llvmbot wrote:

<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-libc

Author: Muhammad Bassiouni (bassiounix)

<details>
<summary>Changes</summary>



---

Patch is 30.62 KiB, truncated to 20.00 KiB below, full version: 
https://github.com/llvm/llvm-project/pull/151837.diff


9 Files Affected:

- (modified) libc/shared/math.h (+1) 
- (added) libc/shared/math/cbrt.h (+23) 
- (modified) libc/src/__support/math/CMakeLists.txt (+15) 
- (added) libc/src/__support/math/cbrt.h (+349) 
- (modified) libc/src/math/generic/CMakeLists.txt (+1-9) 
- (modified) libc/src/math/generic/cbrt.cpp (+2-326) 
- (modified) libc/test/shared/CMakeLists.txt (+1) 
- (modified) libc/test/shared/shared_math_test.cpp (+1) 
- (modified) utils/bazel/llvm-project-overlay/libc/BUILD.bazel (+13-3) 


``````````diff
diff --git a/libc/shared/math.h b/libc/shared/math.h
index 7fb736b78efa5..3714f380a27dc 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -30,6 +30,7 @@
 #include "math/atanf16.h"
 #include "math/atanhf.h"
 #include "math/atanhf16.h"
+#include "math/cbrt.h"
 #include "math/erff.h"
 #include "math/exp.h"
 #include "math/exp10.h"
diff --git a/libc/shared/math/cbrt.h b/libc/shared/math/cbrt.h
new file mode 100644
index 0000000000000..2f49dbd364328
--- /dev/null
+++ b/libc/shared/math/cbrt.h
@@ -0,0 +1,23 @@
+//===-- Shared cbrt function ------------------------------------*- C++ 
-*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM 
Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_CBRT_H
+#define LLVM_LIBC_SHARED_MATH_CBRT_H
+
+#include "shared/libc_common.h"
+#include "src/__support/math/cbrt.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::cbrt;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SHARED_MATH_CBRT_H
\ No newline at end of file
diff --git a/libc/src/__support/math/CMakeLists.txt 
b/libc/src/__support/math/CMakeLists.txt
index 9631ab5be7d3b..e1076edf1e61c 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -331,6 +331,21 @@ add_header_library(
     libc.src.__support.macros.optimization
 )
 
+add_header_library(
+  cbrt
+  HDRS
+    cbrt.h
+  DEPENDS
+    libc.src.__support.FPUtil.double_double
+    libc.src.__support.FPUtil.dyadic_float
+    libc.src.__support.FPUtil.fenv_impl
+    libc.src.__support.FPUtil.fp_bits
+    libc.src.__support.FPUtil.multiply_add
+    libc.src.__support.FPUtil.polyeval
+    libc.src.__support.macros.optimization
+    libc.src.__support.integer_literals
+)
+
 add_header_library(
   erff
   HDRS
diff --git a/libc/src/__support/math/cbrt.h b/libc/src/__support/math/cbrt.h
new file mode 100644
index 0000000000000..2b9a73c823b14
--- /dev/null
+++ b/libc/src/__support/math/cbrt.h
@@ -0,0 +1,349 @@
+//===-- Implementation header for erff --------------------------*- C++ 
-*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM 
Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LIBC_SRC___SUPPORT_MATH_CBRT_H
+#define LIBC_SRC___SUPPORT_MATH_CBRT_H
+
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
+#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+#endif
+
+namespace cbrt_internal {
+using namespace fputil;
+
+// Initial approximation of x^(-2/3) for 1 <= x < 2.
+// Polynomial generated by Sollya with:
+// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
+// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
+// 0x1.28...p-21
+LIBC_INLINE static double intial_approximation(double x) {
+  constexpr double COEFFS[8] = {
+      0x1.bc52aedead5c6p1,  -0x1.b52bfebf110b3p2,  0x1.1d8d71d53d126p3,
+      -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2,   -0x1.5973c66ee6da7p0,
+      0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
+  };
+
+  double x_sq = x * x;
+
+  double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
+  double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
+  double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
+  double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);
+
+  double x_4 = x_sq * x_sq;
+  double d0 = fputil::multiply_add(x_sq, c1, c0);
+  double d1 = fputil::multiply_add(x_sq, c3, c2);
+
+  return fputil::multiply_add(x_4, d1, d0);
+}
+
+// Get the error term for Newton iteration:
+//   h(x) = x^3 * a^2 - 1,
+#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+LIBC_INLINE static double get_error(const DoubleDouble &x_3,
+                                    const DoubleDouble &a_sq) {
+  return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
+         fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
+}
+#else
+LIBC_INLINE static constexpr double get_error(const DoubleDouble &x_3,
+                                              const DoubleDouble &a_sq) {
+  DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
+  return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
+}
+#endif
+
+} // namespace cbrt_internal
+
+// Correctly rounded cbrt algorithm:
+//
+// === Step 1 - Range reduction ===
+// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
+//   x_r = 1.m
+//   a   = (-1)^s * 2^(e % 3) * (1.m)
