Hi Juan Ramon,

Please find attached the demo as I imported it into LyX using the ejour2 class 
file. This is not appropriate, but it contains many of the things you need for 
this document class.

The more or less successfully imported file is attached. However, note that I 
broke a lot of things in doing so.

The proper thing to do is to add this document class to LyX. That is quite a 
bit of work, involving the following:

1. Place the file llncs.cls in the directory where also article.cls, book.cls 
etc. are. Then, run (as root) texhash, to make TeX find the file.

2. Create a file llncs.layout in the same directory that contains all the 
other .layout files. You can copy ejour2.layout to llncs.layout, and edit it. 
First thing to do is to edit the second line to read

#  \DeclareLaTeXClass{Springer - Lecture Notes in Comp. Sci.}    

Editing the llncs.layout file to contain all the commands and environments 
present in the llncs class, is a big job. Study the example files. Once this 
work is done, everybody will be able to use LyX for this class of document.

3. Then run configure from within LyX, exit and start again. You should now 
have the llncs document class in layout->document menu.

Good luck,

Martin


#This file was created by <mv> Mon Jun  7 22:11:37 1999
#LyX 1.0 (C) 1995-1999 Matthias Ettrich and the LyX Team
\lyxformat 2.15
\textclass ejour2
\begin_preamble
%
\usepackage{makeidx}  % allows for indexgeneration
%
\usepackage{multicol}
\def\bbbr{{\rm I\!R}} %reelle Zahlen
\def\bbbz{{\mathchoice {\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}                     
                                
\@onecolumn
\end_preamble
\language default
\inputencoding default
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Standard

\layout Standard


\latex latex 
%
\backslash 
frontmatter
\layout Standard


\latex latex 

\backslash 
pagestyle{headings} 
\layout Standard


\latex latex 
%
\backslash 
addtocmark{Hamiltonian Mechanics}
\layout Standard

Preface
\layout Standard

This textbook is intended for use by students of physics, physical chemistry,
 and theoretical chemistry.
 The reader is presumed to have a basic knowledge of atomic and quantum
 physics at the level provided, for example, by the first few chapters in
 our book 
\shape italic 
The Physics of Atoms and Quanta
\shape default 
.
 The student of physics will find here material which should be included
 in the basic education of every physicist.
 This book should furthermore allow students to acquire an appreciation
 of the breadth and variety within the field of molecular physics and its
 future as a fascinating area of research.
 
\layout Standard

For the student of chemistry, the concepts introduced in this book will
 provide a theoretical framework for that entire field of study.
 With the help of these concepts, it is at least in principle possible to
 reduce the enormous body of empirical chemical knowledge to a few basic
 principles: those of quantum mechanics.
 In addition, modern physical methods whose fundamentals are introduced
 here are becoming increasingly important in chemistry and now represent
 indispensable tools for the chemist.
 As examples, we might mention the structural analysis of complex organic
 compounds, spectroscopic investigation of very rapid reaction processes
 or, as a practical application, the remote detection of pollutants in the
 air.
 
\layout Standard


\latex latex 

\backslash 
vspace{1cm}
\layout Standard
\noindent \align right 
April 1995
\hfill 
Walter Olthoff
\newline 
 Program Chair
\newline 
 ECOOP'95 
\layout Standard

Organization
\layout Standard

ECOOP'95 is organized by the department of Computer Science, Univeristy
 of 
\latex latex 

\backslash 
AA 
\latex default 
rhus and AITO (association Internationa pour les Technologie Object) in
 cooperation with ACM/SIGPLAN.
 
\layout Section*

Executive Commitee
\layout Standard
\LyXTable
multicol5
8 2 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
8 0 0 "" "@{}p{5cm}@{}"
8 0 0 "" "p{7.2cm}@{}"
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""

 Conference Chair:
\newline 
Ole Lehrmann Madsen (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Program Chair: 
\newline 
Walter Olthoff (DFKI GmbH, Germany)
\newline 
 Organizing Chair:
\newline 
J
\latex latex 

\backslash 
o 
\latex default 
rgen Lindskov Knudsen (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Tutorials:
\newline 
Birger M
\latex latex 

\backslash 
o 
\latex default 
ller-Pedersen
\latex latex 

\backslash 
hfil
\backslash 
break
\newline 

\latex default 
(Norwegian Computing Center, Norway)
\newline 
 Workshops:
\newline 
Eric Jul (University of Kopenhagen, Denmark)
\newline 
 Panels:
\newline 
Boris Magnusson (Lund University, Sweden)
\newline 
 Exhibition:
\newline 
Elmer Sandvad (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Demonstrations:
\newline 
Kurt N
\latex latex 

\backslash 
o 
\latex default 
rdmark (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK) 
\layout Section*

Program Commitee
\layout Standard
\LyXTable
multicol5
8 2 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
8 0 0 "" "@{}p{5cm}@{}"
8 0 0 "" "p{7.2cm}@{}"
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""

 Conference Chair:
\newline 
Ole Lehrmann Madsen (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Program Chair: 
\newline 
Walter Olthoff (DFKI GmbH, Germany)
\newline 
 Organizing Chair:
\newline 
J
\latex latex 

\backslash 
o 
\latex default 
rgen Lindskov Knudsen (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Tutorials:
\newline 
Birger M
\latex latex 

\backslash 
o 
\latex default 
ller-Pedersen
\latex latex 

\backslash 
hfil
\backslash 
break
\newline 

\latex default 
(Norwegian Computing Center, Norway)
\newline 
 Workshops:
\newline 
Eric Jul (University of Kopenhagen, Denmark)
\newline 
 Panels:
\newline 
Boris Magnusson (Lund University, Sweden)
\newline 
 Exhibition:
\newline 
Elmer Sandvad (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK)
\newline 
 Demonstrations:
\newline 
Kurt N
\latex latex 

\backslash 
o 
\latex default 
rdmark (
\latex latex 

\backslash 
AA 
\latex default 
rhus University, DK) 
\layout Standard


\latex latex 

\backslash 
begin{multicols}{3}[
\backslash 
section*{Referees}]
\newline 
V.~Andreev
\backslash 

