On Fri, 14 Dec 2007 16:17:36 -0600 Scott Wood <[EMAIL PROTECTED]> wrote:
> Signed-off-by: Nick Spence <[EMAIL PROTECTED]> > Signed-off-by: Scott Wood <[EMAIL PROTECTED]> > --- > Fixed some formatting issues, removed some leftover debugging cruft, > and added a comment about potential conflicts in the interrupt handling. > > drivers/mtd/nand/Kconfig | 9 + > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/fsl_elbc_nand.c | 1236 > ++++++++++++++++++++++++++++++++++++++ > 3 files changed, 1246 insertions(+), 0 deletions(-) > create mode 100644 drivers/mtd/nand/fsl_elbc_nand.c > > diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig > index 246d451..05d976c 100644 > --- a/drivers/mtd/nand/Kconfig > +++ b/drivers/mtd/nand/Kconfig > @@ -306,4 +306,13 @@ config MTD_ALAUDA > These two (and possibly other) Alauda-based cardreaders for > SmartMedia and xD allow raw flash access. > > +config MTD_NAND_FSL_ELBC > + tristate "NAND support for Freescale eLBC controllers" > + depends on MTD_NAND && PPC_OF > + help > + Various Freescale chips, including the 8313, include a NAND Flash > + Controller Module with built-in hardware ECC capabilities. > + Enabling this option will enable you to use this to control > + external NAND devices. > + > endif # MTD_NAND > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 3ad6c01..d0d4de2 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -29,5 +29,6 @@ obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o > obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o > obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o > obj-$(CONFIG_MTD_ALAUDA) += alauda.o > +obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o > > nand-objs := nand_base.o nand_bbt.o > diff --git a/drivers/mtd/nand/fsl_elbc_nand.c > b/drivers/mtd/nand/fsl_elbc_nand.c > new file mode 100644 > index 0000000..001c32c > --- /dev/null > +++ b/drivers/mtd/nand/fsl_elbc_nand.c > @@ -0,0 +1,1236 @@ > +/* Freescale Enhanced Local Bus Controller NAND driver > + * > + * Copyright (c) 2006-2007 Freescale Semiconductor > + * > + * Authors: Nick Spence <[EMAIL PROTECTED]>, > + * Scott Wood <[EMAIL PROTECTED]> > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License as published by > + * the Free Software Foundation; either version 2 of the License, or > + * (at your option) any later version. > + * > + * This program is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > + * GNU General Public License for more details. > + * > + * You should have received a copy of the GNU General Public License > + * along with this program; if not, write to the Free Software > + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA > + */ > + > +#include <linux/module.h> > +#include <linux/types.h> > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/string.h> > +#include <linux/ioport.h> > +#include <linux/of_platform.h> > +#include <linux/slab.h> > +#include <linux/interrupt.h> > + > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/nand.h> > +#include <linux/mtd/nand_ecc.h> > +#include <linux/mtd/partitions.h> > + > +#include <asm/io.h> > + > + > +#define MAX_BANKS 8 > +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ > +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ > + > +struct elbc_bank { > + __be32 br; /**< Base Register */ > +#define BR_BA 0xFFFF8000 > +#define BR_BA_SHIFT 15 > +#define BR_PS 0x00001800 > +#define BR_PS_SHIFT 11 > +#define BR_PS_8 0x00000800 /* Port Size 8 bit */ > +#define BR_PS_16 0x00001000 /* Port Size 16 bit */ > +#define BR_PS_32 0x00001800 /* Port Size 32 bit */ > +#define BR_DECC 0x00000600 > +#define BR_DECC_SHIFT 9 > +#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */ > +#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */ > +#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */ > +#define BR_WP 0x00000100 > +#define BR_WP_SHIFT 8 > +#define BR_MSEL 0x000000E0 > +#define BR_MSEL_SHIFT 5 > +#define BR_MS_GPCM 0x00000000 /* GPCM */ > +#define BR_MS_FCM 0x00000020 /* FCM */ > +#define BR_MS_SDRAM 0x00000060 /* SDRAM */ > +#define BR_MS_UPMA 0x00000080 /* UPMA */ > +#define BR_MS_UPMB 0x000000A0 /* UPMB */ > +#define BR_MS_UPMC 0x000000C0 /* UPMC */ > +#define BR_V 0x00000001 > +#define BR_V_SHIFT 0 > +#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V) > + > + __be32 or; /**< Base Register */ Urgh. Maybe it's just me, but when people mix #defines in the middle of a structure definition I have a hard time actually reading the structure. You could move the #defines above the structure. > +#define OR0 0x5004 > +#define OR1 0x500C > +#define OR2 0x5014 > +#define OR3 0x501C > +#define OR4 0x5024 > +#define OR5 0x502C > +#define