Changes in directory llvm/include/llvm/Analysis:
ET-Forest.h added (r1.1) Dominators.h updated: 1.51 -> 1.52 PostDominators.h updated: 1.9 -> 1.10 --- Log message: Initial implementation of the ET-Forest data structure for dominators and post-dominators. This code was written/adapted by Daniel Berlin! --- Diffs of the changes: (+447 -1) Dominators.h | 116 ++++++++++++++++++++ ET-Forest.h | 309 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ PostDominators.h | 23 ++++ 3 files changed, 447 insertions(+), 1 deletion(-) Index: llvm/include/llvm/Analysis/ET-Forest.h diff -c /dev/null llvm/include/llvm/Analysis/ET-Forest.h:1.1 *** /dev/null Sun Jan 8 02:20:08 2006 --- llvm/include/llvm/Analysis/ET-Forest.h Sun Jan 8 02:19:58 2006 *************** *** 0 **** --- 1,309 ---- + //===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===// + // + // The LLVM Compiler Infrastructure + // + // This file was written by Daniel Berlin from code written by Pavel Nejedy, and + // is distributed under the University of Illinois Open Source License. See + // LICENSE.TXT for details. + // + //===----------------------------------------------------------------------===// + // + // This file defines the following classes: + // 1. ETNode: A node in the ET forest. + // 2. ETOccurrence: An occurrence of the node in the splay tree + // storing the DFS path information. + // + // The ET-forest structure is described in: + // D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. + // J. G'omput. System Sci., 26(3):362 381, 1983. + // + // Basically, the ET-Forest is storing the dominator tree (ETNode), + // and a splay tree containing the depth first path information for + // those nodes (ETOccurrence). This enables us to answer queries + // about domination (DominatedBySlow), and ancestry (NCA) in + // logarithmic time, and perform updates to the information in + // logarithmic time. + // + //===----------------------------------------------------------------------===// + + #ifndef LLVM_ANALYSIS_ETFOREST_H + #define LLVM_ANALYSIS_ETFOREST_H + + #include <cassert> + + namespace llvm { + class ETNode; + + /// ETOccurrence - An occurrence for a node in the et tree + /// + /// The et occurrence tree is really storing the sequences you get from + /// doing a DFS over the ETNode's. It is stored as a modified splay + /// tree. + /// ET occurrences can occur at multiple places in the ordering depending + /// on how many ET nodes have it as their father. To handle + /// this, they are separate from the nodes. + /// + class ETOccurrence { + public: + ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL), + Depth(0), Min(0), MinOccurrence(this) {}; + + void setParent(ETOccurrence *n) { + Parent = n; + } + + // Add D to our current depth + void setDepthAdd(int d) { + Min += d; + Depth += d; + } + + // Reset our depth to D + void setDepth(int d) { + Min += d - Depth; + Depth = d; + } + + // Set Left to N + void setLeft(ETOccurrence *n) { + assert(n != this && "Trying to set our left to ourselves"); + Left = n; + if (n) + n->setParent(this); + } + + // Set Right to N + void setRight(ETOccurrence *n) { + assert(n != this && "Trying to set our right to ourselves"); + Right = n; + if (n) + n->setParent(this); + } + + // Splay us to the root of the tree + void Splay(void); + + // Recompute the minimum occurrence for this occurrence. + void recomputeMin(void) { + ETOccurrence *themin = Left; + + // The min may be our Right, too. + if (!themin || (Right && themin->Min > Right->Min)) + themin = Right; + + if (themin && themin->Min < 0) { + Min = themin->Min + Depth; + MinOccurrence = themin->MinOccurrence; + } else { + Min = Depth; + MinOccurrence = this; + } + } + private: + friend class ETNode; + + // Node we represent + ETNode *OccFor; + + // Parent in the splay tree + ETOccurrence *Parent; + + // Left Son in the splay tree + ETOccurrence *Left; + + // Right Son in the splay tree + ETOccurrence *Right; + + // Depth of the node is the sum of the depth on the path to the + // root. + int Depth; + + // Subtree occurrence's minimum depth + int Min; + + // Subtree occurrence with minimum depth + ETOccurrence *MinOccurrence; + }; + + + class ETNode { + public: + ETNode(void *d) : data(d), Father(NULL), Left(NULL), + Right(NULL), Son(NULL), ParentOcc(NULL) { + RightmostOcc = new ETOccurrence(this); + }; + + // This does *not* maintain the tree structure. + // If you want to remove a node from the forest structure, use + // removeFromForest() + ~ETNode() { + delete RightmostOcc; + } + + void removeFromForest() { + // Split us away from all our sons. + while (Son) + Son->Split(); + + // And then split us away from our father. + if (Father) + Father->Split(); + } + + // Split us away from our parents and children, so that we can be + // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT + // SPLIT US FIRST. + void Split(); + + // Set our parent node to the passed in node + void setFather(ETNode *); + + // Nearest Common Ancestor of two et nodes. + ETNode *NCA(ETNode *); + + // Return true if we are below the passed in node in the forest. + bool Below(ETNode *); + /* + Given a dominator tree, we can determine whether one thing + dominates another in constant time by using two DFS numbers: + + 1. The number for when we visit a node on the way down the tree + 2. The number for when we visit a node on the way back up the tree + + You can view these as bounds for the range of dfs numbers the + nodes in the subtree of the dominator tree rooted at that node + will contain. + + The dominator tree is always a simple acyclic tree, so there are + only three possible relations two nodes in the dominator tree have + to each other: + + 1. Node A is above Node B (and thus, Node A dominates node B) + + A + | + C + / \ + B D + + + In the above case, DFS_Number_In of A will be <= DFS_Number_In of + B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is + because we must hit A in the dominator tree *before* B on the walk + down, and we will hit A *after* B on the walk back up + + 2. Node A is below node B (and thus, node B dominates node B) + + B + | + A + / \ + C D + + In the above case, DFS_Number_In of A will be >= DFS_Number_In of + B, and DFS_Number_Out of A will be <= DFS_Number_Out of B. + + This is because we must hit A in the dominator tree *after* B on + the walk down, and we will hit A *before* B on the walk back up + + 3. Node A and B are siblings (and thus, neither dominates the other) + + C + | + D + / \ + A B + + In the above case, DFS_Number_In of A will *always* be <= + DFS_Number_In of B, and DFS_Number_Out of A will *always* be <= + DFS_Number_Out of B. This is because we will always finish the dfs + walk of one of the subtrees before the other, and thus, the dfs + numbers for one subtree can't intersect with the range of dfs + numbers for the other subtree. If you swap A and B's position in + the dominator tree, the comparison changes direction, but the point + is that both comparisons will always go the same way if there is no + dominance relationship. + + Thus, it is sufficient to write + + A_Dominates_B(node A, node B) { + return DFS_Number_In(A) <= DFS_Number_In(B) && + DFS_Number_Out(A) >= DFS_Number_Out(B); + } + + A_Dominated_by_B(node A, node B) { + return DFS_Number_In(A) >= DFS_Number_In(A) && + DFS_Number_Out(A) <= DFS_Number_Out(B); + } + */ + bool DominatedBy(ETNode *other) const { + return this->DFSNumIn >= other->DFSNumIn && + this->DFSNumOut <= other->DFSNumOut; + } + + // This method is slower, but doesn't require the DFS numbers to + // be up to date. + bool DominatedBySlow(ETNode *other) { + return this->Below(other); + } + + void assignDFSNumber(int &num) { + DFSNumIn = num++; + + if (Son) { + Son->assignDFSNumber(num); + for (ETNode *son = Son->Right; son != Son; son = son->Right) + son->assignDFSNumber(num); + } + DFSNumOut = num++; + } + + bool hasFather() const { + return Father != NULL; + } + + // Do not let people play around with fathers. + const ETNode *getFather() const { + return Father; + } + + template <typename T> + T *getData() const { + return static_cast<T*>(data); + } + + unsigned getDFSNumIn() const { + return DFSNumIn; + } + + unsigned getDFSNumOut() const { + return DFSNumOut; + } + + private: + // Data represented by the node + void *data; + + // DFS Numbers + unsigned DFSNumIn, DFSNumOut; + + // Father + ETNode *Father; + + // Brothers. Node, this ends up being a circularly linked list. + // Thus, if you want to get all the brothers, you need to stop when + // you hit node == this again. + ETNode *Left, *Right; + + // First Son + ETNode *Son; + + // Rightmost occurrence for this node + ETOccurrence *RightmostOcc; + + // Parent occurrence for this node + ETOccurrence *ParentOcc; + }; + } // end llvm namespace + + #endif Index: llvm/include/llvm/Analysis/Dominators.h diff -u llvm/include/llvm/Analysis/Dominators.h:1.51 llvm/include/llvm/Analysis/Dominators.h:1.52 --- llvm/include/llvm/Analysis/Dominators.h:1.51 Mon Nov 28 19:07:12 2005 +++ llvm/include/llvm/Analysis/Dominators.h Sun Jan 8 02:19:58 2006 @@ -13,7 +13,9 @@ // 2. DominatorSet: Calculates the [reverse] dominator set for a function // 3. DominatorTree: Represent the ImmediateDominator as an explicit tree // structure. -// 4. DominanceFrontier: Calculate and hold the dominance frontier for a +// 4. ETForest: Efficient data structure for dominance comparisons and +// nearest-common-ancestor queries. +// 5. DominanceFrontier: Calculate and hold the dominance frontier for a // function. // // These data structures are listed in increasing order of complexity. It @@ -25,6 +27,7 @@ #ifndef LLVM_ANALYSIS_DOMINATORS_H #define LLVM_ANALYSIS_DOMINATORS_H +#include "llvm/Analysis/ET-Forest.h" #include "llvm/Pass.h" #include <set> @@ -389,6 +392,116 @@ //===------------------------------------- +/// ET-Forest Class - Class used to construct forwards and backwards +/// ET-Forests +/// +struct ETForestBase : public DominatorBase { + ETForestBase(bool isPostDom) : DominatorBase(isPostDom), Nodes(), + DFSInfoValid(false) {} + + virtual void releaseMemory() { reset(); } + + typedef std::map<BasicBlock*, ETNode*> ETMapType; + + + /// dominates - Return true if A dominates B. + /// + inline bool dominates(BasicBlock *A, BasicBlock *B) const { + if (A == B) + return true; + + ETNode *NodeA = getNode(A); + ETNode *NodeB = getNode(B); + + if (DFSInfoValid) + return NodeB->DominatedBy(NodeA); + else + return NodeB->DominatedBySlow(NodeA); + } + + /// properlyDominates - Return true if A dominates B and A != B. + /// + bool properlyDominates(BasicBlock *A, BasicBlock *B) const { + return dominates(A, B) && A != B; + } + + /// Return the nearest common dominator of A and B. + BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const { + ETNode *NodeA = getNode(A); + ETNode *NodeB = getNode(B); + + ETNode *Common = NodeA->NCA(NodeB); + if (!Common) + return NULL; + return Common->getData<BasicBlock>(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<ImmediateDominators>(); + } + //===--------------------------------------------------------------------===// + // API to update Forest information based on modifications + // to the CFG... + + /// addNewBlock - Add a new block to the CFG, with the specified immediate + /// dominator. + /// + void addNewBlock(BasicBlock *BB, BasicBlock *IDom); + + /// setImmediateDominator - Update the immediate dominator information to + /// change the current immediate dominator for the specified block + /// to another block. This method requires that BB for NewIDom + /// already have an ETNode, otherwise just use addNewBlock. + /// + void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom); + /// print - Convert to human readable form + /// + virtual void print(std::ostream &OS, const Module* = 0) const; +protected: + /// getNode - return the (Post)DominatorTree node for the specified basic + /// block. This is the same as using operator[] on this class. + /// + inline ETNode *getNode(BasicBlock *BB) const { + ETMapType::const_iterator i = Nodes.find(BB); + return (i != Nodes.end()) ? i->second : 0; + } + + inline ETNode *operator[](BasicBlock *BB) const { + return getNode(BB); + } + + void reset(); + ETMapType Nodes; + bool DFSInfoValid; + +}; + +//==------------------------------------- +/// ETForest Class - Concrete subclass of ETForestBase that is used to +/// compute a forwards ET-Forest. + +struct ETForest : public ETForestBase { + ETForest() : ETForestBase(false) {} + + BasicBlock *getRoot() const { + assert(Roots.size() == 1 && "Should always have entry node!"); + return Roots[0]; + } + + virtual bool runOnFunction(Function &F) { + reset(); // Reset from the last time we were run... + ImmediateDominators &ID = getAnalysis<ImmediateDominators>(); + Roots = ID.getRoots(); + calculate(ID); + return false; + } + + void calculate(const ImmediateDominators &ID); + ETNode *getNodeForBlock(BasicBlock *BB); +}; + +//===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// @@ -518,6 +631,7 @@ const DominatorTree::Node *Node); }; + // Make sure that any clients of this file link in Dominators.cpp static IncludeFile DOMINATORS_INCLUDE_FILE((void*)&DominatorSet::stub); Index: llvm/include/llvm/Analysis/PostDominators.h diff -u llvm/include/llvm/Analysis/PostDominators.h:1.9 llvm/include/llvm/Analysis/PostDominators.h:1.10 --- llvm/include/llvm/Analysis/PostDominators.h:1.9 Thu Apr 21 15:16:32 2005 +++ llvm/include/llvm/Analysis/PostDominators.h Sun Jan 8 02:19:58 2006 @@ -84,6 +84,29 @@ }; +/// PostETForest Class - Concrete subclass of ETForestBase that is used to +/// compute a forwards post-dominator ET-Forest. +struct PostETForest : public ETForestBase { + PostETForest() : ETForestBase(true) {} + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<ImmediatePostDominators>(); + } + + virtual bool runOnFunction(Function &F) { + reset(); // Reset from the last time we were run... + ImmediatePostDominators &ID = getAnalysis<ImmediatePostDominators>(); + Roots = ID.getRoots(); + calculate(ID); + return false; + } + + void calculate(const ImmediatePostDominators &ID); + ETNode *getNodeForBlock(BasicBlock *BB); +}; + + /// PostDominanceFrontier Class - Concrete subclass of DominanceFrontier that is /// used to compute the a post-dominance frontier. /// _______________________________________________ llvm-commits mailing list llvm-commits@cs.uiuc.edu http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits