Boa tarde, I came to think that someone here should know:
Stanislaw Jaskowski published a non-adjunctive paraconsistent logic, which does not have the inference rule $\vdash A \ \& \ \vdash B\Rightarrow \ \vdash A\wedge B$. The paper first appeared in Polish: *Rachunek zdań dla systemow dedukcyjnych sprzecznych*, Studia Societatis Scientiarum Torunensis, Sectio A, Vol. I, No. 5, 1948, 57-77. The last English translation is *A Propositional Calculus for Inconsistent Deductive Systems <https://apcz.umk.pl/LLP/article/view/LLP.1999.003>*, in Logic and Logical Philosophy, Vol. 7, 35-56, 1999. Let logic T be *sparked* just if it for some sentence $A$ has $\vdash_T A$ as well as $\vdash_T \lnot A$. Let CL be classical logic. Let logic T be *moderate* just if $\vdash_T B \Rightarrow \ \not\vdash_{CL}\lnot B$. Let J+ be a minimal sparking of Jaskowski's system. Is J+ moderate? Abraços Frode Allfson Bjørdal -- LOGICA-L Lista acadêmica brasileira dos profissionais e estudantes da área de Lógica <logica-l@dimap.ufrn.br> --- Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos Grupos do Google. Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um e-mail para logica-l+unsubscr...@dimap.ufrn.br. Para ver esta discussão na web, acesse https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAGarh%2Ba-MHkyjvWSin2zWncXyjY6eL-RB8jfg2LjQZ%3Dxa3STrQ%40mail.gmail.com.