Oi Jean-Yves,

desculpe a demora em reagir ao `Logic in Rio', ideia brilhante!
Reunir logicos do Rio que trabalham em instituicoes diferentes, super legal.
(eu so' estive super-ocupada nos ultimos dias e acho que perdi o email sobre
o mesmo...)

Abracos,
Valeria

2011/6/15 jean-yves beziau <beziau...@gmail.com>

> Scope of Logic Theorems
> CALL FOR PAPERS
> Special Issue - Logica Universalis
> http://www.logica-universalis.org
>
> In Memoriam - A.Lindenbaum (1904-1941)
>
> La verità non sta in un solo sogno, mas in molti sogni.
> P.P.Pasolini
>
> In view of the speedy and huge expansion of the universe of logics, the
> question of the scope of validity and the domain of application of
> fundamental logic theorems is more than ever crucial. What is true for
> classical logic and theories based on it, does not necessarily hold for
> non-classical logics.
>
> But we may wonder if there is a logic deserving the name in which a theorem
> such as the incompleteness theorem does not hold. On the other hand a
> theorem such as cut-elimination does not hold for many interesting logical
> systems. Cut-elimination expresses the intrinsic analicity of a logic, the
> fact that a proof of a theorem depends only of its constituents, a not
> always welcome feature. Anyway, it is interesting to find necessary and/or
> sufficient conditions for cut-elimination to hold. And also for any
> important theorem of logic.
>
> Any paper dealing with the scope and validity of logic theorems is welcome,
> in particular those dealing with the following theorems:
>
> - Löwenheim-Skolem (1915-1920)
> - completeness (Post 1921 - Gödel 1930)
> - incompleteness (Gödel 1931)
> - cut-elimination (Gentzen 1934)
> - undefinability (Tarski 1936)
> - undecidability (Church-Turing, 1936)
> - Lindenbaum's extension lemma (1937)
> - compactness (Malcev 1938)
> - incompleteness for modal logic (Dugundji 1940)
> - Beth's definability theorem (1953)
> - Craig's interpolation theorem (1957)
> - completeness for modal logic (Kripke 1959)
> - independence of CH (Cohen 1963)
>
> Un mathématiclen, un mathématicien moderne en particulier, se trouve,
> dirait-on, à un degré superieur de l'activité consciente: il ne s'intéresse
> pas seulement a la question de quoi, mais aussi à celle du comment. Il ne
> se
> borne presque jamais à une solution -tout court- d'un problème, il veut
> avoir toujours les solutions les plus ...les plus quoi? -les plus faciles,
> les plus courtes, les plus générales, etc.
>
> A.Lindenbaum, "Sur la simplicité formelle des notions", in Actes du congrès
> international de philosophie scientifiqe, vol. VII, Logique, Hermann,
> Paris,
> 1936, pp.28-38.
>
> The issue will include a paper by Jan Wolenski about the life and work of
> Lindenbaum.
>
> DEADLINE: DECEMBER 24, 2011
>
> Papers should be sent electronically in PDF to
> logic.theo...@logica-universalis.org
>
> http://www.logica-universalis.org
> _______________________________________________
> Logica-l mailing list
> Logica-l@dimap.ufrn.br
> http://www.dimap.ufrn.br/cgi-bin/mailman/listinfo/logica-l
>



-- 
Valeria de Paiva
http://www.cs.bham.ac.uk/~vdp/
http://valeriadepaiva.org/www/
_______________________________________________
Logica-l mailing list
Logica-l@dimap.ufrn.br
http://www.dimap.ufrn.br/cgi-bin/mailman/listinfo/logica-l

Responder a