\backslash 

\newline 
B
\backslash 
"{a}rwolff
\backslash 

\backslash 

\newline 
E.~Barrelet
\backslash 

\backslash 

\newline 
H.P.~Beck
\backslash 

\backslash 

\newline 
G.~Bernardi
\backslash 

\backslash 

\newline 
E.~Binder
\backslash 

\backslash 

\newline 
P.C.~Bosetti
\backslash 

\backslash 

\newline 
Braunschweig
\backslash 

\backslash 

\newline 
F.W.~B
\backslash 
"{u}sser
\backslash 

\backslash 

\newline 
T.~Carli
\backslash 

\backslash 

\newline 
A.B.~Clegg
\backslash 

\backslash 

\newline 
G.~Cozzika
\backslash 

\backslash 

\newline 
S.~Dagoret
\backslash 

\backslash 

\newline 
Del~Buono
\backslash 

\backslash 

\newline 
P.~Dingus
\backslash 

\backslash 

\newline 
H.~Duhm
\backslash 

\backslash 

\newline 
J.~Ebert
\backslash 

\backslash 

\newline 
S.~Eichenberger
\backslash 

\backslash 

\newline 
R.J.~Ellison
\backslash 

\backslash 

\newline 
Feltesse
\backslash 

\backslash 

\newline 
W.~Flauger
\backslash 

\backslash 

\newline 
A.~Fomenko
\backslash 

\backslash 

\newline 
G.~Franke
\backslash 

\backslash 

\newline 
J.~Garvey
\backslash 

\backslash 

\newline 
M.~Gennis
\backslash 

\backslash 

\newline 
L.~Goerlich
\backslash 

\backslash 

\newline 
P.~Goritchev
\backslash 

\backslash 

\newline 
H.~Greif
\backslash 

\backslash 

\newline 
E.M.~Hanlon
\backslash 

\backslash 

\newline 
R.~Haydar
\backslash 

\backslash 

\newline 
R.C.W.~Henderso
\backslash 

\backslash 

\newline 
P.~Hill
\backslash 

\backslash 

\newline 
H.~Hufnagel
\backslash 

\backslash 

\newline 
A.~Jacholkowska
\backslash 

\backslash 

\newline 
Johannsen
\backslash 

\backslash 

\newline 
S.~Kasarian
\backslash 

\backslash 

\newline 
I.R.~Kenyon
\backslash 

\backslash 

\newline 
C.~Kleinwort
\backslash 

\backslash 

\newline 
T.~K
\backslash 
"{o}hler
\backslash 

\backslash 

\newline 
S.D.~Kolya
\backslash 

\backslash 

\newline 
P.~Kostka
\backslash 

\backslash 

\newline 
U.~Kr
\backslash 
"{u}ger
\backslash 

\backslash 

\newline 
J.~Kurzh
\backslash 
"{o}fer
\backslash 

\backslash 

\newline 
M.P.J.~Landon
\backslash 

\backslash 

\newline 
A.~Lebedev
\backslash 

\backslash 

\newline 
Ch.~Ley
\backslash 

\backslash 

\newline 
F.~Linsel
\backslash 

\backslash 

\newline 
H.~Lohmand
\backslash 

\backslash 

\newline 
Martin
\backslash 

\backslash 

\newline 
S.~Masson
\backslash 

\backslash 

\newline 
K.~Meier
\backslash 

\backslash 

\newline 
C.A.~Meyer
\backslash 

\backslash 

\newline 
S.~Mikocki
\backslash 

\backslash 

\newline 
J.V.~Morris
\backslash 

\backslash 

\newline 
B.~Naroska
\backslash 

\backslash 

\newline 
Nguyen
\backslash 

\backslash 

\newline 
U.~Obrock
\backslash 

\backslash 

\newline 
G.D.~Patel
\backslash 

\backslash 

\newline 
Ch.~Pichler
\backslash 

\backslash 

\newline 
S.~Prell
\backslash 

\backslash 

\newline 
F.~Raupach
\backslash 

\backslash 

\newline 
V.~Riech
\backslash 

\backslash 

\newline 
P.~Robmann
\backslash 

\backslash 

\newline 
N.~Sahlmann
\backslash 

\backslash 

\newline 
P.~Schleper
\backslash 

\backslash 

\newline 
Sch
\backslash 
"{o}ning
\backslash 

\backslash 

\newline 
B.~Schwab
\backslash 

\backslash 

\newline 
A.~Semenov
\backslash 

\backslash 

\newline 
G.~Siegmon
\backslash 

\backslash 

\newline 
J.R.~Smith
\backslash 

\backslash 

\newline 
M.~Steenbock
\backslash 

\backslash 

\newline 
U.~Straumann
\backslash 

\backslash 

\newline 
C.~Thiebaux
\backslash 

\backslash 

\newline 
P.~Van~Esch
\backslash 

\backslash 

\newline 
from Yerevan Ph
\backslash 

\backslash 

\newline 
L.R.~West
\backslash 

\backslash 

\newline 
G.-G.~Winter
\backslash 

\backslash 

\newline 
T.P.~Yiou
\backslash 

\backslash 

\newline 
M.~Zimmer
\backslash 
end{multicols}
\layout Section*

Sponsoring Institutions
\layout Standard

Bernauer-Budiman Inc., Reading, Mass.
\newline 
 The Hofmann-International Company, San Louis Obispo, Cal.
\newline 
 Kramer Industries, Heidelberg, Germany 
\begin_inset LatexCommand \tableofcontents{}

\end_inset 


\latex latex 
%
\backslash 
mainmatter              
\layout Title

Hamiltonian Mechanics unter besonderer Ber\i \"{u}
cksichtigung der h\i \"{o}
hreren Lehranstalten
\layout Running LaTeX Title

Hamiltonian Mechanics
\layout Author

Ivar Ekeland
\latex latex 

\backslash 
inst{1} 
\backslash 
and 
\latex default 
Roger Temam
\latex latex 

\backslash 
inst{2}
\latex default 
 Jeffrey Dean 
\latex latex 

\backslash 
and 
\latex default 
David Grove 
\latex latex 

\backslash 
and 
\latex default 
Craig Chambers 
\latex latex 

\backslash 
and 
\latex default 
Kim
\protected_separator 
B.
\protected_separator 
Bruce 
\latex latex 

\backslash 
and
\newline 

\latex default 
Elsa Bertino
\layout Author Running

Ivar Ekeland et al.
\layout Standard


\latex latex 
%
\backslash 
tocauthor{Ivar Ekeland (Universit
\backslash 
'{e} de Paris-Sud),
\newline 
Jeffrey Dean, David Grove, Craig Chambers (Universit
\backslash 
`{a} di Geova),
\newline 
Kim B.
 Bruce (Stanford University),
\newline 
%Elisa Bertino (Digita Research Center)}
\layout Institute

Princeton University, Princeton NJ 08544, USA,
\newline 

\latex latex 
 
\backslash 
email{[EMAIL PROTECTED]}
\latex default 
,
\newline 
 WWW home page: 
\family typewriter 
http://users/
\latex latex 

\backslash 
homedir 
\latex default 
iekeland/web/welcome.html
\family default 
\latex latex 
 
\backslash 
and
\newline 

\latex default 
Universit\i \'{e}
 de Paris-Sud, Laboratoire d'Analyse Num\i \'{e}
rique, B\i \^{a}
timent 425,
\newline 
 F-91405 Orsay Cedex, France
\layout Abstract

The abstract should summarize the contents of the paper using at least 70
 and at most 150 words.
 It will be set in 9-point font size and be inset 1.0 cm from the right and
 left margins.
 There will be two blank lines before and after the Abstract.
 
\latex latex 

\backslash 
dots
\newline 

\layout Section

Fixed-Period Problems: The Sublinear Case
\layout Standard

With this chapter, the preliminaries are over, and we begin the search for
 periodic solutions to Hamiltonian systems.
 All this will be done in the convex case; that is, we shall study the boundary-
value problem 
\begin_inset Formula 
\begin{eqnarray*}
\dot{x} & = & JH'(t,x)\\
x(0) & = & x(T)
\end{eqnarray*}

\end_inset 

 with 
\begin_inset Formula \( H(t,\cdot ) \)
\end_inset 

 a convex function of 
\begin_inset Formula \( x \)
\end_inset 

, going to 
\begin_inset Formula \( +\infty  \)
\end_inset 

 when 
\begin_inset Formula \( \left\Vert x\right\Vert \rightarrow \infty  \)
\end_inset 

.
 
\layout Subsection

Autonomous Systems
\layout Standard

In this section, we will consider the case when the Hamiltonian 
\begin_inset Formula \( H(x) \)
\end_inset 

 is autonomous.
 For the sake of simplicity, we shall also assume that it is 
\begin_inset Formula \( C^{1} \)
\end_inset 

.
 
\layout Standard

We shall first consider the question of nontriviality, within the general
 framework of 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-subquadratic Hamiltonians.
 In the second subsection, we shall look into the special case when 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( 0,b_{\infty }\right)  \)
\end_inset 

-subquadratic, and we shall try to derive additional information.
 
\layout Subsubsection

The General Case: Nontriviality.
\layout Standard

We assume that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-sub\SpecialChar \-
qua\SpecialChar \-
dra\SpecialChar \-
tic at infinity, for some constant symmetric matrices 
\begin_inset Formula \( A_{\infty } \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty } \)
\end_inset 

, with 
\begin_inset Formula \( B_{\infty }-A_{\infty } \)
\end_inset 

 positive definite.
 Set: 
\begin_inset Formula 
\begin{eqnarray}
\gamma : & = & {\textrm{smallest}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, \, 
\, B_{\infty }-A_{\infty }\\
\lambda : & = & {\textrm{largest}\, \, \textrm{negative}\, \, \textrm{eigenvalue}\, \, 
\textrm{of}}\, \, J\frac{d}{dt}+A_{\infty }\, \, .
\end{eqnarray}

\end_inset 


\layout Standard

Theorem
\protected_separator 

\begin_inset LatexCommand \ref{ghou:pre}

\end_inset 

 tells us that if 
\begin_inset Formula \( \lambda +\gamma <0 \)
\end_inset 

, the boundary-value problem: 
\begin_inset Formula 
\begin{equation}
\begin{array}{rcl}
\dot{x} & = & JH'(x)\\
x(0) & = & x(T)
\end{array}
\end{equation}

\end_inset 

 has at least one solution 
\begin_inset Formula \( \overline{x} \)
\end_inset 

, which is found by minimizing the dual action functional: 
\begin_inset Formula 
\begin{equation}
\psi (u)=\int _{o}^{T}\left[ \frac{1}{2}\left( \Lambda _{o}^{-1}u,u\right) +N^{\ast 
}(-u)\right] dt
\end{equation}

\end_inset 

 on the range of 
\begin_inset Formula \( \Lambda  \)
\end_inset 

, which is a subspace 
\begin_inset Formula \( R(\Lambda )_{L}^{2} \)
\end_inset 

 with finite codimension.
 Here 
\begin_inset Formula 
\begin{equation}
N(x):=H(x)-\frac{1}{2}\left( A_{\infty }x,x\right) 
\end{equation}

\end_inset 

 is a convex function, and 
\begin_inset Formula 
\begin{equation}
N(x)\leq \frac{1}{2}\left( \left( B_{\infty }-A_{\infty }\right) x,x\right) +c\, \, \, 
\, \, \, \forall x\, \, .
\end{equation}

