Hi,

I've attached an updated version of the patch. It is ready for using
support for APInts in the code generator, but currently it doesn't rely
on this feature. I've added a hack that rounds up the computation
bitwidth to power of 2 (only these bitwidths are allowed: 1, 2, ...,
64). Hack is visible and very easy to remove in future.

Is it safe to commit it now?

-Wojtek

Index: test/Analysis/ScalarEvolution/2007-11-14-SignedAddRec.ll
===================================================================
--- test/Analysis/ScalarEvolution/2007-11-14-SignedAddRec.ll    (revision 46884)
+++ test/Analysis/ScalarEvolution/2007-11-14-SignedAddRec.ll    (working copy)
@@ -1,6 +1,5 @@
 ; RUN: llvm-as < %s | opt -indvars | llvm-dis | grep printd | grep 1206807378
 ; PR1798
-; XFAIL: *
 
 declare void @printd(i32)
 
Index: include/llvm/Analysis/ScalarEvolutionExpander.h
===================================================================
--- include/llvm/Analysis/ScalarEvolutionExpander.h     (revision 46884)
+++ include/llvm/Analysis/ScalarEvolutionExpander.h     (working copy)
@@ -126,10 +126,10 @@
 
     Value *visitMulExpr(SCEVMulExpr *S);
 
-    Value *visitSDivExpr(SCEVSDivExpr *S) {
+    Value *visitUDivExpr(SCEVUDivExpr *S) {
       Value *LHS = expand(S->getLHS());
       Value *RHS = expand(S->getRHS());
-      return InsertBinop(Instruction::SDiv, LHS, RHS, InsertPt);
+      return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
     }
 
     Value *visitAddRecExpr(SCEVAddRecExpr *S);
Index: include/llvm/Analysis/ScalarEvolution.h
===================================================================
--- include/llvm/Analysis/ScalarEvolution.h     (revision 46884)
+++ include/llvm/Analysis/ScalarEvolution.h     (working copy)
@@ -225,7 +225,7 @@
       Ops.push_back(RHS);
       return getMulExpr(Ops);
     }
-    SCEVHandle getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
+    SCEVHandle getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS);
     SCEVHandle getAddRecExpr(const SCEVHandle &Start, const SCEVHandle &Step,
                              const Loop *L);
     SCEVHandle getAddRecExpr(std::vector<SCEVHandle> &Operands,
Index: include/llvm/Analysis/ScalarEvolutionExpressions.h
===================================================================
--- include/llvm/Analysis/ScalarEvolutionExpressions.h  (revision 46884)
+++ include/llvm/Analysis/ScalarEvolutionExpressions.h  (working copy)
@@ -25,7 +25,7 @@
     // These should be ordered in terms of increasing complexity to make the
     // folders simpler.
     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
-    scSDivExpr, scAddRecExpr, scSMaxExpr, scUnknown, scCouldNotCompute
+    scUDivExpr, scAddRecExpr, scSMaxExpr, scUnknown, scCouldNotCompute
   };
 
   
//===--------------------------------------------------------------------===//
@@ -322,16 +322,16 @@
 
 
   
//===--------------------------------------------------------------------===//
-  /// SCEVSDivExpr - This class represents a binary signed division operation.
+  /// SCEVUDivExpr - This class represents a binary unsigned division 
operation.
   ///
-  class SCEVSDivExpr : public SCEV {
+  class SCEVUDivExpr : public SCEV {
     friend class ScalarEvolution;
 
     SCEVHandle LHS, RHS;
-    SCEVSDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
-      : SCEV(scSDivExpr), LHS(lhs), RHS(rhs) {}
+    SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
+      : SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {}
 
-    virtual ~SCEVSDivExpr();
+    virtual ~SCEVUDivExpr();
   public:
     const SCEVHandle &getLHS() const { return LHS; }
     const SCEVHandle &getRHS() const { return RHS; }
@@ -353,7 +353,7 @@
       if (L == LHS && R == RHS)
         return this;
       else
-        return SE.getSDivExpr(L, R);
+        return SE.getUDivExpr(L, R);
     }
 
 
@@ -363,9 +363,9 @@
     void print(std::ostream *OS) const { if (OS) print(*OS); }
 
     /// Methods for support type inquiry through isa, cast, and dyn_cast:
-    static inline bool classof(const SCEVSDivExpr *S) { return true; }
+    static inline bool classof(const SCEVUDivExpr *S) { return true; }
     static inline bool classof(const SCEV *S) {
-      return S->getSCEVType() == scSDivExpr;
+      return S->getSCEVType() == scUDivExpr;
     }
   };
 