OR6 0x5034 > +#define OR7 0x503C > + > +#define OR_FCM_AM 0xFFFF8000 > +#define OR_FCM_AM_SHIFT 15 > +#define OR_FCM_BCTLD 0x00001000 > +#define OR_FCM_BCTLD_SHIFT 12 > +#define OR_FCM_PGS 0x00000400 > +#define OR_FCM_PGS_SHIFT 10 > +#define OR_FCM_CSCT 0x00000200 > +#define OR_FCM_CSCT_SHIFT 9 > +#define OR_FCM_CST 0x00000100 > +#define OR_FCM_CST_SHIFT 8 > +#define OR_FCM_CHT 0x00000080 > +#define OR_FCM_CHT_SHIFT 7 > +#define OR_FCM_SCY 0x00000070 > +#define OR_FCM_SCY_SHIFT 4 > +#define OR_FCM_SCY_1 0x00000010 > +#define OR_FCM_SCY_2 0x00000020 > +#define OR_FCM_SCY_3 0x00000030 > +#define OR_FCM_SCY_4 0x00000040 > +#define OR_FCM_SCY_5 0x00000050 > +#define OR_FCM_SCY_6 0x00000060 > +#define OR_FCM_SCY_7 0x00000070 > +#define OR_FCM_RST 0x00000008 > +#define OR_FCM_RST_SHIFT 3 > +#define OR_FCM_TRLX 0x00000004 > +#define OR_FCM_TRLX_SHIFT 2 > +#define OR_FCM_EHTR 0x00000002 > +#define OR_FCM_EHTR_SHIFT 1 > +}; > + > +struct elbc_regs { > + struct elbc_bank bank[8]; > + u8 res0[0x28]; > + __be32 mar; /**< UPM Address Register */ > + u8 res1[0x4]; > + __be32 mamr; /**< UPMA Mode Register */ > + __be32 mbmr; /**< UPMB Mode Register */ > + __be32 mcmr; /**< UPMC Mode Register */ > + u8 res2[0x8]; > + __be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */ > + __be32 mdr; /**< UPM Data Register */ > + u8 res3[0x4]; > + __be32 lsor; /**< Special Operation Initiation Register */ > + __be32 lsdmr; /**< SDRAM Mode Register */ > + u8 res4[0x8]; > + __be32 lurt; /**< UPM Refresh Timer */ > + __be32 lsrt; /**< SDRAM Refresh Timer */ > + u8 res5[0x8]; > + __be32 ltesr; /**< Transfer Error Status Register */ > +#define LTESR_BM 0x80000000 > +#define LTESR_FCT 0x40000000 > +#define LTESR_PAR 0x20000000 > +#define LTESR_WP 0x04000000 > +#define LTESR_ATMW 0x00800000 > +#define LTESR_ATMR 0x00400000 > +#define LTESR_CS 0x00080000 > +#define LTESR_CC 0x00000001 > +#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC) > + __be32 ltedr; /**< Transfer Error Disable Register */ > + __be32 lteir; /**< Transfer Error Interrupt Register */ > + __be32 lteatr; /**< Transfer Error Attributes Register */ > + __be32 ltear; /**< Transfer Error Address Register */ > + u8 res6[0xC]; > + __be32 lbcr; /**< Configuration Register */ > +#define LBCR_LDIS 0x80000000 > +#define LBCR_LDIS_SHIFT 31 > +#define LBCR_BCTLC 0x00C00000 > +#define LBCR_BCTLC_SHIFT 22 > +#define LBCR_AHD 0x00200000 > +#define LBCR_LPBSE 0x00020000 > +#define LBCR_LPBSE_SHIFT 17 > +#define LBCR_EPAR 0x00010000 > +#define LBCR_EPAR_SHIFT 16 > +#define LBCR_BMT 0x0000FF00 > +#define LBCR_BMT_SHIFT 8 > +#define LBCR_INIT 0x00040000 > + __be32 lcrr; /**< Clock Ratio Register */ > +#define LCRR_DBYP 0x80000000 > +#define LCRR_DBYP_SHIFT 31 > +#define LCRR_BUFCMDC 0x30000000 > +#define LCRR_BUFCMDC_SHIFT 28 > +#define LCRR_ECL 0x03000000 > +#define LCRR_ECL_SHIFT 24 > +#define LCRR_EADC 0x00030000 > +#define LCRR_EADC_SHIFT 16 > +#define LCRR_CLKDIV 0x0000000F > +#define LCRR_CLKDIV_SHIFT 0 > + u8 res7[0x8]; > + __be32 fmr; /**< Flash Mode Register */ > +#define FMR_CWTO 0x0000F000 > +#define FMR_CWTO_SHIFT 12 > +#define FMR_BOOT 0x00000800 > +#define FMR_ECCM 0x00000100 > +#define FMR_AL 0x00000030 > +#define FMR_AL_SHIFT 4 > +#define FMR_OP 0x00000003 > +#define FMR_OP_SHIFT 0 > + __be32 fir; /**< Flash Instruction Register */ > +#define FIR_OP0 0xF0000000 > +#define FIR_OP0_SHIFT 28 > +#define FIR_OP1 0x0F000000 > +#define FIR_OP1_SHIFT 24 > +#define FIR_OP2 0x00F00000 > +#define FIR_OP2_SHIFT 20 > +#define FIR_OP3 0x000F0000 > +#define FIR_OP3_SHIFT 16 > +#define FIR_OP4 0x0000F000 > +#define FIR_OP4_SHIFT 12 > +#define FIR_OP5 0x00000F00 > +#define FIR_OP5_SHIFT 8 > +#define FIR_OP6 0x000000F0 > +#define FIR_OP6_SHIFT 4 > +#define FIR_OP7 0x0000000F > +#define FIR_OP7_SHIFT 0 > +#define FIR_OP_NOP 0x0 /* No operation and end of sequence */ > +#define FIR_OP_CA 0x1 /* Issue current column address */ > +#define FIR_OP_PA 0x2 /* Issue current block+page address */ > +#define FIR_OP_UA 0x3 /* Issue user defined address */ > +#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */ > +#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */ > +#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */ > +#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */ > +#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */ > +#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */ > +#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */ > +#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */ > +#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */ > +#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */ > +#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */ > +#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */ > + __be32 fcr; /**< Flash Command Register */ > +#define FCR_CMD0 0xFF000000 > +#define FCR_CMD0_SHIFT 24 > +#define FCR_CMD1 0x00FF0000 > +#define FCR_CMD1_SHIFT 16 > +#define FCR_CMD2 0x0000FF00 > +#define FCR_CMD2_SHIFT 8 > +#define FCR_CMD3 0x000000FF > +#define FCR_CMD3_SHIFT 0 > + __be32 fbar; /**< Flash Block Address Register */ > +#define FBAR_BLK 0x00FFFFFF > + __be32 fpar; /**< Flash Page Address Register */ > +#define FPAR_SP_PI 0x00007C00 > +#define FPAR_SP_PI_SHIFT 10 > +#define FPAR_SP_MS 0x00000200 > +#define FPAR_SP_CI 0x000001FF > +#define FPAR_SP_CI_SHIFT 0 > +#define FPAR_LP_PI 0x0003F000 > +#define FPAR_LP_PI_SHIFT 12 > +#define FPAR_LP_MS 0x00000800 > +#define FPAR_LP_CI 0x000007FF > +#define FPAR_LP_CI_SHIFT 0 > + __be32 fbcr; /**< Flash Byte Count Register */ > +#define FBCR_BC 0x00000FFF > + u8 res11[0x8]; > + u8 res8[0xF00]; > +}; > + > +struct fsl_elbc_ctrl; > + > +/* mtd information per set */ > + > +struct fsl_elbc_mtd { > + struct mtd_info mtd; > + struct nand_chip chip; > + struct fsl_elbc_ctrl *ctrl; > + > + struct device *dev; > + int bank; /* Chip select bank number */ > + u8 __iomem *vbase; /* Chip select base virtual address */ > + int page_size; /* NAND page size (0=512, 1=2048) */ > + unsigned int fmr; /* FCM Flash Mode Register value */ > +}; > + > +/* overview of the fsl elbc controller */ > + > +struct fsl_elbc_ctrl { > + struct nand_hw_control controller; > + struct fsl_elbc_mtd *chips[MAX_BANKS]; > + > + /* device info */ > + struct device *dev; > + struct elbc_regs __iomem *regs; > + int irq; > + wait_queue_head_t irq_wait; > + unsigned int irq_status; /* status read from LTESR by irq handler */ > + u8 __iomem *addr; /* Address of assigned FCM buffer */ > + unsigned int page; /* Last page written to / read from */ > + unsigned int read_bytes; /* Number of bytes read during command */ > + unsigned int column; /* Saved column from SEQIN */ > + unsigned int index; /* Pointer to next byte to 'read' */ > + unsigned int status; /* status read from LTESR after last op */ > + unsigned int mdr; /* UPM/FCM Data Register value */ > + unsigned int use_mdr; /* Non zero if the MDR is to be set */ > + unsigned int oob; /* Non zero if operating on OOB data */ > + char *oob_poi; /* Place to write ECC after read back */ > +}; > + > +/* These map to the positions used by the FCM hardware ECC generator */ > + > +/* Small Page FLASH with FMR[ECCM] = 0 */ > +static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { > + .eccbytes = 3, > + .eccpos = {6, 7, 8}, > + .oobfree = { {0, 5}, {9, 7} }, > + .oobavail = 12, > +}; > + > +/* Small Page FLASH with FMR[ECCM] = 1 */ > +static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { > + .eccbytes = 3, > + .eccpos = {8, 9, 10}, > + .oobfree = { {0, 5}, {6, 2}, {11, 5} }, > + .oobavail = 12, > +}; > + > +/* Large Page FLASH with FMR[ECCM] = 0 */ > +static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { > + .eccbytes = 12, > + .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, > + .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }, > + .oobavail = 48, > +}; > + > +/* Large Page FLASH with FMR[ECCM] = 1 */ > +static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { > + .eccbytes = 12, > + .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, > + .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }, > + .oobavail = 48, > +}; > + > +/*=================================*/ > + > +/* > + * Set up the FCM hardware block and page address fields, and the fcm > + * structure addr field to point to the correct FCM buffer in memory > + */ > +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int > oob) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + int buf_num; > + > + ctrl->page = page_addr; > + > + out_be32(&lbc->fbar, > + page_addr >> (chip->phys_erase_shift - chip->page_shift)); > + > + if (priv->page_size) { > + out_be32(&lbc->fpar, > + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | > + (oob ? FPAR_LP_MS : 0) | column); > + buf_num = (page_addr & 1) << 2; > + } else { > + out_be32(&lbc->fpar, > + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | > + (oob ? FPAR_SP_MS : 0) | column); > + buf_num = page_addr & 7; > + } > + > + ctrl->addr = priv->vbase + buf_num * 1024; > + ctrl->index = column; > + > + /* for OOB data point to the second half of the buffer */ > + if (oob) > + ctrl->index += priv->page_size ? 