\end_inset 


\layout Proposition

Assume 
\begin_inset Formula \( H'(0)=0 \)
\end_inset 

 and 
\begin_inset Formula \( H(0)=0 \)
\end_inset 

.
 Set: 
\begin_inset Formula 
\begin{equation}
\label{eq:one}
\delta :=\liminf _{x\rightarrow 0}2N(x)\left\Vert x\right\Vert ^{-2}\, \, .
\end{equation}

\end_inset 


\layout Proposition

If 
\begin_inset Formula \( \gamma <-\lambda <\delta  \)
\end_inset 

, the solution 
\begin_inset Formula \( \overline{u} \)
\end_inset 

 is non-zero: 
\begin_inset Formula 
\begin{equation}
\overline{x}(t)\ne 0\, \, \, \, \, \, \forall t\, \, .
\end{equation}

\end_inset 


\layout Proof

Condition (
\begin_inset LatexCommand \ref{eq:one}

\end_inset 

) means that, for every 
\begin_inset Formula \( \delta '>\delta  \)
\end_inset 

, there is some 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

 such that 
\begin_inset Formula 
\begin{equation}
\left\Vert x\right\Vert \leq \varepsilon \Rightarrow N(x)\leq \frac{\delta 
'}{2}\left\Vert x\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\layout Proof

It is an exercise in convex analysis, into which we shall not go, to show
 that this implies that there is an 
\begin_inset Formula \( \eta >0 \)
\end_inset 

 such that 
\begin_inset Formula 
\begin{equation}
\label{eq:two}
f\left\Vert x\right\Vert \leq \eta \Rightarrow N^{\ast }(y)\leq \frac{1}{2\delta 
'}\left\Vert y\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\begin_float fig 
\layout Proof


\latex latex 

\backslash 
vspace{2.5cm}
\begin_deeper 
\layout Caption

This is the caption of the figure displaying a white eagle and a white horse
 on a snow field
\end_float 
\end_deeper 
\layout Proof

Since 
\begin_inset Formula \( u_{1} \)
\end_inset 

 is a smooth function, we will have 
\begin_inset Formula \( \left\Vert hu_{1}\right\Vert _{\infty }\leq \eta  \)
\end_inset 

 for 
\begin_inset Formula \( h \)
\end_inset 

 small enough, and inequality (
\begin_inset LatexCommand \ref{eq:two}

\end_inset 

) will hold, yielding thereby: 
\begin_inset Formula 
\begin{equation}
\psi (hu_{1})\leq \frac{h^{2}}{2}\frac{1}{\lambda }\left\Vert u_{1}\right\Vert 
_{2}^{2}+\frac{h^{2}}{2}\frac{1}{\delta '}\left\Vert u_{1}\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\layout Proof

If we choose 
\begin_inset Formula \( \delta ' \)
\end_inset 

 close enough to 
\begin_inset Formula \( \delta  \)
\end_inset 

, the quantity 
\begin_inset Formula \( \left( \frac{1}{\lambda }+\frac{1}{\delta '}\right)  \)
\end_inset 

 will be negative, and we end up with 
\begin_inset Formula 
\begin{equation}
\psi (hu_{1})<0\, \, \, \, \, \, \, \, \, \, {\textrm{for}}\, \, \, \, h\ne 0\, \, \, 
\, {\textrm{small}}\, \, .
\end{equation}

\end_inset 


\layout Proof

On the other hand, we check directly that 
\begin_inset Formula \( \psi (0)=0 \)
\end_inset 

.
 This shows that 0 cannot be a minimizer of 
\begin_inset Formula \( \psi  \)
\end_inset 

, not even a local one.
 So 
\begin_inset Formula \( \overline{u}\ne 0 \)
\end_inset 

 and 
\begin_inset Formula \( \overline{u}\ne \Lambda _{o}^{-1}(0)=0 \)
\end_inset 

.
 
\latex latex 

\backslash 
qed
\newline 

\layout Corollary

Assume 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

 and 
\begin_inset Formula \( \left( a_{\infty },b_{\infty }\right)  \)
\end_inset 

-subquadratic at infinity.
 Let 
\begin_inset Formula \( \xi _{1},\allowbreak \dots ,\allowbreak \xi _{N} \)
\end_inset 

 be the equilibria, that is, the solutions of 
\begin_inset Formula \( H'(\xi )=0 \)
\end_inset 

.
 Denote by 
\begin_inset Formula \( \omega _{k} \)
\end_inset 

 the smallest eigenvalue of 
\begin_inset Formula \( H''\left( \xi _{k}\right)  \)
\end_inset 

, and set: 
\begin_inset Formula 
\begin{equation}
\omega :={\textrm{Min}\, }\left\{ \omega _{1},\dots ,\omega _{k}\right\} \, \, .
\end{equation}

\end_inset 

 If: 
\begin_inset Formula 
\begin{equation}
\label{eq:three}
\frac{T}{2\pi }b_{\infty }<-E\left[ -\frac{T}{2\pi }a_{\infty }\right] <\frac{T}{2\pi 
}\omega 
\end{equation}

\end_inset 

 then minimization of 
\begin_inset Formula \( \psi  \)
\end_inset 

 yields a non-constant 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution 
\begin_inset Formula \( \overline{x} \)
\end_inset 

.
 
\layout Standard

We recall once more that by the integer part 
\begin_inset Formula \( E[\alpha ] \)
\end_inset 

 of 
\begin_inset Formula \( \alpha \in \bbbr  \)
\end_inset 

, we mean the 
\begin_inset Formula \( a\in \bbbz  \)
\end_inset 

 such that 
\begin_inset Formula \( a<\alpha \leq a+1 \)
\end_inset 

.
 For instance, if we take 
\begin_inset Formula \( a_{\infty }=0 \)
\end_inset 

, Corollary 2 tells us that 
\begin_inset Formula \( \overline{x} \)
\end_inset 

 exists and is non-constant provided that: 
\layout Standard


\begin_inset Formula 
\begin{equation}
\frac{T}{2\pi }b_{\infty }<1<\frac{T}{2\pi }
\end{equation}

\end_inset 

 or 
\begin_inset Formula 
\begin{equation}
\label{eq:four}
T\in \left( \frac{2\pi }{\omega },\frac{2\pi }{b_{\infty }}\right) \, \, .
\end{equation}

\end_inset 


\layout Proof

The spectrum of 
\begin_inset Formula \( \Lambda  \)
\end_inset 

 is 
\begin_inset Formula \( \frac{2\pi }{T}\bbbz +a_{\infty } \)
\end_inset 

.
 The largest negative eigenvalue 
\begin_inset Formula \( \lambda  \)
\end_inset 

 is given by 
\begin_inset Formula \( \frac{2\pi }{T}k_{o}+a_{\infty } \)
\end_inset 

, where 
\begin_inset Formula 
\begin{equation}
\frac{2\pi }{T}k_{o}+a_{\infty }<0\leq \frac{2\pi }{T}(k_{o}+1)+a_{\infty }\, \, .
\end{equation}

\end_inset 

 Hence: 
\begin_inset Formula 
\begin{equation}
k_{o}=E\left[ -\frac{T}{2\pi }a_{\infty }\right] \, \, .
\end{equation}

\end_inset 


\layout Proof

The condition 
\begin_inset Formula \( \gamma <-\lambda <\delta  \)
\end_inset 

 now becomes: 
\begin_inset Formula 
\begin{equation}
b_{\infty }-a_{\infty }<-\frac{2\pi }{T}k_{o}-a_{\infty }<\omega -a_{\infty }
\end{equation}

\end_inset 

 which is precisely condition (
\begin_inset LatexCommand \ref{eq:three}

\end_inset 

).
\latex latex 

\backslash 
qed
\newline 

\layout Lemma

Assume that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

 on 
\begin_inset Formula \( \bbbr ^{2n}\setminus \{0\} \)
\end_inset 

 and that 
\begin_inset Formula \( H''(x) \)
\end_inset 

 is non-de\SpecialChar \-
gen\SpecialChar \-
er\SpecialChar \-
ate for any 
\begin_inset Formula \( x\ne 0 \)
\end_inset 

.
 Then any local minimizer 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 of 
\begin_inset Formula \( \psi  \)
\end_inset 

 has minimal period 
\begin_inset Formula \( T \)
\end_inset 

.
 
\layout Proof

We know that 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

, or 
\begin_inset Formula \( \widetilde{x}+\xi  \)
\end_inset 

 for some constant 
\begin_inset Formula \( \xi \in \bbbr ^{2n} \)
\end_inset 

, is a 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution of the Hamiltonian system: 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(x)\, \, .
\end{equation}

\end_inset 


\layout Proof

There is no loss of generality in taking 
\begin_inset Formula \( \xi =0 \)
\end_inset 

.
 So 
\begin_inset Formula \( \psi (x)\geq \psi (\widetilde{x}) \)
\end_inset 

 for all 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 in some neighbourhood of 
\begin_inset Formula \( x \)
\end_inset 

 in 
\begin_inset Formula \( W^{1,2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right)  \)
\end_inset 

.
 
