Oi Jean-Yves, desculpe a demora em reagir ao `Logic in Rio', ideia brilhante! Reunir logicos do Rio que trabalham em instituicoes diferentes, super legal. (eu so' estive super-ocupada nos ultimos dias e acho que perdi o email sobre o mesmo...)
Abracos, Valeria 2011/6/15 jean-yves beziau <beziau...@gmail.com> > Scope of Logic Theorems > CALL FOR PAPERS > Special Issue - Logica Universalis > http://www.logica-universalis.org > > In Memoriam - A.Lindenbaum (1904-1941) > > La verità non sta in un solo sogno, mas in molti sogni. > P.P.Pasolini > > In view of the speedy and huge expansion of the universe of logics, the > question of the scope of validity and the domain of application of > fundamental logic theorems is more than ever crucial. What is true for > classical logic and theories based on it, does not necessarily hold for > non-classical logics. > > But we may wonder if there is a logic deserving the name in which a theorem > such as the incompleteness theorem does not hold. On the other hand a > theorem such as cut-elimination does not hold for many interesting logical > systems. Cut-elimination expresses the intrinsic analicity of a logic, the > fact that a proof of a theorem depends only of its constituents, a not > always welcome feature. Anyway, it is interesting to find necessary and/or > sufficient conditions for cut-elimination to hold. And also for any > important theorem of logic. > > Any paper dealing with the scope and validity of logic theorems is welcome, > in particular those dealing with the following theorems: > > - Löwenheim-Skolem (1915-1920) > - completeness (Post 1921 - Gödel 1930) > - incompleteness (Gödel 1931) > - cut-elimination (Gentzen 1934) > - undefinability (Tarski 1936) > - undecidability (Church-Turing, 1936) > - Lindenbaum's extension lemma (1937) > - compactness (Malcev 1938) > - incompleteness for modal logic (Dugundji 1940) > - Beth's definability theorem (1953) > - Craig's interpolation theorem (1957) > - completeness for modal logic (Kripke 1959) > - independence of CH (Cohen 1963) > > Un mathématiclen, un mathématicien moderne en particulier, se trouve, > dirait-on, à un degré superieur de l'activité consciente: il ne s'intéresse > pas seulement a la question de quoi, mais aussi à celle du comment. Il ne > se > borne presque jamais à une solution -tout court- d'un problème, il veut > avoir toujours les solutions les plus ...les plus quoi? -les plus faciles, > les plus courtes, les plus générales, etc. > > A.Lindenbaum, "Sur la simplicité formelle des notions", in Actes du congrès > international de philosophie scientifiqe, vol. VII, Logique, Hermann, > Paris, > 1936, pp.28-38. > > The issue will include a paper by Jan Wolenski about the life and work of > Lindenbaum. > > DEADLINE: DECEMBER 24, 2011 > > Papers should be sent electronically in PDF to > logic.theo...@logica-universalis.org > > http://www.logica-universalis.org > _______________________________________________ > Logica-l mailing list > Logica-l@dimap.ufrn.br > http://www.dimap.ufrn.br/cgi-bin/mailman/listinfo/logica-l > -- Valeria de Paiva http://www.cs.bham.ac.uk/~vdp/ http://valeriadepaiva.org/www/ _______________________________________________ Logica-l mailing list Logica-l@dimap.ufrn.br http://www.dimap.ufrn.br/cgi-bin/mailman/listinfo/logica-l