2048 : 512; > + > + dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " > + "index %x, pes %d ps %d\n", > + buf_num, ctrl->addr, priv->vbase, ctrl->index, > + chip->phys_erase_shift, chip->page_shift); > +} > + > +/* > + * execute FCM command and wait for it to complete > + */ > +static int fsl_elbc_run_command(struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + > + /* Setup the FMR[OP] to execute without write protection */ > + out_be32(&lbc->fmr, priv->fmr | 3); > + if (ctrl->use_mdr) > + out_be32(&lbc->mdr, ctrl->mdr); > + > + dev_vdbg(ctrl->dev, > + "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", > + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); > + dev_vdbg(ctrl->dev, > + "fsl_elbc_run_command: fbar=%08x fpar=%08x " > + "fbcr=%08x bank=%d\n", > + in_be32(&lbc->fbar), in_be32(&lbc->fpar), > + in_be32(&lbc->fbcr), priv->bank); > + > + /* execute special operation */ > + out_be32(&lbc->lsor, priv->bank); > + > + /* wait for FCM complete flag or timeout */ > + ctrl->irq_status = 0; > + wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, > + FCM_TIMEOUT_MSECS * HZ/1000); > + ctrl->status = ctrl->irq_status; > + > + /* store mdr value in case it was needed */ > + if (ctrl->use_mdr) > + ctrl->mdr = in_be32(&lbc->mdr); > + > + ctrl->use_mdr = 0; > + > + dev_vdbg(ctrl->dev, > + "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n", > + ctrl->status, ctrl->mdr, in_be32(&lbc->fmr)); > + > + /* returns 0 on success otherwise non-zero) */ > + return ctrl->status == LTESR_CC ? 0 : -EIO; > +} > + > +static void fsl_elbc_do_read(struct nand_chip *chip, int oob) > +{ > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + > + if (priv->page_size) { > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_CA << FIR_OP1_SHIFT) | > + (FIR_OP_PA << FIR_OP2_SHIFT) | > + (FIR_OP_CW1 << FIR_OP3_SHIFT) | > + (FIR_OP_RBW << FIR_OP4_SHIFT)); > + > + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | > + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); > + } else { > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_CA << FIR_OP1_SHIFT) | > + (FIR_OP_PA << FIR_OP2_SHIFT) | > + (FIR_OP_RBW << FIR_OP3_SHIFT)); > + > + if (oob) > + out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); > + else > + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); > + } > +} > + > +/* cmdfunc send commands to the FCM */ > +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, > + int column, int page_addr) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + > + ctrl->use_mdr = 0; > + > + /* clear the read buffer */ > + ctrl->read_bytes = 0; > + if (command != NAND_CMD_PAGEPROG) > + ctrl->index = 0; > + > + switch (command) { > + /* READ0 and READ1 read the entire buffer to use hardware ECC. */ > + case NAND_CMD_READ1: > + column += 256; > + > + /* fall-through */ > + case NAND_CMD_READ0: > + dev_dbg(ctrl->dev, > + "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" > + " 0x%x, column: 0x%x.\n", page_addr, column); > + > + > + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ > + set_addr(mtd, 0, page_addr, 0); > + > + ctrl->read_bytes = mtd->writesize + mtd->oobsize; > + ctrl->index += column; > + > + fsl_elbc_do_read(chip, 0); > + fsl_elbc_run_command(mtd); > + return; > + > + /* READOOB reads only the OOB because no ECC is performed. */ > + case NAND_CMD_READOOB: > + dev_vdbg(ctrl->dev, > + "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" > + " 0x%x, column: 0x%x.\n", page_addr, column); > + > + out_be32(&lbc->fbcr, mtd->oobsize - column); > + set_addr(mtd, column, page_addr, 1); > + > + ctrl->read_bytes = mtd->writesize + mtd->oobsize; > + > + fsl_elbc_do_read(chip, 1); > + fsl_elbc_run_command(mtd); > + return; > + > + /* READID must read all 5 possible bytes while CEB is active */ > + case NAND_CMD_READID: > + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n"); > + > + out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_UA << FIR_OP1_SHIFT) | > + (FIR_OP_RBW << FIR_OP2_SHIFT)); > + out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT); > + /* 5 bytes for manuf, device and exts */ > + out_be32(&lbc->fbcr, 5); > + ctrl->read_bytes = 5; > + ctrl->use_mdr = 1; > + ctrl->mdr = 0; > + > + set_addr(mtd, 0, 0, 0); > + fsl_elbc_run_command(mtd); > + return; > + > + /* ERASE1 stores the block and page address */ > + case NAND_CMD_ERASE1: > + dev_vdbg(ctrl->dev, > + "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " > + "page_addr: 0x%x.\n", page_addr); > + set_addr(mtd, 0, page_addr, 0); > + return; > + > + /* ERASE2 uses the block and page address from ERASE1 */ > + case NAND_CMD_ERASE2: > + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); > + > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_PA << FIR_OP1_SHIFT) | > + (FIR_OP_CM1 << FIR_OP2_SHIFT)); > + > + out_be32(&lbc->fcr, > + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | > + (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT)); > + > + out_be32(&lbc->fbcr, 0); > + ctrl->read_bytes = 0; > + > + fsl_elbc_run_command(mtd); > + return; > + > + /* SEQIN sets up the addr buffer and all registers except the length */ > + case NAND_CMD_SEQIN: { > + __be32 fcr; > + dev_vdbg(ctrl->dev, > + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " > + "page_addr: 0x%x, column: 0x%x.\n", > + page_addr, column); > + > + ctrl->column = column; > + ctrl->oob = 0; > + > + fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) | > + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); > + > + if (priv->page_size) { > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_CA << FIR_OP1_SHIFT) | > + (FIR_OP_PA << FIR_OP2_SHIFT) | > + (FIR_OP_WB << FIR_OP3_SHIFT) | > + (FIR_OP_CW1 << FIR_OP4_SHIFT)); > + > + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; > + } else { > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_CM2 << FIR_OP1_SHIFT) | > + (FIR_OP_CA << FIR_OP2_SHIFT) | > + (FIR_OP_PA << FIR_OP3_SHIFT) | > + (FIR_OP_WB << FIR_OP4_SHIFT) | > + (FIR_OP_CW1 << FIR_OP5_SHIFT)); > + > + if (column >= mtd->writesize) { > + /* OOB area --> READOOB */ > + column -= mtd->writesize; > + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; > + ctrl->oob = 1; > + } else if (column < 256) { > + /* First 256 bytes --> READ0 */ > + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; > + } else { > + /* Second 256 bytes --> READ1 */ > + fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; > + } > + } > + > + out_be32(&lbc->fcr, fcr); > + set_addr(mtd, column, page_addr, ctrl->oob); > + return; > + } > + > + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ > + case NAND_CMD_PAGEPROG: { > + int full_page; > + dev_vdbg(ctrl->dev, > + "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " > + "writing %d bytes.\n", ctrl->index); > + > + /* if the write did not start at 0 or is not a full page > + * then set the exact length, otherwise use a full page > + * write so the HW generates the ECC. > + */ > + if (ctrl->oob || ctrl->column != 0 || > + ctrl->index != mtd->writesize + mtd->oobsize) { > + out_be32(&lbc->fbcr, ctrl->index); > + full_page = 0; > + } else { > + out_be32(&lbc->fbcr, 0); > + full_page = 1; > + } > + > + fsl_elbc_run_command(mtd); > + > + /* Read back the page in order to fill in the ECC for the > + * caller. Is this really needed? > + */ > + if (full_page && ctrl->oob_poi) { > + out_be32(&lbc->fbcr, 3); > + set_addr(mtd, 6, page_addr, 1); > + > + ctrl->read_bytes = mtd->writesize + 9; > + > + fsl_elbc_do_read(chip, 1); > + fsl_elbc_run_command(mtd); > + > + memcpy_fromio(ctrl->oob_poi + 6, > + &ctrl->addr[ctrl->index], 3); > + ctrl->index += 3; > + } > + > + ctrl->oob_poi = NULL; > + return; > + } > + > + /* CMD_STATUS must read the status byte while CEB is active */ > + /* Note - it does not wait for the ready line */ > + case NAND_CMD_STATUS: > + out_be32(&lbc->fir, > + (FIR_OP_CM0 << FIR_OP0_SHIFT) | > + (FIR_OP_RBW << FIR_OP1_SHIFT)); > + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); > + out_be32(&lbc->fbcr, 1); > + set_addr(mtd, 0, 0, 0); > + ctrl->read_bytes = 1; > + > + fsl_elbc_run_command(mtd); > + > + /* The chip always seems to report that it is > + * write-protected, even when it is not. > + */ > + setbits8(ctrl->addr, NAND_STATUS_WP); > + return; > + > + /* RESET without waiting for the ready line */ > + case NAND_CMD_RESET: > + dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); > + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); > + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); > + fsl_elbc_run_command(mtd); > + return; > + > + default: > + dev_err(ctrl->dev, > + "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", > + command); > + } > +} > + > +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) > +{ > + /* The hardware does not seem to support multiple > + * chips per bank. > + */ > +} > + > +/* > + * Write buf to the FCM Controller Data Buffer > + */ > +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + unsigned int bufsize = mtd->writesize + mtd->oobsize; > + > + if (len < 0) { > + dev_err(ctrl->dev, "write_buf of %d bytes", len); > + ctrl->status = 0; > + return; > + } > + > + if ((unsigned int)len > bufsize - ctrl->index) { > + dev_err(ctrl->dev, > + "write_buf beyond end of buffer " > + "(%d requested, %u available)\n", > + len, bufsize - ctrl->index); > + len = bufsize - ctrl->index; > + } > + > + memcpy_toio(&ctrl->addr[ctrl->index], buf, len); > + ctrl->index += len; > +} > + > +/* > + * read a byte from either the FCM hardware buffer if it has any