\layout Proof

But this index is precisely the index 
\begin_inset Formula \( i_{T}(\widetilde{x}) \)
\end_inset 

 of the 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 over the interval 
\begin_inset Formula \( (0,T) \)
\end_inset 

, as defined in Sect.
\protected_separator 
2.6.
 So 
\begin_inset Formula 
\begin{equation}
\label{eq:five}
i_{T}(\widetilde{x})=0\, \, .
\end{equation}

\end_inset 


\layout Proof

Now if 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 has a lower period, 
\begin_inset Formula \( T/k \)
\end_inset 

 say, we would have, by Corollary 31: 
\begin_inset Formula 
\begin{equation}
i_{T}(\widetilde{x})=i_{kT/k}(\widetilde{x})\geq ki_{T/k}(\widetilde{x})+k-1\geq 
k-1\geq 1\, \, .
\end{equation}

\end_inset 


\layout Proof

This would contradict (
\begin_inset LatexCommand \ref{eq:five}

\end_inset 

), and thus cannot happen.
\latex latex 

\backslash 
qed
\newline 

\layout Paragraph

Notes and Comments.
\layout Standard

The results in this section are a refined version of 
\begin_inset LatexCommand \cite{clar:eke}

\end_inset 

; the minimality result of Proposition 14 was the first of its kind.
 
\layout Standard

To understand the nontriviality conditions, such as the one in formula (
\begin_inset LatexCommand \ref{eq:four}

\end_inset 

), one may think of a one-parameter family 
\begin_inset Formula \( x_{T} \)
\end_inset 

, 
\begin_inset Formula \( T\in \left( 2\pi \omega ^{-1},2\pi b_{\infty }^{-1}\right)  \)
\end_inset 

 of periodic solutions, 
\begin_inset Formula \( x_{T}(0)=x_{T}(T) \)
\end_inset 

, with 
\begin_inset Formula \( x_{T} \)
\end_inset 

 going away to infinity when 
\begin_inset Formula \( T\rightarrow 2\pi \omega ^{-1} \)
\end_inset 

, which is the period of the linearized system at 0.
 
\begin_float tab 
\layout Caption

This is the example table taken out of 
\shape italic 
The TeXbook,
\shape default 
 p.
\latex latex 

\backslash 
,
\latex default 
246
\layout Standard
\align center \LyXTable
multicol5
6 3 0 0 0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
8 0 0 "" "r@{\quad}"
4 0 0 "" ""
2 0 0 "" ""
1 2 1 1 0 0 0 "" ""
1 2 1 1 0 0 0 "" ""
2 2 1 1 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 1 0 0 0 "" ""
0 4 0 1 0 0 0 "" ""
0 2 0 1 0 0 0 "" ""


\latex latex 

\backslash 
rule{0pt}{12pt}
\latex default 
 Year
\newline 
World population
\newline 

\latex latex 

\backslash 
rule{0pt}{12pt}
\latex default 
 8000 B.C.
 
\newline 
 5,000,000
\newline 

\newline 
 50 A.D.
 
\newline 
 200,000,000
\newline 

\newline 
 1650 A.D.
 
\newline 
 500,000,000
\newline 

\newline 
 1945 A.D.
 
\newline 
 2,300,000,000
\newline 

\newline 
 1980 A.D.
 
\newline 
 4,400,000,000
\newline 
 
\end_float 
\layout Theorem

[Ghoussoub-Preiss]
\begin_inset LatexCommand \label{ghou:pre}

\end_inset 

 Assume 
\begin_inset Formula \( H(t,x) \)
\end_inset 

 is 
\begin_inset Formula \( (0,\varepsilon ) \)
\end_inset 

-subquadratic at infinity for all 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

, and 
\begin_inset Formula \( T \)
\end_inset 

-periodic in 
\begin_inset Formula \( t \)
\end_inset 


\begin_inset Formula 
\begin{equation}
H(t,\cdot )\, \, \, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}}\, \, \, \, 
\forall t
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
H(\cdot ,x)\, \, \, \, \, \, \, \, \, \, {\textrm{is}}\, \, \, \, 
T{-\textrm{periodic}}\, \, \, \, \forall x
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
H(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, 
{\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow \infty \, \, \, \, {\textrm{as}}\, \, 
\, \, s\rightarrow \infty 
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\forall \varepsilon >0\, \, ,\, \, \, \, \, \, \exists c\, \, :H(t,x)\leq 
\frac{\varepsilon }{2}\left\Vert x\right\Vert ^{2}+c\, \, .
\end{equation}

\end_inset 


\layout Theorem

Assume also that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

, and 
\begin_inset Formula \( H''(t,x) \)
\end_inset 

 is positive definite everywhere.
 Then there is a sequence 
\begin_inset Formula \( x_{k} \)
\end_inset 

, 
\begin_inset Formula \( k\in \bbbn  \)
\end_inset 

, of 
\begin_inset Formula \( kT \)
\end_inset 

-periodic solutions of the system 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(t,x)
\end{equation}

\end_inset 

 such that, for every 
\begin_inset Formula \( k\in \bbbn  \)
\end_inset 

, there is some 
\begin_inset Formula \( p_{o}\in \bbbn  \)
\end_inset 

 with: 
\begin_inset Formula 
\begin{equation}
p\geq p_{o}\Rightarrow x_{pk}\ne x_{k}\, \, .
\end{equation}

\end_inset 


\latex latex 
 
\backslash 
qed
\newline 

\layout Example

[
\family roman 
External forcing
\family default 
] Consider the system: 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(x)+f(t)
\end{equation}

\end_inset 

 where the Hamiltonian 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( 0,b_{\infty }\right)  \)
\end_inset 

-subquadratic, and the forcing term is a distribution on the circle: 
\begin_inset Formula 
\begin{equation}
f=\frac{d}{dt}F+f_{o}\, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, F\in 
L^{2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \, \, ,
\end{equation}

\end_inset 

 where 
\begin_inset Formula \( f_{o}:=T^{-1}\int _{o}^{T}f(t)dt \)
\end_inset 

.
 For instance, 
\begin_inset Formula 
\begin{equation}
f(t)=\sum _{k\in \bbbn }\delta _{k}\xi \, \, ,
\end{equation}

\end_inset 

 where 
\begin_inset Formula \( \delta _{k} \)
\end_inset 

 is the Dirac mass at 
\begin_inset Formula \( t=k \)
\end_inset 

 and 
\begin_inset Formula \( \xi \in \bbbr ^{2n} \)
\end_inset 

 is a constant, fits the prescription.
 This means that the system 
\begin_inset Formula \( \dot{x}=JH'(x) \)
\end_inset 

 is being excited by a series of identical shocks at interval 
\begin_inset Formula \( T \)
\end_inset 

.
 
\layout Definition

Let 
\begin_inset Formula \( A_{\infty }(t) \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty }(t) \)
\end_inset 

 be symmetric operators in 
\begin_inset Formula \( \bbbr ^{2n} \)
\end_inset 

, depending continuously on 
\begin_inset Formula \( t\in [0,T] \)
\end_inset 

, such that 
\begin_inset Formula \( A_{\infty }(t)\leq B_{\infty }(t) \)
\end_inset 

 for all 
\begin_inset Formula \( t \)
\end_inset 

.
 
\layout Definition

A Borelian function 
\begin_inset Formula \( H:[0,T]\times \bbbr ^{2n}\rightarrow \bbbr  \)
\end_inset 

 is called 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-
\shape italic 
subquadratic at infinity
\shape default 
 if there exists a function 
\begin_inset Formula \( N(t,x) \)
\end_inset 

 such that: 
\begin_inset Formula 
\begin{equation}
H(t,x)=\frac{1}{2}\left( A_{\infty }(t)x,x\right) +N(t,x)
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\forall t\, \, ,\, \, \, \, \, \, N(t,x)\, \, \, \, \, \, \, \, {\textrm{is}\, \, 
\textrm{convex}\, \, \textrm{with}\, \, \textrm{ respect}\, \, \textrm{ to}}\, \, \, 
\, x
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
N(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, 
{\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow +\infty \, \, \, \, {\textrm{as}}\, 
\, \, \, s\rightarrow +\infty 
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\exists c\in \bbbr \, \, :\, \, \, \, \, \, H(t,x)\leq \frac{1}{2}\left( B_{\infty 
}(t)x,x\right) +c\, \, \, \, \, \, \forall x\, \, .
\end{equation}

\end_inset 


\layout Definition

If 
\begin_inset Formula \( A_{\infty }(t)=a_{\infty }I \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty }(t)=b_{\infty }I \)
\end_inset 

, with 
\begin_inset Formula \( a_{\infty }\leq b_{\infty }\in \bbbr  \)
\end_inset 

, we shall say that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( a_{\infty },b_{\infty }\right)  \)
\end_inset 

-subquadratic at infinity.
 As an example, the function 
\begin_inset Formula \( \left\Vert x\right\Vert ^{\alpha } \)
\end_inset 

, with 
\begin_inset Formula \( 1\leq \alpha <2 \)
\end_inset 

, is 
\begin_inset Formula \( (0,\varepsilon ) \)
\end_inset 

-subquadratic at infinity for every 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

.
 Similarly, the Hamiltonian 
\begin_inset Formula 
\begin{equation}
H(t,x)=\frac{1}{2}k\left\Vert k\right\Vert ^{2}+\left\Vert x\right\Vert ^{\alpha }
\end{equation}

\end_inset 

 is 
\begin_inset Formula \( (k,k+\varepsilon ) \)
\end_inset 

-subquadratic for every 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

.
 Note that, if 
\begin_inset Formula \( k<0 \)
\end_inset 

, it is not convex.
 
\layout Paragraph

Notes and Comments.
\layout Standard

The first results on subharmonics were obtained by Rabinowitz in 
\begin_inset LatexCommand \cite{rab}

\end_inset 

, who showed the existence of infinitely many subharmonics both in the subquadra
tic and superquadratic case, with suitable growth conditions on 
\begin_inset Formula \( H' \)
\end_inset 

.
 Again the duality approach enabled Clarke and Ekeland in 
\begin_inset LatexCommand \cite{clar:eke:2}

\end_inset 

 to treat the same problem in the convex-subquadratic case, with growth
 conditions on 
\begin_inset Formula \( H \)
\end_inset 

 only.
 
\layout Standard

Recently, Michalek and Tarantello (see 
\begin_inset LatexCommand \cite{mich:tar}

\end_inset 

 and 
\begin_inset LatexCommand \cite{tar}

\end_inset 

) have obtained lower bound on the number of subharmonics of period 
\begin_inset Formula \( kT \)
\end_inset 

, based on symmetry considerations and on pinching estimates, as in Sect.
\protected_separator 
5.2 of this article.
 
\layout Standard


\latex latex 

\backslash 
begin{thebibliography}{5}
\newline 

\backslash 
bibitem {clar:eke}
\newline 
Clarke, F., Ekeland, I.:
\newline 
Nonlinear oscillations and
\newline 
boundary-value problems for Hamiltonian systems.
\newline 
Arch.
 Rat.
 Mech.
 Anal.
 {
\backslash 
textbf{78}} (1982) 315--333
\newline 

\newline 

\backslash 
bibitem {clar:eke:2}
\newline 
Clarke, F., Ekeland, I.:
\newline 
Solutions p
\backslash 
'{e}riodiques, du
\newline 
p
\backslash 
'{e}riode donn
\backslash 
'{e}e, des 
\backslash 
'{e}quations hamiltoniennes.
\newline 
Note CRAS Paris {
\backslash 
textbf{287}} (1978) 1013--1015
\newline 

\newline 

\backslash 
bibitem {mich:tar}
\newline 
Michalek, R., Tarantello, G.:
\newline 
Subharmonic solutions with prescribed minimal
\newline 
period for nonautonomous Hamiltonian systems.
\newline 
J.
 Diff.
 Eq.
 {
\backslash 
textbf{72}} (1988) 28--55
\newline 

\newline 

\backslash 
bibitem {tar}
\newline 
Tarantello, G.:
\newline 
Subharmonic solutions for Hamiltonian
\newline 
systems via a 
\backslash 
(
\backslash 
bbbz_{p}
\backslash 
) pseudoindex theory.
\newline 
Annali di Matematica Pura (to appear)
\newline 

\newline 

\backslash 
bibitem {rab}
\newline 
Rabinowitz, P.:
\newline 
On subharmonic solutions of a Hamiltonian system.
\newline 
Comm.
 Pure Appl.
 Math.
 {
\backslash 
textbf{33}} (1980) 609--633
\newline 

\newline 

\backslash 
end{thebibliography}
\layout Title

Hamiltonian Mechanics2
\layout Author

Ivar Ekeland
\latex latex 

\backslash 
inst{1} 
\backslash 
and 
\latex default 
Roger Temam
\latex latex 

\backslash 
inst{2}
\layout Institute

Princeton University, Princeton NJ 08544, USA 
\latex latex 

\backslash 
and
\newline 

\latex default 
Universit\i \'{e}
 de Paris-Sud, Laboratoire d'Analyse Num\i \'{e}
rique, B\i \^{a}
timent 425,
\newline 
 F-91405 Orsay Cedex, France
\layout Standard


\latex latex 

\backslash 
makeatletter
\newline 

\backslash 
renewenvironment{thebibliography}[1]{
\newline 
     
\backslash 
section*{
\backslash 
refname
\newline 
      
\backslash 
small
\newline 
      
\backslash 
list{}{
\backslash 
settowidth{
\backslash 
labelwidth}{}
\backslash 
leftmargin
\backslash 
parindent
\newline 
            
\backslash 
itemindent=-
\backslash 
parindent
\newline 
            
\backslash 
labelsep=
\backslash 
z@
\newline 
            
\backslash 
if@openbib
\newline 
              
\backslash 
advance
\backslash 
leftmargin
\backslash 
bibindent
\newline 
              
\backslash 
itemindent -
\backslash 
bibindent
\newline 
              
\backslash 
listparindent 
\backslash 
itemindent
\newline 
              
\backslash 
parsep 
\backslash 
z@
\newline 
            
\backslash 
fi
\newline 
            
\backslash 
usecounter{enumiv}
\backslash 
let
\backslash 
p@enumiv
\backslash 
@empty
\newline 
            
\backslash 
renewcommand{
\backslash 
theenumiv}{}}
\backslash 
if@openbib
\newline 
        
\backslash 
renewcommand{
\backslash 
newblock}{
\backslash 
par}
\backslash 
else
\newline 
        
\backslash 
renewcommand{
\backslash 
newblock}{
\backslash 
hskip .11em 
\backslash 
@plus.33em 
\backslash 
@minus.07em}
\backslash 
fi
\newline 
      
\backslash 
sloppy
\backslash 
clubpenalty4000
\backslash 
widowpenalty4000
\backslash 
sfcode`
\backslash 
.{=}
\backslash 
@m}}{
\newline 
     {
\backslash 
def
\backslash 
@noitemerr
\newline 
       
\backslash 
@latex@warning{Empty `thebibliography' environment}}
\backslash 
endlist} 
\backslash 
def
\latex default 
cite#1#1
\latex latex 

\backslash 
def
\latex default 
lbibitem[#1]#2
\layout Standard


\latex latex 

\backslash 
if
\latex default 
@filesw 
\latex latex 

\backslash 
def
\backslash 
protect
\latex default 
##1
\latex latex 

\backslash 
string 
\latex default 
##1
\latex latex 

\backslash 
space{}
\backslash 
immediate
\newline 
      
\backslash 
write
\latex default 
auxout
\latex latex 

\backslash 
string
\backslash 
bibcite{#2}{#1}
\backslash 
fi
\backslash 
ignorespaces{} 
\backslash 
makeatother
\newline 

\layout Abstract

The abstract should summarize the contents of the paper using at least 70
 and at most 150 words.
 It will be set in 9-point font size and be inset 1.0 cm from the right and
 left margins.
 There will be two blank lines before and after the Abstract.
 
\latex latex 

\backslash 
dots
\newline 

\layout Section

Fixed-Period Problems: The Sublinear Case
\layout Standard

With this chapter, the preliminaries are over, and we begin the search for
 periodic solutions to Hamiltonian systems.
 All this will be done in the convex case; that is, we shall study the boundary-
value problem 
\begin_inset Formula 
\begin{eqnarray*}
\dot{x} & = & JH'(t,x)\\
x(0) & = & x(T)
\end{eqnarray*}

\end_inset 

 with 
\begin_inset Formula \( H(t,\cdot ) \)
\end_inset 

 a convex function of 
\begin_inset Formula \( x \)
\end_inset 

, going to 
\begin_inset Formula \( +\infty  \)
\end_inset 

 when 
\begin_inset Formula \( \left\Vert x\right\Vert \rightarrow \infty  \)
\end_inset 

.
 
\layout Subsection

Autonomous Systems
\layout Standard

In this section, we will consider the case when the Hamiltonian 
\begin_inset Formula \( H(x) \)
\end_inset 

 is autonomous.
 For the sake of simplicity, we shall also assume that it is 
\begin_inset Formula \( C^{1} \)
\end_inset 

.
 