+// Then cbrt(x) = x^(1/3) can be computed as:
+//   x^(1/3) = 2^(e / 3) * a^(1/3).
+//
+// In order to avoid division, we compute a^(-2/3) using Newton method and then
+// multiply the results by a:
+//   a^(1/3) = a * a^(-2/3).
+//
+// === Step 2 - First approximation to a^(-2/3) ===
+// First, we use a degree-7 minimax polynomial generated by Sollya to
+// approximate x_r^(-2/3) for 1 <= x_r < 2.
+//   p = P(x_r) ~ x_r^(-2/3),
+// with relative errors bounded by:
+//   | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
+//
+// Then we multiply with 2^(e % 3) from a small lookup table to get:
+//   x_0 = 2^(-2*(e % 3)/3) * p
+//       ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
+//       = a^(-2/3)
+// With relative errors:
+//   | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
+// This step is done in double precision.
+//
+// === Step 3 - First Newton iteration ===
+// We follow the method described in:
+//   Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
+//   in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
+// to derive multiplicative Newton iterations as below:
+// Let x_n be the nth approximation to a^(-2/3).  Define the n^th error as:
+//   h_n = x_n^3 * a^2 - 1
+// Then:
+//   a^(-2/3) = x_n / (1 + h_n)^(1/3)
+//            = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
+// using the Taylor series expansion of (1 + h_n)^(-1/3).
+//
+// Apply to x_0 above:
+//   h_0 = x_0^3 * a^2 - 1
+//       = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
+// it's bounded by:
+//   |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17.
+// So in the first iteration step, we use:
+//   x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3)
+// Its relative error is bounded by:
+//   | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70.
+// Then we perform Ziv's rounding test and check if the answer is exact.
+// This step is done in double-double precision.
+//
+// === Step 4 - Second Newton iteration ===
+// If the Ziv's rounding test from the previous step fails, we define the error
+// term:
+//   h_1 = x_1^3 * a^2 - 1,
+// And perform another iteration:
+//   x_2 = x_1 * (1 - h_1 / 3)
+// with the relative errors exceed the precision of double-double.
+// We then check the Ziv's accuracy test with relative errors < 2^-102 to
+// compensate for rounding errors.
+//
+// === Step 5 - Final iteration ===
+// If the Ziv's accuracy test from the previous step fails, we perform another
+// iteration in 128-bit precision and check for exact outputs.
+//
+// TODO: It is possible to replace this costly computation step with special
+// exceptional handling, similar to what was done in the CORE-MATH project:
+// 
https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c
+
+LIBC_INLINE static constexpr double cbrt(double x) {
+  using DoubleDouble = fputil::DoubleDouble;
+  using Float128 = fputil::DyadicFloat<128>;
+  using namespace cbrt_internal;
+  using FPBits = fputil::FPBits<double>;
+
+  uint64_t x_abs = FPBits(x).abs().uintval();
+
+  unsigned exp_bias_correction = 682; // 1023 * 2/3
+
+  if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() ||
+                    x_abs >= FPBits::inf().uintval())) {
+    if (x == 0.0 || x_abs >= FPBits::inf().uintval())
+      // x is 0, Inf, or NaN.
+      // Make sure it works for FTZ/DAZ modes.
+      return static_cast<double>(x + x);
+
+    // x is non-zero denormal number.
+    // Normalize x.
+    x *= 0x1.0p60;
+    exp_bias_correction -= 20;
+  }
+
+  FPBits x_bits(x);
+
+  // When using biased exponent of x in double precision,
+  //   x_e = real_exponent_of_x + 1023
+  // Then:
+  //   x_e / 3 = real_exponent_of_x / 3 + 1023/3
+  //           = real_exponent_of_x / 3 + 341
+  // So to make it the correct biased exponent of x^(1/3), we add
+  //   1023 - 341 = 682
+  // to the quotient x_e / 3.
+  unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent());
+  unsigned out_e = (x_e / 3 + exp_bias_correction);
+  unsigned shift_e = x_e % 3;
+
+  // Set x_r = 1.mantissa
+  double x_r =
+      FPBits(x_bits.get_mantissa() |
+             (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN))
+          .get_val();
+
+  // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa)
+  uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF;
+  a_bits |=
+      (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS))
+       << FPBits::FRACTION_LEN);
+  double a = FPBits(a_bits).get_val();
+
+  // Initial approximation of x_r^(-2/3).
+  double p = intial_approximation(x_r);
+
+  // Look up for 2^(-2*n/3) used for first approximation step.
+  constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1,
+                                        0x1.965fea53d6e3dp-2};
+
+  // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8.
+  // Relative error: < 1.16 * 2^(-21).
+  double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p);
+
+  // First iteration in double precision.
+  DoubleDouble a_sq = fputil::exact_mult(a, a);
+