data left > + * otherwise issue a command to read a single byte. > + */ > +static u8 fsl_elbc_read_byte(struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + > + /* If there are still bytes in the FCM, then use the next byte. */ > + if (ctrl->index < ctrl->read_bytes) > + return in_8(&ctrl->addr[ctrl->index++]); > + > + dev_err(ctrl->dev, "read_byte beyond end of buffer\n"); > + return ERR_BYTE; > +} > + > +/* > + * Read from the FCM Controller Data Buffer > + */ > +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + int avail; > + > + if (len < 0) > + return; > + > + avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); > + memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); > + ctrl->index += avail; > + > + if (len > avail) > + dev_err(ctrl->dev, > + "read_buf beyond end of buffer " > + "(%d requested, %d available)\n", > + len, avail); > +} > + > +/* > + * Verify buffer against the FCM Controller Data Buffer > + */ > +static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int > len) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + int i; > + > + if (len < 0) { > + dev_err(ctrl->dev, "write_buf of %d bytes", len); > + return -EINVAL; > + } > + > + if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { > + dev_err(ctrl->dev, > + "verify_buf beyond end of buffer " > + "(%d requested, %u available)\n", > + len, ctrl->read_bytes - ctrl->index); > + > + ctrl->index = ctrl->read_bytes; > + return -EINVAL; > + } > + > + for (i = 0; i < len; i++) > + if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) > + break; > + > + ctrl->index += len; > + return i == len && ctrl->status == LTESR_CC ? 0 : -EIO; > +} > + > +/* This function is called after Program and Erase Operations to > + * check for success or failure. > + */ > +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) > +{ > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + > + if (ctrl->status != LTESR_CC) > + return NAND_STATUS_FAIL; > + > + /* Use READ_STATUS command, but wait for the device to be ready */ > + ctrl->use_mdr = 0; > + out_be32(&lbc->fir, > + (FIR_OP_CW0 << FIR_OP0_SHIFT) | > + (FIR_OP_RBW << FIR_OP1_SHIFT)); > + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); > + out_be32(&lbc->fbcr, 1); > + set_addr(mtd, 0, 0, 0); > + ctrl->read_bytes = 1; > + > + fsl_elbc_run_command(mtd); > + > + if (ctrl->status != LTESR_CC) > + return NAND_STATUS_FAIL; > + > + /* The chip always seems to report that it is > + * write-protected, even when it is not. > + */ > + setbits8(ctrl->addr, NAND_STATUS_WP); > + return fsl_elbc_read_byte(mtd); > +} > + > +static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd->priv; > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + unsigned int al; > + > + /* calculate FMR Address Length field */ > + al = 0; > + if (chip->pagemask & 0xffff0000) > + al++; > + if (chip->pagemask & 0xff000000) > + al++; > + > + /* add to ECCM mode set in fsl_elbc_init */ > + priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */ > + (al << FMR_AL_SHIFT); > + > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n", > + chip->numchips); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n", > + chip->chipsize); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n", > + chip->pagemask); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n", > + chip->chip_delay); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n", > + chip->badblockpos); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n", > + chip->chip_shift); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n", > + chip->page_shift); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", > + chip->phys_erase_shift); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n", > + chip->ecclayout); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", > + chip->ecc.mode); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", > + chip->ecc.steps); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", > + chip->ecc.bytes); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n", > + chip->ecc.total); > + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n", > + chip->ecc.layout); > + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); > + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size); > + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n", > + mtd->erasesize); > + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n", > + mtd->writesize); > + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n", > + mtd->oobsize); > + > + /* adjust Option Register and ECC to match Flash page size */ > + if (mtd->writesize == 512) { > + priv->page_size = 0; > + clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS); > + } else if (mtd->writesize == 2048) { > + priv->page_size = 1; > + setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); > + /* adjust ecc setup if needed */ > + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == > + BR_DECC_CHK_GEN) { > + chip->ecc.size = 512; > + chip->ecc.layout = (priv->fmr & FMR_ECCM) ? > + &fsl_elbc_oob_lp_eccm1 : > + &fsl_elbc_oob_lp_eccm0; > + mtd->ecclayout = chip->ecc.layout; > + mtd->oobavail = chip->ecc.layout->oobavail; > + } > + } else { > + dev_err(ctrl->dev, > + "fsl_elbc_init: page size %d is not supported\n", > + mtd->writesize); > + return -1; > + } > + > + /* The default u-boot configuration on MPC8313ERDB causes errors; > + * more delay is needed. This should be safe for other boards > + * as well. > + */ > + setbits32(&lbc->bank[priv->bank].or, 0x70); > + return 0; > +} > + > +static int fsl_elbc_read_page(struct mtd_info *mtd, > + struct nand_chip *chip, > + uint8_t *buf) > +{ > + fsl_elbc_read_buf(mtd, buf, mtd->writesize); > + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); > + > + if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) > + mtd->ecc_stats.failed++; > + > + return 0; > +} > + > +/* ECC will be calculated automatically, and errors will be detected in > + * waitfunc. > + */ > +static void fsl_elbc_write_page(struct mtd_info *mtd, > + struct nand_chip *chip, > + const uint8_t *buf) > +{ > + struct fsl_elbc_mtd *priv = chip->priv; > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + > + fsl_elbc_write_buf(mtd, buf, mtd->writesize); > + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); > + > + ctrl->oob_poi = chip->oob_poi; > +} > + > +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) > +{ > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + struct nand_chip *chip = &priv->chip; > + > + dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); > + > + /* Fill in fsl_elbc_mtd structure */ > + priv->mtd.priv = chip; > + priv->mtd.owner = THIS_MODULE; > + priv->fmr = 0; /* rest filled in later */ > + > + /* fill in nand_chip structure */ > + /* set up function call table */ > + chip->read_byte = fsl_elbc_read_byte; > + chip->write_buf = fsl_elbc_write_buf; > + chip->read_buf = fsl_elbc_read_buf; > + chip->verify_buf = fsl_elbc_verify_buf; > + chip->select_chip = fsl_elbc_select_chip; > + chip->cmdfunc = fsl_elbc_cmdfunc; > + chip->waitfunc = fsl_elbc_wait; > + chip->late_init = fsl_elbc_chip_init_tail; > + > + /* set up nand options */ > + chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR; > + > + chip->controller = &ctrl->controller; > + chip->priv = priv; > + > + chip->ecc.read_page = fsl_elbc_read_page; > + chip->ecc.write_page = fsl_elbc_write_page; > + > + /* If CS Base Register selects full hardware ECC then use it */ > + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == > + BR_DECC_CHK_GEN) { > + chip->ecc.mode = NAND_ECC_HW; > + /* put in small page settings and adjust later if needed */ > + chip->ecc.layout = (priv->fmr & FMR_ECCM) ? > + &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; > + chip->ecc.size = 512; > + chip->ecc.bytes = 3; > + } else { > + /* otherwise fall back to default software ECC */ > + chip->ecc.mode = NAND_ECC_SOFT; > + } > + > + return 0; > +} > + > +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) > +{ > + struct fsl_elbc_ctrl *ctrl = priv->ctrl; > + > + nand_release(&priv->mtd); > + > + if (priv->vbase) > + iounmap(priv->vbase); > + > + ctrl->chips[priv->bank] = NULL; > + kfree(priv); > + > + return 0; > +} > + > +static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, > + struct device_node *node) > +{ > + struct elbc_regs __iomem *lbc = ctrl->regs; > + struct fsl_elbc_mtd *priv; > + struct resource res; > +#ifdef CONFIG_MTD_PARTITIONS > + static const char *part_probe_types[] > + = { "cmdlinepart", "RedBoot", NULL }; > + struct mtd_partition *parts; > +#endif > + int ret; > + int bank; > + > + /* get, allocate and map the memory resource */ > + ret = of_address_to_resource(node, 0, &res); > + if (ret) { > + dev_err(ctrl->dev, "failed to get resource\n"); > + return ret; > + } > + > + /* find which chip select it is connected to */ > + for (bank = 0; bank < MAX_BANKS; bank++) > + if ((in_be32(&lbc->bank[bank].br) & BR_V) && > + (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && > + (in_be32(&lbc->bank[bank].br) & > + in_be32(&lbc->bank[bank].or) & BR_BA) > + == res.start) > + break; > + > + if (bank >= MAX_BANKS) { > + dev_err(ctrl->dev, "address did not match any chip selects\n"); > + return -ENODEV; > + } > + > + priv = kzalloc(sizeof(*priv), GFP_KERNEL); > + if (!priv) > + return -ENOMEM; > + > + ctrl->chips[bank] = priv; > + priv->bank = bank; > + priv->ctrl = ctrl; > + priv->dev = ctrl->dev; > + > + priv->vbase = ioremap(res.start, res.end - res.start + 1); > + if (!priv->vbase) { > + dev_err(ctrl->dev, "failed to map chip region\n"); > + ret = -ENOMEM; > + goto err; > + } > + > + ret = fsl_elbc_chip_init(priv); > + if (ret) > + goto err; > + > + ret = nand_scan(&priv->mtd, 1); > + if (ret) > + goto err; > + > +#ifdef CONFIG_MTD_PARTITIONS > + /* First look for RedBoot table or partitions on the command > + * line, these take precedence over device tree information */ > + ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0); > + if (ret < 0) > + goto err; > + > +#ifdef CONFIG_MTD_OF_PARTS > + if (ret == 0) { > + ret = of_mtd_parse_partitions(priv->dev, &priv->mtd, > + node, &parts); > + if (ret < 0) > + goto err; > + } > +#endif > + > + if (ret > 0) > + add_mtd_partitions(&priv->mtd, parts, ret); > + else > +#endif > + add_mtd_device(&priv->mtd); > + > + printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n", > + res.start, priv->bank); > + return 0; > + > +err: > + fsl_elbc_chip_remove(priv); > + return ret; > +} > + > +static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl) > +{ > + struct elbc_regs __iomem *lbc = ctrl->regs; > + > + /* clear event registers */ > + setbits32(&lbc->ltesr, LTESR_NAND_MASK); > + out_be32(&lbc->lteatr, 0); > + > + /* Enable interrupts for any detected events */ > + out_be32(&lbc->lteir, LTESR_NAND_MASK); > + > + ctrl->read_bytes = 0; > + ctrl->index = 0; > + ctrl->addr = NULL; > + > + return 0; > +} > + > +static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev) > +{ > + struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev); > + int i; > + > + for (i = 0; i < MAX_BANKS; i++) > + if (ctrl->chips[i]) > + fsl_elbc_chip_remove(ctrl->chips[i]); > + > + if (ctrl->irq) > + free_irq(ctrl->irq, ctrl); > + > + if (ctrl->regs) > + iounmap(ctrl->regs); > + > + dev_set_drvdata(&ofdev->dev, NULL); > + kfree(ctrl); > + return 0; > +} > + > +/* NOTE: This interrupt is also used to report other localbus events, > + * such as transaction errors on other chipselects. If we want to > + * capture those, we'll need to move the IRQ code into a shared > + * LBC driver. > + */ > + > +static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data) > +{ > + struct fsl_elbc_ctrl *ctrl = data; > + struct elbc_regs __iomem *lbc = ctrl->regs; > + __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK; > + > + if (status) { > + out_be32(&lbc->ltesr, status); > + out_be32(&lbc->lteatr, 0); > + > + ctrl->irq_status = status; > + smp_wmb(); > + wake_up(&ctrl->irq_wait); > + > + return IRQ_HANDLED; > + } > + > + return IRQ_NONE; > +} > + > +/* fsl_elbc_ctrl_probe > + * > + * called by device layer when it finds a device matching > + * one our driver can handled. This code allocates all of > + * the resources needed for the controller only. The > + * resources for the NAND banks themselves are allocated > + * in the chip probe function. > +*/ > + > +static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev, > + const struct of_device_id *match) > +{ > + struct device_node *child; > + struct fsl_elbc_ctrl *ctrl; > + int ret; > + > + ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); > + if (!ctrl) > + return -ENOMEM; > + > + dev_set_drvdata(&ofdev->dev, ctrl); > + > + spin_lock_init(&ctrl->controller.lock); > + init_waitqueue_head(&ctrl->controller.wq); > + init_waitqueue_head(&ctrl->irq_wait); > + > + ctrl->regs = of_iomap(ofdev->node, 0); > + if (!ctrl->regs) { > + dev_err(&ofdev->dev, "failed to get memory region\n"); > + ret = -ENODEV; > + goto err; > + } > + > + ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL); > + if (ctrl->irq == NO_IRQ) { > + dev_err(&ofdev->dev, "failed to get irq resource\n"); > + ret = -ENODEV; > + goto err; > + } > + > + ctrl->dev = &ofdev->dev; > + > + ret = fsl_elbc_ctrl_init(ctrl); > + if (ret < 0) > + goto err; > + > + ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl); > + if (ret != 0) { > + dev_err(&ofdev->dev, "failed to install irq (%d)\n", > + ctrl->irq); > + ret = ctrl->irq; > + goto err; > + } > + > + child = NULL; > + while ((child = of_get_next_child(ofdev->node, child))) > + if (of_device_is_compatible(child, "fsl,elbc-fcm-nand")) > + fsl_elbc_chip_probe(ctrl, child); Don't you need some of_node_put calls here? > + > + return 0; > + > +err: > + fsl_elbc_ctrl_remove(ofdev); > + return ret; You don't free ctrl if you get an error. Memory leak? josh _______________________________________________ Linuxppc-dev mailing list Linuxppc-dev@ozlabs.org https://ozlabs.org/mailman/listinfo/linuxppc-dev