\layout Standard

We shall first consider the question of nontriviality, within the general
 framework of 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-subquadratic Hamiltonians.
 In the second subsection, we shall look into the special case when 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( 0,b_{\infty }\right)  \)
\end_inset 

-subquadratic, and we shall try to derive additional information.
 
\layout Subsubsection

The General Case: Nontriviality.
\layout Standard

We assume that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-sub\SpecialChar \-
qua\SpecialChar \-
dra\SpecialChar \-
tic at infinity, for some constant symmetric matrices 
\begin_inset Formula \( A_{\infty } \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty } \)
\end_inset 

, with 
\begin_inset Formula \( B_{\infty }-A_{\infty } \)
\end_inset 

 positive definite.
 Set: 
\begin_inset Formula 
\begin{eqnarray}
\gamma : & = & {\textrm{smallest}\, \, \textrm{eigenvalue}\, \, \textrm{of}}\, \, \, 
\, B_{\infty }-A_{\infty }\\
\lambda : & = & {\textrm{largest}\, \, \textrm{negative}\, \, \textrm{eigenvalue}\, \, 
\textrm{of}}\, \, J\frac{d}{dt}+A_{\infty }\, \, .
\end{eqnarray}

\end_inset 


\layout Standard

Theorem 21 tells us that if 
\begin_inset Formula \( \lambda +\gamma <0 \)
\end_inset 

, the boundary-value problem: 
\begin_inset Formula 
\begin{equation}
\begin{array}{rcl}
\dot{x} & = & JH'(x)\\
x(0) & = & x(T)
\end{array}
\end{equation}

\end_inset 

 has at least one solution 
\begin_inset Formula \( \overline{x} \)
\end_inset 

, which is found by minimizing the dual action functional: 
\begin_inset Formula 
\begin{equation}
\psi (u)=\int _{o}^{T}\left[ \frac{1}{2}\left( \Lambda _{o}^{-1}u,u\right) +N^{\ast 
}(-u)\right] dt
\end{equation}

\end_inset 

 on the range of 
\begin_inset Formula \( \Lambda  \)
\end_inset 

, which is a subspace 
\begin_inset Formula \( R(\Lambda )_{L}^{2} \)
\end_inset 

 with finite codimension.
 Here 
\begin_inset Formula 
\begin{equation}
N(x):=H(x)-\frac{1}{2}\left( A_{\infty }x,x\right) 
\end{equation}

\end_inset 

 is a convex function, and 
\begin_inset Formula 
\begin{equation}
N(x)\leq \frac{1}{2}\left( \left( B_{\infty }-A_{\infty }\right) x,x\right) +c\, \, \, 
\, \, \, \forall x\, \, .
\end{equation}

\end_inset 


\layout Proposition

Assume 
\begin_inset Formula \( H'(0)=0 \)
\end_inset 

 and 
\begin_inset Formula \( H(0)=0 \)
\end_inset 

.
 Set: 
\begin_inset Formula 
\begin{equation}
\label{2eq:one}
\delta :=\liminf _{x\rightarrow 0}2N(x)\left\Vert x\right\Vert ^{-2}\, \, .
\end{equation}

\end_inset 


\layout Proposition

If 
\begin_inset Formula \( \gamma <-\lambda <\delta  \)
\end_inset 

, the solution 
\begin_inset Formula \( \overline{u} \)
\end_inset 

 is non-zero: 
\begin_inset Formula 
\begin{equation}
\overline{x}(t)\ne 0\, \, \, \, \, \, \forall t\, \, .
\end{equation}

\end_inset 


\layout Proof

Condition (
\begin_inset LatexCommand \ref{2eq:one}

\end_inset 

) means that, for every 
\begin_inset Formula \( \delta '>\delta  \)
\end_inset 

, there is some 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

 such that 
\begin_inset Formula 
\begin{equation}
\left\Vert x\right\Vert \leq \varepsilon \Rightarrow N(x)\leq \frac{\delta 
'}{2}\left\Vert x\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\layout Proof

It is an exercise in convex analysis, into which we shall not go, to show
 that this implies that there is an 
\begin_inset Formula \( \eta >0 \)
\end_inset 

 such that 
\begin_inset Formula 
\begin{equation}
\label{2eq:two}
f\left\Vert x\right\Vert \leq \eta \Rightarrow N^{\ast }(y)\leq \frac{1}{2\delta 
'}\left\Vert y\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\begin_float fig 
\layout Proof


\latex latex 

\backslash 
vspace{2.5cm}
\layout Caption

This is the caption of the figure displaying a white eagle and a white horse
 on a snow field
\end_float 
\layout Proof

Since 
\begin_inset Formula \( u_{1} \)
\end_inset 

 is a smooth function, we will have 
\begin_inset Formula \( \left\Vert hu_{1}\right\Vert _{\infty }\leq \eta  \)
\end_inset 

 for 
\begin_inset Formula \( h \)
\end_inset 

 small enough, and inequality (
\begin_inset LatexCommand \ref{2eq:two}

\end_inset 

) will hold, yielding thereby: 
\begin_inset Formula 
\begin{equation}
\psi (hu_{1})\leq \frac{h^{2}}{2}\frac{1}{\lambda }\left\Vert u_{1}\right\Vert 
_{2}^{2}+\frac{h^{2}}{2}\frac{1}{\delta '}\left\Vert u_{1}\right\Vert ^{2}\, \, .
\end{equation}

\end_inset 


\layout Proof

If we choose 
\begin_inset Formula \( \delta ' \)
\end_inset 

 close enough to 
\begin_inset Formula \( \delta  \)
\end_inset 

, the quantity 
\begin_inset Formula \( \left( \frac{1}{\lambda }+\frac{1}{\delta '}\right)  \)
\end_inset 

 will be negative, and we end up with 
\begin_inset Formula 
\begin{equation}
\psi (hu_{1})<0\, \, \, \, \, \, \, \, \, \, {\textrm{for}}\, \, \, \, h\ne 0\, \, \, 
\, {\textrm{small}}\, \, .
\end{equation}

\end_inset 


\layout Proof

On the other hand, we check directly that 
\begin_inset Formula \( \psi (0)=0 \)
\end_inset 

.
 This shows that 0 cannot be a minimizer of 
\begin_inset Formula \( \psi  \)
\end_inset 

, not even a local one.
 So 
\begin_inset Formula \( \overline{u}\ne 0 \)
\end_inset 

 and 
\begin_inset Formula \( \overline{u}\ne \Lambda _{o}^{-1}(0)=0 \)
\end_inset 

.
 
\latex latex 

\backslash 
qed
\newline 

\layout Corollary

Assume 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

 and 
\begin_inset Formula \( \left( a_{\infty },b_{\infty }\right)  \)
\end_inset 

-subquadratic at infinity.
 Let 
\begin_inset Formula \( \xi _{1},\allowbreak \dots ,\allowbreak \xi _{N} \)
\end_inset 

 be the equilibria, that is, the solutions of 
\begin_inset Formula \( H'(\xi )=0 \)
\end_inset 

.
 Denote by 
\begin_inset Formula \( \omega _{k} \)
\end_inset 

 the smallest eigenvalue of 
\begin_inset Formula \( H''\left( \xi _{k}\right)  \)
\end_inset 

, and set: 
\begin_inset Formula 
\begin{equation}
\omega :={\textrm{Min}\, }\left\{ \omega _{1},\dots ,\omega _{k}\right\} \, \, .
\end{equation}

\end_inset 

 If: 
\begin_inset Formula 
\begin{equation}
\label{2eq:three}
\frac{T}{2\pi }b_{\infty }<-E\left[ -\frac{T}{2\pi }a_{\infty }\right] <\frac{T}{2\pi 
}\omega 
\end{equation}

\end_inset 

 then minimization of 
\begin_inset Formula \( \psi  \)
\end_inset 

 yields a non-constant 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution 
\begin_inset Formula \( \overline{x} \)
\end_inset 

.
 
\layout Standard

We recall once more that by the integer part 
\begin_inset Formula \( E[\alpha ] \)
\end_inset 

 of 
\begin_inset Formula \( \alpha \in \bbbr  \)
\end_inset 

, we mean the 
\begin_inset Formula \( a\in \bbbz  \)
\end_inset 

 such that 
\begin_inset Formula \( a<\alpha \leq a+1 \)
\end_inset 

.
 For instance, if we take 
\begin_inset Formula \( a_{\infty }=0 \)
\end_inset 

, Corollary 2 tells us that 
\begin_inset Formula \( \overline{x} \)
\end_inset 

 exists and is non-constant provided that: 
\layout Standard


\begin_inset Formula 
\begin{equation}
\frac{T}{2\pi }b_{\infty }<1<\frac{T}{2\pi }
\end{equation}

\end_inset 

 or 
\begin_inset Formula 
\begin{equation}
\label{2eq:four}
T\in \left( \frac{2\pi }{\omega },\frac{2\pi }{b_{\infty }}\right) \, \, .
\end{equation}

\end_inset 


\layout Proof

The spectrum of 
\begin_inset Formula \( \Lambda  \)
\end_inset 

 is 
\begin_inset Formula \( \frac{2\pi }{T}\bbbz +a_{\infty } \)
\end_inset 

.
 The largest negative eigenvalue 
\begin_inset Formula \( \lambda  \)
\end_inset 

 is given by 
\begin_inset Formula \( \frac{2\pi }{T}k_{o}+a_{\infty } \)
\end_inset 

, where 
\begin_inset Formula 
\begin{equation}
\frac{2\pi }{T}k_{o}+a_{\infty }<0\leq \frac{2\pi }{T}(k_{o}+1)+a_{\infty }\, \, .
\end{equation}

\end_inset 

 Hence: 
\begin_inset Formula 
\begin{equation}
k_{o}=E\left[ -\frac{T}{2\pi }a_{\infty }\right] \, \, .
\end{equation}

\end_inset 


\layout Proof

The condition 
\begin_inset Formula \( \gamma <-\lambda <\delta  \)
\end_inset 

 now becomes: 
\begin_inset Formula 
\begin{equation}
b_{\infty }-a_{\infty }<-\frac{2\pi }{T}k_{o}-a_{\infty }<\omega -a_{\infty }
\end{equation}

\end_inset 

 which is precisely condition (
\begin_inset LatexCommand \ref{2eq:three}

\end_inset 

).
\latex latex 

\backslash 
qed
\newline 

\layout Lemma

Assume that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

 on 
\begin_inset Formula \( \bbbr ^{2n}\setminus \{0\} \)
\end_inset 

 and that 
\begin_inset Formula \( H''(x) \)
\end_inset 

 is non-de\SpecialChar \-
gen\SpecialChar \-
er\SpecialChar \-
ate for any 
\begin_inset Formula \( x\ne 0 \)
\end_inset 

.
 Then any local minimizer 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 of 
\begin_inset Formula \( \psi  \)
\end_inset 

 has minimal period 
\begin_inset Formula \( T \)
\end_inset 

.
 
\layout Proof

We know that 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

, or 
\begin_inset Formula \( \widetilde{x}+\xi  \)
\end_inset 

 for some constant 
\begin_inset Formula \( \xi \in \bbbr ^{2n} \)
\end_inset 

, is a 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution of the Hamiltonian system: 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(x)\, \, .
\end{equation}

\end_inset 


\layout Proof

There is no loss of generality in taking 
\begin_inset Formula \( \xi =0 \)
\end_inset 

.
 So 
\begin_inset Formula \( \psi (x)\geq \psi (\widetilde{x}) \)
\end_inset 

 for all 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 in some neighbourhood of 
\begin_inset Formula \( x \)
\end_inset 

 in 
\begin_inset Formula \( W^{1,2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right)  \)
\end_inset 

.
 
\layout Proof

But this index is precisely the index 
\begin_inset Formula \( i_{T}(\widetilde{x}) \)
\end_inset 

 of the 
\begin_inset Formula \( T \)
\end_inset 

-periodic solution 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 over the interval 
\begin_inset Formula \( (0,T) \)
\end_inset 

, as defined in Sect.
\protected_separator 
2.6.
 So 
\begin_inset Formula 
\begin{equation}
\label{2eq:five}
i_{T}(\widetilde{x})=0\, \, .
\end{equation}

\end_inset 


\layout Proof

Now if 
\begin_inset Formula \( \widetilde{x} \)
\end_inset 

 has a lower period, 
\begin_inset Formula \( T/k \)
\end_inset 

 say, we would have, by Corollary 31: 
\begin_inset Formula 
\begin{equation}
i_{T}(\widetilde{x})=i_{kT/k}(\widetilde{x})\geq ki_{T/k}(\widetilde{x})+k-1\geq 
k-1\geq 1\, \, .
\end{equation}

\end_inset 


\layout Proof

This would contradict (
\begin_inset LatexCommand \ref{2eq:five}

\end_inset 

), and thus cannot happen.
\latex latex 

\backslash 
qed
\newline 

\layout Paragraph

Notes and Comments.
\layout Standard

The results in this section are a refined version of 
\begin_inset LatexCommand \cite{2clar:eke}

\end_inset 

; the minimality result of Proposition 14 was the first of its kind.
 
\layout Standard

To understand the nontriviality conditions, such as the one in formula (
\begin_inset LatexCommand \ref{2eq:four}

\end_inset 

), one may think of a one-parameter family 
\begin_inset Formula \( x_{T} \)
\end_inset 

, 
\begin_inset Formula \( T\in \left( 2\pi \omega ^{-1},2\pi b_{\infty }^{-1}\right)  \)
\end_inset 

 of periodic solutions, 
\begin_inset Formula \( x_{T}(0)=x_{T}(T) \)
\end_inset 

, with 
\begin_inset Formula \( x_{T} \)
\end_inset 

 going away to infinity when 
\begin_inset Formula \( T\rightarrow 2\pi \omega ^{-1} \)
\end_inset 

, which is the period of the linearized system at 0.
 
\begin_float tab 
\layout Caption

This is the example table taken out of 
\shape italic 
The TeXbook,
\shape default 
 p.
\latex latex 

\backslash 
,
\latex default 
246
\layout Standard
\align center \LyXTable
multicol5
6 3 0 0 0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
8 0 0 "" "r@{\quad}"
4 0 0 "" ""
2 0 0 "" ""
1 2 1 1 0 0 0 "" ""
1 2 1 1 0 0 0 "" ""
2 2 1 1 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 0 0 0 0 "" ""
0 4 0 0 0 0 0 "" ""
0 2 0 0 0 0 0 "" ""
0 8 0 1 0 0 0 "" ""
0 4 0 1 0 0 0 "" ""
0 2 0 1 0 0 0 "" ""


\latex latex 

\backslash 
rule{0pt}{12pt}
\latex default 
 Year
\newline 
World population
\newline 

\latex latex 

\backslash 
rule{0pt}{12pt}
\latex default 
 8000 B.C.
 
\newline 
 5,000,000
\newline 

\newline 
 50 A.D.
 
\newline 
 200,000,000
\newline 

\newline 
 1650 A.D.
 
\newline 
 500,000,000
\newline 

\newline 
 1945 A.D.
 
\newline 
 2,300,000,000
\newline 

\newline 
 1980 A.D.
 
\newline 
 4,400,000,000
\newline 
 
\end_float 
\layout Theorem

[Ghoussoub-Preiss] Assume 
\begin_inset Formula \( H(t,x) \)
\end_inset 

 is 
\begin_inset Formula \( (0,\varepsilon ) \)
\end_inset 

-subquadratic at infinity for all 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

, and 
\begin_inset Formula \( T \)
\end_inset 

-periodic in 
\begin_inset Formula \( t \)
\end_inset 


\begin_inset Formula 
\begin{equation}
H(t,\cdot )\, \, \, \, \, \, \, \, \, \, {\textrm{is}\, \, \textrm{convex}}\, \, \, \, 
\forall t
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
H(\cdot ,x)\, \, \, \, \, \, \, \, \, \, {\textrm{is}}\, \, \, \, 
T{-\textrm{periodic}}\, \, \, \, \forall x
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
H(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, 
{\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow \infty \, \, \, \, {\textrm{as}}\, \, 
\, \, s\rightarrow \infty 
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\forall \varepsilon >0\, \, ,\, \, \, \, \, \, \exists c\, \, :H(t,x)\leq 
\frac{\varepsilon }{2}\left\Vert x\right\Vert ^{2}+c\, \, .
\end{equation}

\end_inset 


\layout Theorem

Assume also that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( C^{2} \)
\end_inset 

, and 
\begin_inset Formula \( H''(t,x) \)
\end_inset 

 is positive definite everywhere.
 Then there is a sequence 
\begin_inset Formula \( x_{k} \)
\end_inset 

, 
\begin_inset Formula \( k\in \bbbn  \)
\end_inset 

, of 
\begin_inset Formula \( kT \)
\end_inset 

-periodic solutions of the system 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(t,x)
\end{equation}

\end_inset 

 such that, for every 
\begin_inset Formula \( k\in \bbbn  \)
\end_inset 

, there is some 
\begin_inset Formula \( p_{o}\in \bbbn  \)
\end_inset 

 with: 
\begin_inset Formula 
\begin{equation}
p\geq p_{o}\Rightarrow x_{pk}\ne x_{k}\, \, .
\end{equation}

