_inset \layout Proof This would contradict ( \begin_inset LatexCommand \ref{2eq:five} \end_inset ), and thus cannot happen. \latex latex \backslash qed \newline \layout Paragraph Notes and Comments. \layout Standard The results in this section are a refined version of \begin_inset LatexCommand \cite{2clar:eke} \end_inset ; the minimality result of Proposition 14 was the first of its kind. \layout Standard To understand the nontriviality conditions, such as the one in formula ( \begin_inset LatexCommand \ref{2eq:four} \end_inset ), one may think of a one-parameter family \begin_inset Formula \( x_{T} \) \end_inset , \begin_inset Formula \( T\in \left( 2\pi \omega ^{-1},2\pi b_{\infty }^{-1}\right) \) \end_inset of periodic solutions, \begin_inset Formula \( x_{T}(0)=x_{T}(T) \) \end_inset , with \begin_inset Formula \( x_{T} \) \end_inset going away to infinity when \begin_inset Formula \( T\rightarrow 2\pi \omega ^{-1} \) \end_inset , which is the period of the linearized system at 0. \begin_float tab \layout Caption This is the example table taken out of \shape italic The TeXbook, \shape default p. \latex latex \backslash , \latex default 246 \layout Standard \align center \LyXTable multicol5 6 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 "" "r@{\quad}" 4 0 0 "" "" 2 0 0 "" "" 1 2 1 1 0 0 0 "" "" 1 2 1 1 0 0 0 "" "" 2 2 1 1 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 0 0 0 0 "" "" 0 4 0 0 0 0 0 "" "" 0 2 0 0 0 0 0 "" "" 0 8 0 1 0 0 0 "" "" 0 4 0 1 0 0 0 "" "" 0 2 0 1 0 0 0 "" "" \latex latex \backslash rule{0pt}{12pt} \latex default Year \newline World population \newline \latex latex \backslash rule{0pt}{12pt} \latex default 8000 B.C. \newline 5,000,000 \newline \newline 50 A.D. \newline 200,000,000 \newline \newline 1650 A.D. \newline 500,000,000 \newline \newline 1945 A.D. \newline 2,300,000,000 \newline \newline 1980 A.D. \newline 4,400,000,000 \newline \end_float \layout Theorem [Ghoussoub-Preiss] Assume \begin_inset Formula \( H(t,x) \) \end_inset is \begin_inset Formula \( (0,\varepsilon ) \) \end_inset -subquadratic at infinity for all \begin_inset Formula \( \varepsilon >0 \) \end_inset , and \begin_inset Formula \( T \) \end_inset -periodic in \begin_inset Formula \( t \) \end_inset \begin_inset Formula \begin{equation} H(t,\cdot )\, \, \, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}}\, \, \, \, \forall t \end{equation} \end_inset \begin_inset Formula \begin{equation} H(\cdot ,x)\, \, \, \, \, \, \, \, \, \, {\textrm{is}}\, \, \, \, T{-\textrm{periodic}}\, \, \, \, \forall x \end{equation} \end_inset \begin_inset Formula \begin{equation} H(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow \infty \, \, \, \, {\textrm{as}}\, \, \, \, s\rightarrow \infty \end{equation} \end_inset \begin_inset Formula \begin{equation} \forall \varepsilon >0\, \, ,\, \, \, \, \, \, \exists c\, \, :H(t,x)\leq \frac{\varepsilon }{2}\left\Vert x\right\Vert ^{2}+c\, \, . \end{equation} \end_inset \layout Theorem Assume also that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( C^{2} \) \end_inset , and \begin_inset Formula \( H''(t,x) \) \end_inset is positive definite everywhere. Then there is a sequence \begin_inset Formula \( x_{k} \) \end_inset , \begin_inset Formula \( k\in \bbbn \) \end_inset , of \begin_inset Formula \( kT \) \end_inset -periodic solutions of the system \begin_inset Formula \begin{equation} \dot{x}=JH'(t,x) \end{equation} \end_inset such that, for every \begin_inset