The Implicative Conditional
Eric Raidl & Gilberto Gomes
https://link.springer.com/article/10.1007/s10992-023-09715-6

This paper investigates the implicative conditional, a connective intended
to describe the logical behavior of an empirically defined class of natural
language conditionals, also named implicative conditionals, which excludes
concessive and some other conditionals. The implicative conditional
strengthens the strict conditional with the possibility of the antecedent
and of the contradictory of the consequent.p ⇒ q is thus defined as p ⇒ q
as  ¬à (p ∧ ¬q)∧ à p∧à ¬q.
We explore the logical properties of this conditional in a reflexive normal
Kripke semantics, provide an axiomatic system and prove it to be sound and
complete for our semantics. The implicative conditional validates
transitivity and contraposition, which we take to be integral parts of
reasoning and communication. But it only validates restricted versions of
strengthening the antecedent, right weakening, simplification, and rational
monotonicity. Apparent counterexamples to some of these properties are
explained as due to contextual factors. Finally, the implicative
conditional avoids the paradoxes of material and strict implication, and
validates some connexive principles such as Aristotle’s theses and weak
Boethius’ thesis, as well as some highly entrenched principles of
conditionals, such as conjunction of consequents, disjunction of
antecedents, modus ponens, cautious monotonicity and cut.

On Mon, Jul 15, 2024 at 4:10 AM jean-yves beziau <jyb.logic...@gmail.com>
wrote:

> LoCa  - Seminário Interuniversitário de Lógica no Rio de Janeiro
> "O condicional implicativo"
> Gilberto Lourenco Gomes, Universidade Estadual do Norte Fluminense,  RJ,
> Brasil
> Quarta-feira dia 17 de Julho de 2024 às 17h30
> https://www.rio-logic.org/2024-1.html
>

-- 
LOGICA-L
Lista acadêmica brasileira dos profissionais e estudantes da área de Lógica 
<logica-l@dimap.ufrn.br>
--- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para acessar esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAF2zFLC%3De3G%3DoJrJbFQcT1bUeMxC9%3D%2BZorVQ9kTfa%2Bvw08krjQ%40mail.gmail.com.

Responder a