\end_inset 


\latex latex 
 
\backslash 
qed
\newline 

\layout Example

[
\family roman 
External forcing
\family default 
] Consider the system: 
\begin_inset Formula 
\begin{equation}
\dot{x}=JH'(x)+f(t)
\end{equation}

\end_inset 

 where the Hamiltonian 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( 0,b_{\infty }\right)  \)
\end_inset 

-subquadratic, and the forcing term is a distribution on the circle: 
\begin_inset Formula 
\begin{equation}
f=\frac{d}{dt}F+f_{o}\, \, \, \, \, \, \, \, {\textrm{with}}\, \, \, \, F\in 
L^{2}\left( \bbbr /T\bbbz ;\bbbr ^{2n}\right) \, \, ,
\end{equation}

\end_inset 

 where 
\begin_inset Formula \( f_{o}:=T^{-1}\int _{o}^{T}f(t)dt \)
\end_inset 

.
 For instance, 
\begin_inset Formula 
\begin{equation}
f(t)=\sum _{k\in \bbbn }\delta _{k}\xi \, \, ,
\end{equation}

\end_inset 

 where 
\begin_inset Formula \( \delta _{k} \)
\end_inset 

 is the Dirac mass at 
\begin_inset Formula \( t=k \)
\end_inset 

 and 
\begin_inset Formula \( \xi \in \bbbr ^{2n} \)
\end_inset 

 is a constant, fits the prescription.
 This means that the system 
\begin_inset Formula \( \dot{x}=JH'(x) \)
\end_inset 

 is being excited by a series of identical shocks at interval 
\begin_inset Formula \( T \)
\end_inset 

.
 
\layout Definition

Let 
\begin_inset Formula \( A_{\infty }(t) \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty }(t) \)
\end_inset 

 be symmetric operators in 
\begin_inset Formula \( \bbbr ^{2n} \)
\end_inset 

, depending continuously on 
\begin_inset Formula \( t\in [0,T] \)
\end_inset 

, such that 
\begin_inset Formula \( A_{\infty }(t)\leq B_{\infty }(t) \)
\end_inset 

 for all 
\begin_inset Formula \( t \)
\end_inset 

.
 
\layout Definition

A Borelian function 
\begin_inset Formula \( H:[0,T]\times \bbbr ^{2n}\rightarrow \bbbr  \)
\end_inset 

 is called 
\begin_inset Formula \( \left( A_{\infty },B_{\infty }\right)  \)
\end_inset 

-
\shape italic 
subquadratic at infinity
\shape default 
 if there exists a function 
\begin_inset Formula \( N(t,x) \)
\end_inset 

 such that: 
\begin_inset Formula 
\begin{equation}
H(t,x)=\frac{1}{2}\left( A_{\infty }(t)x,x\right) +N(t,x)
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\forall t\, \, ,\, \, \, \, \, \, N(t,x)\, \, \, \, \, \, \, \, {\textrm{is}\, \, 
\textrm{convex}\, \, \textrm{with}\, \, \textrm{ respect}\, \, \textrm{ to}}\, \, \, 
\, x
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
N(t,x)\geq n\left( \left\Vert x\right\Vert \right) \, \, \, \, \, \, \, \, 
{\textrm{with}}\, \, \, \, n(s)s^{-1}\rightarrow +\infty \, \, \, \, {\textrm{as}}\, 
\, \, \, s\rightarrow +\infty 
\end{equation}

\end_inset 


\begin_inset Formula 
\begin{equation}
\exists c\in \bbbr \, \, :\, \, \, \, \, \, H(t,x)\leq \frac{1}{2}\left( B_{\infty 
}(t)x,x\right) +c\, \, \, \, \, \, \forall x\, \, .
\end{equation}

\end_inset 


\layout Definition

If 
\begin_inset Formula \( A_{\infty }(t)=a_{\infty }I \)
\end_inset 

 and 
\begin_inset Formula \( B_{\infty }(t)=b_{\infty }I \)
\end_inset 

, with 
\begin_inset Formula \( a_{\infty }\leq b_{\infty }\in \bbbr  \)
\end_inset 

, we shall say that 
\begin_inset Formula \( H \)
\end_inset 

 is 
\begin_inset Formula \( \left( a_{\infty },b_{\infty }\right)  \)
\end_inset 

-subquadratic at infinity.
 As an example, the function 
\begin_inset Formula \( \left\Vert x\right\Vert ^{\alpha } \)
\end_inset 

, with 
\begin_inset Formula \( 1\leq \alpha <2 \)
\end_inset 

, is 
\begin_inset Formula \( (0,\varepsilon ) \)
\end_inset 

-subquadratic at infinity for every 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

.
 Similarly, the Hamiltonian 
\begin_inset Formula 
\begin{equation}
H(t,x)=\frac{1}{2}k\left\Vert k\right\Vert ^{2}+\left\Vert x\right\Vert ^{\alpha }
\end{equation}

\end_inset 

 is 
\begin_inset Formula \( (k,k+\varepsilon ) \)
\end_inset 

-subquadratic for every 
\begin_inset Formula \( \varepsilon >0 \)
\end_inset 

.
 Note that, if 
\begin_inset Formula \( k<0 \)
\end_inset 

, it is not convex.
 
\layout Paragraph

Notes and Comments.
\layout Standard

The first results on subharmonics were obtained by Rabinowitz in 
\begin_inset LatexCommand \cite{2rab}

\end_inset 

, who showed the existence of infinitely many subharmonics both in the subquadra
tic and superquadratic case, with suitable growth conditions on 
\begin_inset Formula \( H' \)
\end_inset 

.
 Again the duality approach enabled Clarke and Ekeland in 
\begin_inset LatexCommand \cite{2clar:eke:2}

\end_inset 

 to treat the same problem in the convex-subquadratic case, with growth
 conditions on 
\begin_inset Formula \( H \)
\end_inset 

 only.
 
\layout Standard

Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G.
 
\begin_inset LatexCommand \cite{2mich:tar}

\end_inset 

 and Tarantello, G.
 
\begin_inset LatexCommand \cite{2tar}

\end_inset 

) have obtained lower bound on the number of subharmonics of period 
\begin_inset Formula \( kT \)
\end_inset 

, based on symmetry considerations and on pinching estimates, as in Sect.
\protected_separator 
5.2 of this article.
 
\layout Standard


\latex latex 

\backslash 
begin{thebibliography}{}
\newline 

\backslash 
bibitem[1980]{2clar:eke}
\newline 
Clarke, F., Ekeland, I.:
\newline 
Nonlinear oscillations and
\newline 
boundary-value problems for Hamiltonian systems.
\newline 
Arch.
 Rat.
 Mech.
 Anal.
 {
\backslash 
textbf{78}} (1982) 315--333
\newline 

\newline 

\backslash 
bibitem[1981]{2clar:eke:2}
\newline 
Clarke, F., Ekeland, I.:
\newline 
Solutions p
\backslash 
'{e}riodiques, du
\newline 
p
\backslash 
'{e}riode donn
\backslash 
'{e}e, des 
\backslash 
'{e}quations hamiltoniennes.
\newline 
Note CRAS Paris {
\backslash 
textbf{287}} (1978) 1013--1015
\newline 

\newline 

\backslash 
bibitem[1982]{2mich:tar}
\newline 
Michalek, R., Tarantello, G.:
\newline 
Subharmonic solutions with prescribed minimal
\newline 
period for nonautonomous Hamiltonian systems.
\newline 
J.
 Diff.
 Eq.
 {
\backslash 
textbf{72}} (1988) 28--55
\newline 

\newline 

\backslash 
bibitem[1983]{2tar}
\newline 
Tarantello, G.:
\newline 
Subharmonic solutions for Hamiltonian
\newline 
systems via a 
\backslash 
(
\backslash 
bbbz_{p}
\backslash 
) pseudoindex theory.
\newline 
Annali di Matematica Pura (to appear)
\newline 

\newline 

\backslash 
bibitem[1985]{2rab}
\newline 
Rabinowitz, P.:
\newline 
On subharmonic solutions of a Hamiltonian system.
\newline 
Comm.
 Pure Appl.
 Math.
 {
\backslash 
textbf{33}} (1980) 609--633
\newline 

\newline 

\backslash 
end{thebibliography} 
\backslash 
clearpage
\newline 

\backslash 
addtocmark[2]{Author Index} 
\backslash 
renewcommand{
\backslash 
indexname}{Author Index}
\latex default 
 
\begin_inset LatexCommand \printindex{}

\end_inset 


\latex latex 

\backslash 
clearpage
\newline 

\backslash 
addtocmark[2]{Subject Index} 
\backslash 
markboth{Subject Index}{
\latex default 
Subject Index
\latex latex 
} 
\backslash 
renewcommand{
\backslash 
indexname}{Subject Index}
\latex default 
 
\begin_inset Include \input{subjidx.ind}

\end_inset 


\the_end

Reply via email to