Formula \( k\in \bbbn \) \end_inset , there is some \begin_inset Formula \( p_{o}\in \bbbn \) \end_inset with: \begin_inset Formula \begin{equation} p\geq p_{o}\Rightarrow x_{pk}\ne x_{k}\, \, . \end{equation} \end_inset \latex latex \backslash qed \newline \layout Example [ \family roman External forcing \family default ] Consider the system: \begin_inset Formula \begin{equation} \dot{x}=JH'(x)+f(t) \end{equation} \end_inset where the Hamiltonian \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( 0,b_{\infty }\right) \) \end_inset -subquadratic, and the forcing term is a distribution on the circle: \begin_inset Formula \begin{equation} f=\frac{d}{dt}F+f_{o}\, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, F\in L^{2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \, \, , \end{equation} \end_inset where \begin_inset Formula \( f_{o}:=T^{-1}\int _{o}^{T}f(t)dt \) \end_inset . For instance, \begin_inset Formula \begin{equation} f(t)=\sum _{k\in \bbbn }\delta _{k}\xi \, \, , \end{equation} \end_inset where \begin_inset Formula \( \delta _{k} \) \end_inset is the Dirac mass at \begin_inset Formula \( t=k \) \end_inset and \begin_inset Formula \( \xi \in \bbbr ^{2n} \) \end_inset is a constant, fits the prescription. This means that the system \begin_inset Formula \( \dot{x}=JH'(x) \) \end_inset is being excited by a series of identical shocks at interval \begin_inset Formula \( T \) \end_inset . \layout Definition Let \begin_inset Formula \( A_{\infty }(t) \) \end_inset and \begin_inset Formula \( B_{\infty }(t) \) \end_inset be symmetric operators in \begin_inset Formula \( \bbbr ^{2n} \) \end_inset , depending continuously on \begin_inset Formula \( t\in [0,T] \) \end_inset , such that \begin_inset Formula \( A_{\infty }(t)\leq B_{\infty }(t) \) \end_inset for all \begin_inset Formula \( t \) \end_inset . \layout Definition A Borelian function \begin_inset Formula \( H:[0,T]\times \bbbr ^{2n}\rightarrow \bbbr \) \end_inset is called \begin_inset Formula \( \left( A_{\infty },B_{\infty }\right) \) \end_inset - \shape italic subquadratic at infinity \shape default if there exists a function \begin_inset Formula \( N(t,x) \) \end_inset such that: \begin_inset Formula \begin{equation} H(t,x)=\frac{1}{2}\left( A_{\infty }(t)x,x\right) +N(t,x) \end{equation} \end_inset \begin_inset Formula \begin{equation} \forall t\, \, ,\, \, \, \, \, \, N(t,x)\, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}\, \, \textrm{with}\, \, \textrm{ respect}\, \, \textrm{ to}}\, \, \, \, x \end{equation} \end_inset \begin_inset Formula \begin{equation} N(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow +\infty \, \, \, \, {\textrm{as}}\, \, \, \, s\rightarrow +\infty \end{equation} \end_inset \begin_inset Formula \begin{equation} \exists c\in \bbbr \, \, :\, \, \, \, \, \, H(t,x)\leq \frac{1}{2}\left( B_{\infty }(t)x,x\right) +c\, \, \, \, \, \, \forall x\, \, . \end{equation} \end_inset \layout Definition If \begin_inset Formula \( A_{\infty }(t)=a_{\infty }I \) \end_inset and \begin_inset Formula \( B_{\infty }(t)=b_{\infty }I \) \end_inset , with \begin_inset Formula \( a_{\infty }\leq b_{\infty }\in \bbbr \) \end_inset , we shall say that \begin_inset Formula \( H \) \end_inset is \begin_inset Formula \( \left( a_{\infty },b_{\infty }\right) \) \end_inset -subquadratic at infinity. As an example, the function \begin_inset Formula \( \left\Vert x\right\Vert ^{\alpha } \) \end_inset , with \begin_inset Formula \( 1\leq \alpha <2 \) \end_inset , is \begin_inset Formula \( (0,\varepsilon ) \) \end_inset -subquadratic at infinity for every \begin_inset Formula \( \varepsilon >0 \) \end_inset . Similarly, the Hamiltonian \begin_inset Formula \begin{equation} H(t,x)=\frac{1}{2}k\left\Vert k\right\Vert ^{2}+\left\Vert x\right\Vert ^{\alpha } \end{equation} \end_inset is \begin_inset Formula \( (k,k+\varepsilon ) \) \end_inset -subquadratic for every \begin_inset Formula \( \varepsilon >0 \) \end_inset . Note that, if \begin_inset Formula \( k<0 \) \end_inset , it is not convex. \layout Paragraph Notes and Comments. \layout Standard The first results on subharmonics were obtained by Rabinowitz in \begin_inset LatexCommand \cite{2rab} \end_inset , who showed the existence of infinitely many subharmonics both in the subquadra tic and superquadratic case, with suitable growth conditions on \begin_inset Formula \( H' \) \end_inset . Again the duality approach enabled Clarke and Ekeland in \begin_inset LatexCommand \cite{2clar:eke:2} \end_inset to treat the same problem in the convex-subquadratic case, with growth conditions on \begin_inset Formula \( H \) \end_inset only. \layout Standard Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G. \begin_inset LatexCommand \cite{2mich:tar} \end_inset and Tarantello, G. \begin_inset LatexCommand \cite{2tar} \end_inset ) have obtained lower bound on the number of subharmonics of period \begin_inset Formula \( kT \) \end_inset , based on symmetry considerations and on pinching estimates, as in Sect. \protected_separator 5.2 of this article. \layout Standard \latex latex \backslash begin{thebibliography}{} \newline \backslash bibitem[1980]{2clar:eke} \newline Clarke, F., Ekeland, I.: \newline Nonlinear oscillations and \newline boundary-value problems for Hamiltonian systems. \newline Arch. Rat. Mech. Anal. { \backslash textbf{78}} (1982) 315--333 \newline \newline \backslash bibitem[1981]{2clar:eke:2} \newline Clarke, F., Ekeland, I.: \newline Solutions p \backslash '{e}riodiques, du \newline p \backslash '{e}riode donn \backslash '{e}e, des \backslash '{e}quations hamiltoniennes. \newline Note CRAS Paris { \backslash textbf{287}} (1978) 1013--1015 \newline \newline \backslash bibitem[1982]{2mich:tar} \newline Michalek, R., Tarantello, G.: \newline Subharmonic solutions with prescribed minimal \newline period for nonautonomous Hamiltonian systems. \newline J. Diff. Eq. { \backslash textbf{72}} (1988) 28--55 \newline \newline \backslash bibitem[1983]{2tar} \newline Tarantello, G.: \newline Subharmonic solutions for Hamiltonian \newline systems via a \backslash ( \backslash bbbz_{p} \backslash ) pseudoindex theory. \newline Annali di Matematica Pura (to appear) \newline \newline \backslash bibitem[1985]{2rab} \newline Rabinowitz, P.: \newline On subharmonic solutions of a Hamiltonian system. \newline Comm. Pure Appl. Math. { \backslash textbf{33}} (1980) 609--633 \newline \newline \backslash end{thebibliography} \backslash clearpage \newline \backslash addtocmark[2]{Author Index} \backslash renewcommand{ \backslash indexname}{Author Index} \latex default \begin_inset LatexCommand \printindex{} \end_inset \latex latex \backslash clearpage \newline \backslash addtocmark[2]{Subject Index} \backslash markboth{Subject Index}{ \latex default Subject Index \latex latex } \backslash renewcommand{ \backslash indexname}{Subject Index} \latex default \begin_inset Include \input{subjidx.ind} \end_inset \the_end