----- On Jul 17, 2020, at 1:44 PM, Alan Stern st...@rowland.harvard.edu wrote:

> On Fri, Jul 17, 2020 at 12:22:49PM -0400, Mathieu Desnoyers wrote:
>> ----- On Jul 17, 2020, at 12:11 PM, Alan Stern st...@rowland.harvard.edu 
>> wrote:
>> 
>> >> > I agree with Nick: A memory barrier is needed somewhere between the
>> >> > assignment at 6 and the return to user mode at 8.  Otherwise you end up
>> >> > with the Store Buffer pattern having a memory barrier on only one side,
>> >> > and it is well known that this arrangement does not guarantee any
>> >> > ordering.
>> >> 
>> >> Yes, I see this now. I'm still trying to wrap my head around why the 
>> >> memory
>> >> barrier at the end of membarrier() needs to be paired with a scheduler
>> >> barrier though.
>> > 
>> > The memory barrier at the end of membarrier() on CPU0 is necessary in
>> > order to enforce the guarantee that any writes occurring on CPU1 before
>> > the membarrier() is executed will be visible to any code executing on
>> > CPU0 after the membarrier().  Ignoring the kthread issue, we can have:
>> > 
>> >    CPU0                    CPU1
>> >                            x = 1
>> >                            barrier()
>> >                            y = 1
>> >    r2 = y
>> >    membarrier():
>> >      a: smp_mb()
>> >      b: send IPI           IPI-induced mb
>> >      c: smp_mb()
>> >    r1 = x
>> > 
>> > The writes to x and y are unordered by the hardware, so it's possible to
>> > have r2 = 1 even though the write to x doesn't execute until b.  If the
>> > memory barrier at c is omitted then "r1 = x" can be reordered before b
>> > (although not before a), so we get r1 = 0.  This violates the guarantee
>> > that membarrier() is supposed to provide.
>> > 
>> > The timing of the memory barrier at c has to ensure that it executes
>> > after the IPI-induced memory barrier on CPU1.  If it happened before
>> > then we could still end up with r1 = 0.  That's why the pairing matters.
>> > 
>> > I hope this helps your head get properly wrapped.  :-)
>> 
>> It does help a bit! ;-)
>> 
>> This explains this part of the comment near the smp_mb at the end of 
>> membarrier:
>> 
>>          * Memory barrier on the caller thread _after_ we finished
>>          * waiting for the last IPI. [...]
>> 
>> However, it does not explain why it needs to be paired with a barrier in the
>> scheduler, clearly for the case where the IPI is skipped. I wonder whether 
>> this
>> part
>> of the comment is factually correct:
>> 
>>          * [...] Matches memory barriers around rq->curr modification in 
>> scheduler.
> 
> The reasoning is pretty much the same as above:
> 
>       CPU0                    CPU1
>                               x = 1
>                               barrier()
>                               y = 1
>       r2 = y
>       membarrier():
>         a: smp_mb()
>                               switch to kthread (includes mb)
>         b: read rq->curr == kthread
>                               switch to user (includes mb)
>         c: smp_mb()
>       r1 = x
> 
> Once again, it is possible that x = 1 doesn't become visible to CPU0
> until shortly before b.  But if c is omitted then "r1 = x" can be
> reordered before b (to any time after a), so we can have r1 = 0.
> 
> Here the timing requirement is that c executes after the first memory
> barrier on CPU1 -- which is one of the ones around the rq->curr
> modification.  (In fact, in this scenario CPU1's switch back to the user
> process is irrelevant.)

That indeed covers the last scenario I was wondering about. Thanks Alan!

Mathieu

> 
> Alan Stern

-- 
Mathieu Desnoyers
EfficiOS Inc.
http://www.efficios.com

Reply via email to