@@ -540,8 +540,8 @@
         return ((SC*)this)->visitAddExpr((SCEVAddExpr*)S);
       case scMulExpr:
         return ((SC*)this)->visitMulExpr((SCEVMulExpr*)S);
-      case scSDivExpr:
-        return ((SC*)this)->visitSDivExpr((SCEVSDivExpr*)S);
+      case scUDivExpr:
+        return ((SC*)this)->visitUDivExpr((SCEVUDivExpr*)S);
       case scAddRecExpr:
         return ((SC*)this)->visitAddRecExpr((SCEVAddRecExpr*)S);
       case scSMaxExpr:
Index: lib/Analysis/ScalarEvolution.cpp
===================================================================
--- lib/Analysis/ScalarEvolution.cpp    (revision 46884)
+++ lib/Analysis/ScalarEvolution.cpp    (working copy)
@@ -328,21 +328,21 @@
 }
 
 
-// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
+// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
 // input.  Don't use a SCEVHandle here, or else the object will never be
 // deleted!
 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 
-                     SCEVSDivExpr*> > SCEVSDivs;
+                     SCEVUDivExpr*> > SCEVUDivs;
 
-SCEVSDivExpr::~SCEVSDivExpr() {
-  SCEVSDivs->erase(std::make_pair(LHS, RHS));
+SCEVUDivExpr::~SCEVUDivExpr() {
+  SCEVUDivs->erase(std::make_pair(LHS, RHS));
 }
 
-void SCEVSDivExpr::print(std::ostream &OS) const {
-  OS << "(" << *LHS << " /s " << *RHS << ")";
+void SCEVUDivExpr::print(std::ostream &OS) const {
+  OS << "(" << *LHS << " /u " << *RHS << ")";
 }
 
-const Type *SCEVSDivExpr::getType() const {
+const Type *SCEVUDivExpr::getType() const {
   return LHS->getType();
 }
 
@@ -532,57 +532,99 @@
 }
 
 
-/// PartialFact - Compute V!/(V-NumSteps)!
-static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps,
-                              ScalarEvolution &SE) {
+/// BinomialCoefficient - Compute BC(It, K).  The result is of the same type as
+/// It.  Assume, K > 0.
+static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
+                                      ScalarEvolution &SE) {
+  // We are using the following formula for BC(It, K):
+  //
+  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
+  //
+  // Suppose, W is the bitwidth of It (and of the return value as well).  We
+  // must be prepared for overflow.  Hence, we must assure that the result of
+  // our computation is equal to the accurate one modulo 2^W.  Unfortunately,
+  // division isn't safe in modular arithmetic.  This means we must perform the
+  // whole computation accurately and then truncate the result to W bits.
+  //
+  // The dividend of the formula is a multiplication of K integers of bitwidth
+  // W.  K*W bits suffice to compute it accurately.
+  //
+  // FIXME: We assume the divisor can be accurately computed using 32-bit
+  // unsigned integer type. It is true up to K = 12.
+  //
+  // It is safe to use unsigned division here: the dividend is nonnegative and
+  // the divisor is positive.
+
+  // Handle the simplest case efficiently.
+  if (K == 1)
+    return It;
+  
+  // FIXME: A temporary hack to remove in future.  Arbitrary precision integers
+  // aren't supported by the code generator yet.  For the dividend, the 
bitwidth
+  // we use is the smallest power of 2 greater or equal to K*W and less or 
equal
+  // to 64.  Note that setting the upper bound for bitwidth may still lead to
+  // miscompilation in some cases.
+  unsigned DividendBits = 1U << Log2_32_Ceil(K * It->getBitWidth());
+  if (DividendBits > 64)
+    DividendBits = 64;
+
+  // The final number of bits we need is the maximum of dividend and divisor
+  // bitwidths.
+#if 0 // FIXME: Waiting patiently for the APInt support in the code 
generator...
+  const IntegerType *ExTy =
+    IntegerType::get(std::max(K * It->getBitWidth(), 32U));
+#endif
+  const IntegerType *ExTy = IntegerType::get(std::max(DividendBits, 32U));
+  const SCEVHandle ExIt = SE.getZeroExtendExpr(It, ExTy);
+
+  // Compute K!  We know K >= 2 here.
+  uint32_t F = 2;
+  for (unsigned i = 3; i <= K; ++i)
+    F *= i;
+  APInt Divisor(ExTy->getBitWidth(), F);
+
   // Handle this case efficiently, it is common to have constant iteration
   // counts while computing loop exit values.
-  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
-    const APInt& Val = SC->getValue()->getValue();
-    APInt Result(Val.getBitWidth(), 1);
-    for (; NumSteps; --NumSteps)
-      Result *= Val-(NumSteps-1);
-    return SE.getConstant(Result);
+  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ExIt)) {
+    const APInt& N = SC->getValue()->getValue();
+    APInt Dividend(N.getBitWidth(), 1);
+    for (; K; --K)
+      Dividend *= N-(K-1);
+    return SE.getConstant(Dividend.udiv(Divisor).trunc(It->getBitWidth()));
   }
-
-  const Type *Ty = V->getType();
-  if (NumSteps == 0)
-    return SE.getIntegerSCEV(1, Ty);
-
-  SCEVHandle Result = V;
-  for (unsigned i = 1; i != NumSteps; ++i)
-    Result = SE.getMulExpr(Result, SE.getMinusSCEV(V,
-                                                   SE.getIntegerSCEV(i, Ty)));
-  return Result;
+  
+  SCEVHandle Dividend = ExIt;
+  for (unsigned i = 1; i != K; ++i)
+    Dividend = SE.getMulExpr(Dividend,
+                             SE.getMinusSCEV(ExIt, SE.getIntegerSCEV(i, 
ExTy)));
+  return
+    SE.getTruncateExpr(SE.getUDivExpr(Dividend, SE.getConstant(Divisor)),
+                       It->getType());
 }
 