+  // h0 = x0^3 * a^2 - 1
+  DoubleDouble x0_sq = fputil::exact_mult(x0, x0);
+  DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq);
+
+  double h0 = get_error(x0_3, a_sq);
+
+#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+  constexpr double REL_ERROR = 0;
+#else
+  constexpr double REL_ERROR = 0x1.0p-51;
+#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+
+  // Taylor polynomial of (1 + h)^(-1/3):
+  //   (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ...
+  constexpr double ERR_COEFFS[3] = {
+      -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error
+      0x1.c71c71c71c71cp-3,              // 2/9
+      -0x1.61f9add3c0ca4p-3,             // -14/81
+  };
+  // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error.
+  double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], 
ERR_COEFFS[2]);
+  double x0_h0 = x0 * h0;
+
+  // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81)
+  // x1 approximate a^(-2/3) with relative errors bounded by:
+  //   | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR
+  DoubleDouble x1_dd{x0_h0 * e0, x0};
+
+  // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3).
+  DoubleDouble r1 = fputil::quick_mult(a, x1_dd);
+
+  // Lambda function to update the exponent of the result.
+  auto update_exponent = [=](double r) -> double {
+    uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000;
+    // Adjust exponent and sign.
+    uint64_t r_bits =
+        r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN);
+    return FPBits(r_bits).get_val();
+  };
+
+#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+  // TODO: We probably don't need to use double-double if accurate tests and
+  // passes are skipped.
+  return update_exponent(r1.hi + r1.lo);
+#else
+  // Accurate checks and passes.
+  double r1_lower = r1.hi + r1.lo;
+  double r1_upper =
+      r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo);
+
+  // Ziv's accuracy test.
+  if (LIBC_LIKELY(r1_upper == r1_lower)) {
+    // Test for exact outputs.
+    // Check if lower (52 - 17 = 35) bits are 0's.
+    if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) ==
+                      0)) {
+      double r1_err = (r1_lower - r1.hi) - r1.lo;
+      if (FPBits(r1_err).abs().get_val() < 0x1.0p69)
+        fputil::clear_except_if_required(FE_INEXACT);
+    }
+
+    return update_exponent(r1_lower);
+  }
+
+  // Accuracy test failed, perform another Newton iteration.
+  double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0;
+
+  // Second iteration in double-double precision.
+  // h1 = x1^3 * a^2 - 1.
+  DoubleDouble x1_sq = fputil::exact_mult(x1, x1);
+  DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq);
+  double h1 = get_error(x1_3, a_sq);
+
+  // e1 = -x1*h1/3.
+  double e1 = h1 * (x1 * -0x1.5555555555555p-2);
+  // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101.
+  DoubleDouble x2 = fputil::exact_add(x1, e1);
+  // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100.
+  DoubleDouble r2 = fputil::quick_mult(a, x2);
+
+  double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo);
+  double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo);
+
+  // Ziv's accuracy test.
+  if (LIBC_LIKELY(r2_upper == r2_lower))
+    return update_exponent(r2_upper);
+
+  // TODO: Investigate removing float128 and just list exceptional cases.
+  // Apply another Newton iteration with ~126-bit accuracy.
+  Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo));
+  // x2^3
+  Float128 x2_3 =
+      fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128);
+  // a^2
+  Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a));
+  // x2^3 * a^2
+  Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128);
+  // h2 = x2^3 * a^2 - 1
+  Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0));
+  double h2 = static_cast<double>(h2_f128);
+  // t2 = 1 - h2 / 3
+  Float128 t2 =
+      fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2)));
+  // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3)
+  Float128 x3 = fputil::quick_mul(x2_f128, t2);
+  // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3)
+  Float128 r3 = fputil::quick_mul(Float128(a), x3);
+
+  // Check for exact cases:
+  Float128::MantissaType rounding_bits =
+      r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128;
+
+  double result = static_cast<double>(r3);
+  if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) ||
+      (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) {
+    // Output is exact.
+    r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128;
+
+    if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) {
+      Float128 tmp{r3.sign, r3.exponent - 123,
+                   0x8000'0000'0000'0000'0000'0000'0000'0000_u128};
+      Float128 r4 = fputil::quick_add(r3, tmp);
+      result = static_cast<double>(r4);
+    } else {
+      result = static_cast<double>(r3);
+    }
+
+    fputil::clear_except_if_required(FE_INEXACT);
+  }
+
+  return update_exponent(result);
