Boa tarde,

I came to think that someone here should know:

Stanislaw Jaskowski published a non-adjunctive paraconsistent logic, which
does not have the inference rule $\vdash A \ \& \  \vdash B\Rightarrow \
\vdash A\wedge B$. The paper first appeared  in Polish: *Rachunek zdań dla
systemow dedukcyjnych sprzecznych*, Studia Societatis Scientiarum
Torunensis, Sectio A, Vol. I, No. 5, 1948, 57-77. The last English
translation is *A Propositional Calculus for Inconsistent Deductive Systems
<https://apcz.umk.pl/LLP/article/view/LLP.1999.003>*, in Logic and Logical
Philosophy, Vol. 7, 35-56, 1999.

Let logic T be *sparked* just if it for some sentence $A$ has $\vdash_T A$
as well as $\vdash_T \lnot A$.

Let CL be classical logic.

Let logic T be *moderate* just if $\vdash_T B \Rightarrow \
\not\vdash_{CL}\lnot B$.

Let J+ be a minimal sparking of Jaskowski's system.

Is J+ moderate?
Abraços

Frode Allfson Bjørdal

-- 
LOGICA-L
Lista acadêmica brasileira dos profissionais e estudantes da área de Lógica 
<logica-l@dimap.ufrn.br>
--- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para ver esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAGarh%2Ba-MHkyjvWSin2zWncXyjY6eL-RB8jfg2LjQZ%3Dxa3STrQ%40mail.gmail.com.

Responder a