-
 /// evaluateAtIteration - Return the value of this chain of recurrences at
 /// the specified iteration number.  We can evaluate this recurrence by
 /// multiplying each element in the chain by the binomial coefficient
 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 ///
-///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
+///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 ///
-/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
-/// Is the binomial equation safe using modular arithmetic??
+/// where BC(It, k) stands for binomial coefficient.
 ///
 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
                                                ScalarEvolution &SE) const {
   SCEVHandle Result = getStart();
-  int Divisor = 1;
-  const Type *Ty = It->getType();
   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
-    SCEVHandle BC = PartialFact(It, i, SE);
-    Divisor *= i;
-    SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)),
-                                    SE.getIntegerSCEV(Divisor,Ty));
+    // The computation is correct in the face of overflow provided that the
+    // multiplication is performed _after_ the evaluation of the binomial
+    // coefficient.
+    SCEVHandle Val = SE.getMulExpr(getOperand(i),
+                                   BinomialCoefficient(It, i, SE));
     Result = SE.getAddExpr(Result, Val);
   }
   return Result;
 }
 
-
 
//===----------------------------------------------------------------------===//
 //                    SCEV Expression folder implementations
 
//===----------------------------------------------------------------------===//
@@ -1039,24 +1081,22 @@
   return Result;
 }
 
-SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const 
SCEVHandle &RHS) {
+SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const 
SCEVHandle &RHS) {
   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
     if (RHSC->getValue()->equalsInt(1))
-      return LHS;                            // X sdiv 1 --> x
-    if (RHSC->getValue()->isAllOnesValue())
-      return getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
+      return LHS;                            // X udiv 1 --> x
 
     if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
       Constant *LHSCV = LHSC->getValue();
       Constant *RHSCV = RHSC->getValue();
-      return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV));
+      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
     }
   }
 
   // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
 
-  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
-  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
+  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
+  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
   return Result;
 }
 
@@ -1555,7 +1595,7 @@
     return MinOpRes;
   }
 
-  // SCEVSDivExpr, SCEVUnknown
+  // SCEVUDivExpr, SCEVUnknown
   return 0;
 }
 
@@ -1574,8 +1614,8 @@
     case Instruction::Mul:
       return SE.getMulExpr(getSCEV(I->getOperand(0)),
                            getSCEV(I->getOperand(1)));
-    case Instruction::SDiv:
-      return SE.getSDivExpr(getSCEV(I->getOperand(0)),
+    case Instruction::UDiv:
+      return SE.getUDivExpr(getSCEV(I->getOperand(0)),
                             getSCEV(I->getOperand(1)));
     case Instruction::Sub:
       return SE.getMinusSCEV(getSCEV(I->getOperand(0)),
@@ -2264,14 +2304,14 @@
     return Comm;
   }
 
-  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
+  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
     SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
     if (LHS == UnknownValue) return LHS;
     SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
     if (RHS == UnknownValue) return RHS;
     if (LHS == Div->getLHS() && RHS == Div->getRHS())
       return Div;   // must be loop invariant
-    return SE.getSDivExpr(LHS, RHS);
+    return SE.getUDivExpr(LHS, RHS);
   }
 
   // If this is a loop recurrence for a loop that does not contain L, then we
_______________________________________________
llvm-commits mailing list
llvm-commits@cs.uiuc.edu
http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits

Reply via email to