+#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_SRC___SUPPORT_MATH_CBRT_H
diff --git a/libc/src/math/generic/CMakeLists.txt 
b/libc/src/math/generic/CMakeLists.txt
index 9df9973810c77..a86619576cfc6 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -4753,15 +4753,7 @@ add_entrypoint_object(
   HDRS
     ../cbrt.h
   DEPENDS
-    libc.hdr.fenv_macros
-    libc.src.__support.FPUtil.double_double
-    libc.src.__support.FPUtil.dyadic_float
-    libc.src.__support.FPUtil.fenv_impl
-    libc.src.__support.FPUtil.fp_bits
-    libc.src.__support.FPUtil.multiply_add
-    libc.src.__support.FPUtil.polyeval
-    libc.src.__support.macros.optimization
-    libc.src.__support.integer_literals
+    libc.src.__support.math.cbrt
 )
 
 add_entrypoint_object(
diff --git a/libc/src/math/generic/cbrt.cpp b/libc/src/math/generic/cbrt.cpp
index ce227e6650c84..e9b69bbf35cf6 100644
--- a/libc/src/math/generic/cbrt.cpp
+++ b/libc/src/math/generic/cbrt.cpp
@@ -7,334 +7,10 @@
 
//===----------------------------------------------------------------------===//
 
 #include "src/math/cbrt.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/common.h"
-#include "src/__support/integer_literals.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-
-#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
-#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-#endif
+#include "src/__support/math/cbrt.h"
 
 namespace LIBC_NAMESPACE_DECL {
 
-using DoubleDouble = fputil::DoubleDouble;
-using Float128 = fputil::DyadicFloat<128>;
-
-namespace {
-
-// Initial approximation of x^(-2/3) for 1 <= x < 2.
-// Polynomial generated by Sollya with:
-// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
-// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
-// 0x1.28...p-21
-double intial_approximation(double x) {
-  constexpr double COEFFS[8] = {
-      0x1.bc52aedead5c6p1,  -0x1.b52bfebf110b3p2,  0x1.1d8d71d53d126p3,
-      -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2,   -0x1.5973c66ee6da7p0,
-      0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
-  };
-
-  double x_sq = x * x;
-
-  double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
-  double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
-  double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
-  double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);
-
-  double x_4 = x_sq * x_sq;
-  double d0 = fputil::multiply_add(x_sq, c1, c0);
-  double d1 = fputil::multiply_add(x_sq, c3, c2);
-
-  return fputil::multiply_add(x_4, d1, d0);
-}
-
-// Get the error term for Newton iteration:
-//   h(x) = x^3 * a^2 - 1,
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
-  return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
-         fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
-}
-#else
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
-  DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
-  return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
-}
-#endif
-
-} // anonymous namespace
-
-// Correctly rounded cbrt algorithm:
-//
-// === Step 1 - Range reduction ===
-// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
-//   x_r = 1.m
-//   a   = (-1)^s * 2^(e % 3) * (1.m)
-// Then cbrt(x) = x^(1/3) can be computed as:
-//   x^(1/3) = 2^(e / 3) * a^(1/3).
-//
-// In order to avoid division, we compute a^(-2/3) using Newton method and then
-// multiply the results by a:
-//   a^(1/3) = a * a^(-2/3).
-//
-// === Step 2 - First approximation to a^(-2/3) ===
-// First, we use a degree-7 minimax polynomial generated by Sollya to
-// approximate x_r^(-2/3) for 1 <= x_r < 2.
-//   p = P(x_r) ~ x_r^(-2/3),
-// with relative errors bounded by:
-//   | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
-//
-// Then we multiply with 2^(e % 3) from a small lookup table to get:
-//   x_0 = 2^(-2*(e % 3)/3) * p
-//       ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
-//       = a^(-2/3)
-// With relative errors:
-//   | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
-// This step is done in double precision.
-//
-// === Step 3 - First Newton iteration ===
-// We follow the method described in:
-//   Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
-//   in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
-// to derive multiplicative Newton iterations as below:
-// Let x_n be the nth approximation to a^(-2/3).  Define the n^th error as:
-//   h_n = x_n^3 * a^2 - 1
-// Then:
-//   a^(-2/3) = x_n / (1 + h_n)^(1/3)
-//            = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
-// using the Taylor series expansion of (1 + h_n)^(-1/3).
-//
-// Apply to x_0 above:
-//   h_0 = x_0^3 * a^2 - 1
-//       = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
-// it...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/151837
_______________________________________________
llvm-branch-commits mailing list
llvm-branch-commits@lists.llvm.org
https://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-branch-commits

Reply via email to