O resumo na mensagem anterior estava trocado. Segue resumo correto. Open Access in Programming Languages research
Open Access is a change that everyone in our research communities welcomes, but people are willing to invest varying levels of effort to make it a reality. In some sub-communities it is now the dominant models, in some it is a far dream, with most places in-between. This talk will describe our mixed Open Access experience with Programming Languages research and related fields. In particular, we hope to cover the following material (and still ample space for discussions): 1. What normal people (not publishers) mean by Open Access. 2. Why it really matters to some people. 3. How disappointing progress has been in some parts of our research community, and some of the reasons given. (For example: the Journal of Functional Programming at Cambridge University Press and its $1705 Open Access fee.) 4. Concrete initiatives from our community or neighboring communities that anyone can use to improve the situation. (For example: posting your preprints on arxiv.org <https://www.google.com/url?q=http://arxiv.org/&sa=D&source=calendar&usd=2&usg=AOvVaw3NzDu5OUzIakyPVv7f_STs> ) Em seg., 18 de out. de 2021 às 08:00, Bruno Lopes <br...@ic.uff.br> escreveu: > Numa iniciativa conjunta da Sociedade Brasileira de Lógica e do Grupo de > Interesse em Lógica da Sociedade Brasileira de Computação, gostaríamos de > convidar a todos a participarem do Seminário "Lógicos em Quarentena". > Trata-se de um seminário remoto com apresentações informais por membros > da comunidade e espaço para perguntas no fim. As apresentações usualmente > são gravadas e disponibilizadas na página do evento http://lq.sbl.org.br (com > a agenda completa). > > Data: 21 de outubro de 2021 (quinta-feira) > Horário: 11:00h GMT-3 > Apresentador: Gabriel Scherer (INRIA) > Título: Open Access in Programming Languages research > Resumo: This lecture discusses the logical possibility of testing > inconsistent empirical theories. The main challenge for answering this > affirmatively is to avoid that the inconsistent consequences of a theory > both corroborate it and falsify it. I answer affirmatively by showing that > we can define a class of empirical sentences whose truth would force us to > abandon such inconsistent theory: the class of its potential rejecters. > Despite this, I show that the observational contradictions implied by a > theory could only be verified (provided we make some assumptions), but not > rejected. From this, it follows that, although inconsistent theories are > rejectable, they cannot be rejected qua inconsistent. > > A apresentação ocorrerá pelo Google Meet através do link público > https://meet.google.com/urw-ycgi-qqu . > > -- > Bruno Lopes > Professor Adjunto > Instituto de Computação > Universidade Federal Fluminense > http://www.ic.uff.br/~bruno > -- Bruno Lopes Professor Adjunto Instituto de Computação Universidade Federal Fluminense http://www.ic.uff.br/~bruno -- Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos Grupos do Google. Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um e-mail para logica-l+unsubscr...@dimap.ufrn.br. Para ver esta discussão na web, acesse https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAD-Wq0_724pus5LT8Z6Emv4cgg1q%2Bgx5BzR1Mh_ag9JHLxdSFg%40mail.gmail.com.