Changes in directory llvm/docs:
LinkTimeOptimization.html added (r1.1) --- Log message: Add lto doc. --- Diffs of the changes: (+361 -0) LinkTimeOptimization.html | 361 ++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 361 insertions(+) Index: llvm/docs/LinkTimeOptimization.html diff -c /dev/null llvm/docs/LinkTimeOptimization.html:1.1 *** /dev/null Mon Aug 14 13:03:50 2006 --- llvm/docs/LinkTimeOptimization.html Mon Aug 14 13:03:40 2006 *************** *** 0 **** --- 1,361 ---- + <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" + "http://www.w3.org/TR/html4/strict.dtd"> + <html> + <head> + <title>LLVM Link Time Optimization: design and implementation</title> + <link rel="stylesheet" href="llvm.css" type="text/css"> + </head> + + <div class="doc_title"> + LLVM Link Time Optimization: design and implentation + </div> + + <ul> + <li><a href="#desc">Description</a></li> + <li><a href="#design">Design Philosophy</a> + <ul> + <li><a href="#example1">Example of link time optimization</a></li> + <li><a href="#alternative_approaches">Alternative Approaches</a></li> + </ul></li> + <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a></li> + <ul> + <li><a href="#phase1">Phase 1 : Read LLVM Bytecode Files</a></li> + <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li> + <li><a href="#phase3">Phase 3 : Optimize Bytecode Files</a></li> + <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li> + </ul></li> + <li><a href="#lto">LLVMlto</a></li> + <ul> + <li><a href="#llvmsymbol">LLVMSymbol</a></li> + <li><a href="#readllvmobjectfile">readLLVMObjectFile()</a></li> + <li><a href="#optimizemodules">optimizeModules()</a></li> + </ul> + <li><a href="#debug">Debugging Information</a></li> + </ul> + + <div class="doc_author"> + <p>Written by Devang Patel</a></p> + </div> + + <!-- *********************************************************************** --> + <div class="doc_section"> + <a name="desc">Description</a> + </div> + <!-- *********************************************************************** --> + + <div class="doc_text"> + <p> + LLVM features powerful intermodular optimization which can be used at link time. + Link Time Optimization is another name of intermodular optimization when it + is done during link stage. This document describes the interface between LLVM + intermodular optimizer and the linker and its design. + </p> + </div> + + <!-- *********************************************************************** --> + <div class="doc_section"> + <a name="design">Design Philosophy</a> + </div> + <!-- *********************************************************************** --> + + <div class="doc_text"> + <p> + The LLVM Link Time Optimizer seeks complete transparency, while doing intermodular + optimization, in compiler tool chain. Its main goal is to let developer take + advantage of intermodular optimizer without making any significant changes to + their makefiles or build system. This is achieved through tight integration with + linker. In this model, linker treates LLVM bytecode files like native objects + file and allows mixing and matching among them. The linker uses + <a href="#lto">LLVMlto</a>, a dynamically loaded library, to handle LLVM bytecode + files. This tight integration between the linker and LLVM optimizer helps to do + optimizations that are not possible in other models. The linker input allows + optimizer to avoid relying on conservative escape analysis. + </p> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="example1">Example of link time optimization</a> + </div> + + <div class="doc_text"> + + <p>Following example illustrates advantage of integrated approach that uses + clean interface. + <li> Input source file <tt>a.c</tt> is compiled into LLVM byte code form. + <li> Input source file <tt>main.c</tt> is compiled into native object code. + <br> + <code> + <br>--- a.h --- + <br>extern int foo1(void); + <br>extern void foo2(void); + <br>extern void foo4(void); + <br>--- a.c --- + <br>#include "a.h" + <br> + <br>static signed int i = 0; + <br> + <br>void foo2(void) { + <br> i = -1; + <br>} + <br> + <br>static int foo3() { + <br>foo4(); + <br>return 10; + <br>} + <br> + <br>int foo1(void) { + <br>int data = 0; + <br> + <br>if (i < 0) { data = foo3(); } + <br> + <br>data = data + 42; + <br>return data; + <br>} + <br> + <br>--- main.c --- + <br>#include <stdio.h> + <br>#include "a.h" + <br> + <br>void foo4(void) { + <br> printf ("Hi\n"); + <br>} + <br> + <br>int main() { + <br> return foo1(); + <br>} + <br> + <br>--- command lines --- + <br> $ llvm-gcc4 --emit-llvm -c a.c -o a.o # <-- a.o is LLVM bytecode file + <br> $ llvm-gcc4 -c main.c -o main.o # <-- main.o is native object file + <br> $ llvm-gcc4 a.o main.o -o main # <-- standard link command without any modifications + <br> + </code> + </p> + <p> + In this example, the linker recognizes that <tt>foo2()</tt> is a externally visible + symbol defined in LLVM byte code file. This information is collected using + <a href=#lreadllvmbytecodefile> readLLVMByteCodeFile() </a>. Based on this + information, linker completes its usual symbol resolution pass and finds that + <tt>foo2()</tt> is not used anywhere. This information is used by LLVM optimizer + and it removes <tt>foo2()</tt>. As soon as <tt>foo2()</tt> is removed, optimizer + recognizes that condition <tt> i < 0 </tt> is always false, which means + <tt>foo3()</tt> is never used. Hence, optimizer removes <tt>foo3()</tt> also. + And this in turn, enables linker to remove <tt>foo4()</tt>. + This example illustrates advantage of tight integration with linker. Here, + optimizer can not remove <tt>foo3()</tt> without the linker's input. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="alternative_approaches">Alternative Approaches</a> + </div> + + <div class="doc_text"> + <p> + <li> Compiler driver invokes link time optimizer separately. + <br><br>In this model link time optimizer is not able to take advantage of information + collected during normal linker's symbol resolution phase. In above example, + optimizer can not remove <tt>foo2()</tt> without linker's input because it is + externally visible. And this in turn prohibits optimizer from removing <tt>foo3()</tt>. + <br><br> + <li> Use separate tool to collect symbol information from all object file. + <br><br>In this model, this new separate tool or library replicates linker's + capabilities to collect information for link time optimizer. Not only such code + duplication is difficult to justify but it also has several other disadvantages. + For example, the linking semantics and the features provided by linker on + various platform are not unique. This means, this new tool needs to support all + such features and platforms in one super tool or one new separate tool per + platform is required. This increases maintance cost for link time optimizer + significantly, which is not necessary. Plus, this approach requires staying + synchronized with linker developements on various platforms, which is not the + main focus of link time optimizer. Finally, this approach increases end user's build + time due to duplicate work done by this separate tool and linker itself. + </p> + </div> + + <!-- *********************************************************************** --> + <div class="doc_section"> + <a name="multiphase">Multi-phase communication between LLVM and linker</a> + </div> + + <div class="doc_text"> + <p> + The linker collects information about symbol defininitions and uses in various + link objects which is more accurate than any information collected by other tools + during typical build cycle. + The linker collects this information by looking at definitions and uses of + symbols in native .o files and using symbol visibility information. The linker + also uses user supplied information, such as list of exported symbol. + LLVM optimizer collects control flow information, data flow information and + knows much more about program structure from optimizer's point of view. Our + goal is to take advantage of tight intergration between the linker and + optimizer by sharing this information during various linking phases. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="phase1">Phase 1 : Read LLVM Bytecode Files</a> + </div> + + <div class="doc_text"> + <p> + The linker first reads all object files in natural order and collects symbol + information. This includes native object files as well as LLVM byte code files. + In this phase, the linker uses <a href=#lreadllvmbytecodefile> readLLVMByteCodeFile() </a> + to collect symbol information from each LLVM bytecode files and updates its + internal global symbol table accordingly. The intent of this interface is to + avoid overhead in the non LLVM case, where all input object files are native + object files, by putting this code in the error path of the linker. When the + linker sees the first llvm .o file, it dlopen()s the dynamic library. This is + to allow changes to LLVM part without relinking the linker. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="phase2">Phase 2 : Symbol Resolution</a> + </div> + + <div class="doc_text"> + <p> + In this stage, the linker resolves symbols using global symbol table information + to report undefined symbol errors, read archive members, resolve weak + symbols etc... The linker is able to do this seamlessly even though it does not + know exact content of input LLVM bytecode files because it uses symbol information + provided by <a href=#lreadllvmbytecodefile> readLLVMByteCodeFile() </a>. + If dead code stripping is enabled then linker collects list of live symbols. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="phase3">Phase 3 : Optimize Bytecode Files</a> + </div> + <div class="doc_text"> + <p> + After symbol resolution, the linker updates symbol information supplied by LLVM + bytecode files appropriately. For example, whether certain LLVM bytecode + supplied symbols are used or not. In the example above, the linker reports + that <tt>foo2()</tt> is not used anywhere in the program, including native .o + files. This information is used by LLVM interprocedural optimizer. The + linker uses <a href="#optimizemodules"> optimizeModules()</a> and requests + optimized native object file of the LLVM portion of the program. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="phase4">Phase 4 : Symbol Resolution after optimization</a> + </div> + + <div class="doc_text"> + <p> + In this phase, the linker reads optimized native object file and updates internal + global symbol table to reflect any changes. Linker also collects information + about any change in use of external symbols by LLVM bytecode files. In the examle + above, the linker notes that <tt>foo4()</tt> is not used any more. If dead code + striping is enabled then linker refreshes live symbol information appropriately + and performs dead code stripping. + <br> + After this phase, the linker continues linking as if it never saw LLVM bytecode + files. + </p> + </div> + + <!-- *********************************************************************** --> + <div class="doc_section"> + <a name="lto">LLVMlto</a> + </div> + + <div class="doc_text"> + <p> + <tt>LLVMlto</tt> is a dynamic library that is part of the LLVM tools, and is + intended for use by a linker. <tt>LLVMlto</tt> provides an abstract C++ interface + to use the LLVM interprocedural optimizer without exposing details of LLVM + internals. The intention is to keep the interface as stable as possible even + when the LLVM optimizer continues to evolve. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="llvmsymbol">LLVMSymbol</a> + </div> + + <div class="doc_text"> + <p> + <tt>LLVMSymbol</tt> class is used to describe the externally visible functions + and global variables, tdefined in LLVM bytecode files, to linker. + This includes symbol visibility information. This information is used by linker + to do symbol resolution. For example : function <tt>foo2()</tt> is defined inside + a LLVM bytecode module and it is externally visible symbol. + This helps linker connect use of <tt>foo2()</tt> in native object file with + future definition of symbol <tt>foo2()</tt>. The linker will see actual definition + of <tt>foo2()</tt> when it receives optimized native object file in <a href="#phase4"> + Symbol Resolution after optimization</a> phase. If the linker does not find any + use of <tt>foo2()</tt>, it updates LLVMSymbol visibility information to notify + LLVM intermodular optimizer that it is dead. The LLVM intermodular optimizer + takes advantage of such information to generate better code. + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="readllvmobjectfile">readLLVMObjectFile()</a> + </div> + + <div class="doc_text"> + <p> + <tt>readLLVMObjectFile()</tt> is used by the linker to read LLVM bytecode files + and collect LLVMSymbol nformation. This routine also + supplies list of externally defined symbols that are used by LLVM bytecode + files. Linker uses this symbol information to do symbol resolution. Internally, + <a href="#lto">LLVMlto</a> maintains LLVM bytecode modules in memory. This + function also provides list of external references used by bytecode file.<br> + </p> + </div> + + <!-- ======================================================================= --> + <div class="doc_subsection"> + <a name="optimizemodules">optimizeModules()</a> + </div> + + <div class="doc_text"> + <p> + The linker invokes <tt>optimizeModules</tt> to optimize already read LLVM + bytecode files by applying LLVM intermodular optimization techniques. This + function runs LLVM intermodular optimizer and generates native object code + as .o file at name and location provided by the linker. + </p> + </div> + + <!-- *********************************************************************** --> + <div class="doc_section"> + <a name="debug">Debugging Information</a> + </div> + <!-- *********************************************************************** --> + + <div class="doc_text"> + + <p><tt> ... incomplete ... </tt></p> + + </div> + + <!-- *********************************************************************** --> + + <hr> + <address> + <a href="http://jigsaw.w3.org/css-validator/check/referer"><img + src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> + <a href="http://validator.w3.org/check/referer"><img + src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> + + Devang Patel</a><br> + <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br> + Last modified: $Date: 2006/08/14 18:03:40 $ + </address> + + </body> + </html> _______________________________________________ llvm-commits mailing list llvm-commits@cs.uiuc.edu http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits