Mark Lord <ml...@pobox.com>

I find an issue about autosuspend, and it may result in the same
problem with you. I don't sure if this is helpful to you, because
it only occurs when enabling the autosuspend.

Best Regards,
Hayes

/*
 *  Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 */

#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>

/* Information for net-next */
#define NETNEXT_VERSION         "08"

/* Information for net */
#define NET_VERSION             "2"

#define DRIVER_VERSION          "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_s...@realtek.com>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"

#define R8152_PHY_ID            32

#define PLA_IDR                 0xc000
#define PLA_RCR                 0xc010
#define PLA_RMS                 0xc016
#define PLA_RXFIFO_CTRL0        0xc0a0
#define PLA_RXFIFO_CTRL1        0xc0a4
#define PLA_RXFIFO_CTRL2        0xc0a8
#define PLA_DMY_REG0            0xc0b0
#define PLA_FMC                 0xc0b4
#define PLA_CFG_WOL             0xc0b6
#define PLA_TEREDO_CFG          0xc0bc
#define PLA_MAR                 0xcd00
#define PLA_BACKUP              0xd000
#define PAL_BDC_CR              0xd1a0
#define PLA_TEREDO_TIMER        0xd2cc
#define PLA_REALWOW_TIMER       0xd2e8
#define PLA_LEDSEL              0xdd90
#define PLA_LED_FEATURE         0xdd92
#define PLA_PHYAR               0xde00
#define PLA_BOOT_CTRL           0xe004
#define PLA_GPHY_INTR_IMR       0xe022
#define PLA_EEE_CR              0xe040
#define PLA_EEEP_CR             0xe080
#define PLA_MAC_PWR_CTRL        0xe0c0
#define PLA_MAC_PWR_CTRL2       0xe0ca
#define PLA_MAC_PWR_CTRL3       0xe0cc
#define PLA_MAC_PWR_CTRL4       0xe0ce
#define PLA_WDT6_CTRL           0xe428
#define PLA_TCR0                0xe610
#define PLA_TCR1                0xe612
#define PLA_MTPS                0xe615
#define PLA_TXFIFO_CTRL         0xe618
#define PLA_RSTTALLY            0xe800
#define PLA_CR                  0xe813
#define PLA_CRWECR              0xe81c
#define PLA_CONFIG12            0xe81e  /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34            0xe820  /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5             0xe822
#define PLA_PHY_PWR             0xe84c
#define PLA_OOB_CTRL            0xe84f
#define PLA_CPCR                0xe854
#define PLA_MISC_0              0xe858
#define PLA_MISC_1              0xe85a
#define PLA_OCP_GPHY_BASE       0xe86c
#define PLA_TALLYCNT            0xe890
#define PLA_SFF_STS_7           0xe8de
#define PLA_PHYSTATUS           0xe908
#define PLA_BP_BA               0xfc26
#define PLA_BP_0                0xfc28
#define PLA_BP_1                0xfc2a
#define PLA_BP_2                0xfc2c
#define PLA_BP_3                0xfc2e
#define PLA_BP_4                0xfc30
#define PLA_BP_5                0xfc32
#define PLA_BP_6                0xfc34
#define PLA_BP_7                0xfc36
#define PLA_BP_EN               0xfc38

#define USB_USB2PHY             0xb41e
#define USB_SSPHYLINK2          0xb428
#define USB_U2P3_CTRL           0xb460
#define USB_CSR_DUMMY1          0xb464
#define USB_CSR_DUMMY2          0xb466
#define USB_DEV_STAT            0xb808
#define USB_CONNECT_TIMER       0xcbf8
#define USB_BURST_SIZE          0xcfc0
#define USB_USB_CTRL            0xd406
#define USB_PHY_CTRL            0xd408
#define USB_TX_AGG              0xd40a
#define USB_RX_BUF_TH           0xd40c
#define USB_USB_TIMER           0xd428
#define USB_RX_EARLY_TIMEOUT    0xd42c
#define USB_RX_EARLY_SIZE       0xd42e
#define USB_PM_CTRL_STATUS      0xd432
#define USB_TX_DMA              0xd434
#define USB_TOLERANCE           0xd490
#define USB_LPM_CTRL            0xd41a
#define USB_UPS_CTRL            0xd800
#define USB_MISC_0              0xd81a
#define USB_POWER_CUT           0xd80a
#define USB_AFE_CTRL2           0xd824
#define USB_WDT11_CTRL          0xe43c
#define USB_BP_BA               0xfc26
#define USB_BP_0                0xfc28
#define USB_BP_1                0xfc2a
#define USB_BP_2                0xfc2c
#define USB_BP_3                0xfc2e
#define USB_BP_4                0xfc30
#define USB_BP_5                0xfc32
#define USB_BP_6                0xfc34
#define USB_BP_7                0xfc36
#define USB_BP_EN               0xfc38

/* OCP Registers */
#define OCP_ALDPS_CONFIG        0x2010
#define OCP_EEE_CONFIG1         0x2080
#define OCP_EEE_CONFIG2         0x2092
#define OCP_EEE_CONFIG3         0x2094
#define OCP_BASE_MII            0xa400
#define OCP_EEE_AR              0xa41a
#define OCP_EEE_DATA            0xa41c
#define OCP_PHY_STATUS          0xa420
#define OCP_POWER_CFG           0xa430
#define OCP_EEE_CFG             0xa432
#define OCP_SRAM_ADDR           0xa436
#define OCP_SRAM_DATA           0xa438
#define OCP_DOWN_SPEED          0xa442
#define OCP_EEE_ABLE            0xa5c4
#define OCP_EEE_ADV             0xa5d0
#define OCP_EEE_LPABLE          0xa5d2
#define OCP_PHY_STATE           0xa708          /* nway state for 8153 */
#define OCP_ADC_CFG             0xbc06

/* SRAM Register */
#define SRAM_LPF_CFG            0x8012
#define SRAM_10M_AMP1           0x8080
#define SRAM_10M_AMP2           0x8082
#define SRAM_IMPEDANCE          0x8084

/* PLA_RCR */
#define RCR_AAP                 0x00000001
#define RCR_APM                 0x00000002
#define RCR_AM                  0x00000004
#define RCR_AB                  0x00000008
#define RCR_ACPT_ALL            (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)

/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL      0x00080002
#define RXFIFO_THR1_OOB         0x01800003

/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL        0x00000060
#define RXFIFO_THR2_HIGH        0x00000038
#define RXFIFO_THR2_OOB         0x0000004a
#define RXFIFO_THR2_NORMAL      0x00a0

/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL        0x00000078
#define RXFIFO_THR3_HIGH        0x00000048
#define RXFIFO_THR3_OOB         0x0000005a
#define RXFIFO_THR3_NORMAL      0x0110

/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL       0x00400008
#define TXFIFO_THR_NORMAL2      0x01000008

/* PLA_DMY_REG0 */
#define ECM_ALDPS               0x0002

/* PLA_FMC */
#define FMC_FCR_MCU_EN          0x0001

/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX         0x0002

/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE           0x0010

/* PLA_TCR0 */
#define TCR0_TX_EMPTY           0x0800
#define TCR0_AUTO_FIFO          0x0080

/* PLA_TCR1 */
#define VERSION_MASK            0x7cf0

/* PLA_MTPS */
#define MTPS_JUMBO              (12 * 1024 / 64)
#define MTPS_DEFAULT            (6 * 1024 / 64)

/* PLA_RSTTALLY */
#define TALLY_RESET             0x0001

/* PLA_CR */
#define CR_RST                  0x10
#define CR_RE                   0x08
#define CR_TE                   0x04

/* PLA_CRWECR */
#define CRWECR_NORAML           0x00
#define CRWECR_CONFIG           0xc0

/* PLA_OOB_CTRL */
#define NOW_IS_OOB              0x80
#define TXFIFO_EMPTY            0x20
#define RXFIFO_EMPTY            0x10
#define LINK_LIST_READY         0x02
#define DIS_MCU_CLROOB          0x01
#define FIFO_EMPTY              (TXFIFO_EMPTY | RXFIFO_EMPTY)

/* PLA_MISC_1 */
#define RXDY_GATED_EN           0x0008

/* PLA_SFF_STS_7 */
#define RE_INIT_LL              0x8000
#define MCU_BORW_EN             0x4000

/* PLA_CPCR */
#define CPCR_RX_VLAN            0x0040

/* PLA_CFG_WOL */
#define MAGIC_EN                0x0001

/* PLA_TEREDO_CFG */
#define TEREDO_SEL              0x8000
#define TEREDO_WAKE_MASK        0x7f00
#define TEREDO_RS_EVENT_MASK    0x00fe
#define OOB_TEREDO_EN           0x0001

/* PAL_BDC_CR */
#define ALDPS_PROXY_MODE        0x0001

/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN         0x0010
#define LINK_OFF_WAKE_EN        0x0008

/* PLA_CONFIG5 */
#define BWF_EN                  0x0040
#define MWF_EN                  0x0020
#define UWF_EN                  0x0010
#define LAN_WAKE_EN             0x0002

/* PLA_LED_FEATURE */
#define LED_MODE_MASK           0x0700

/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN          0x0080
#define PFM_PWM_SWITCH          0x0040

/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN         0x00004000
#define MCU_CLK_RATIO           0x07010f07
#define MCU_CLK_RATIO_MASK      0x0f0f0f0f
#define ALDPS_SPDWN_RATIO       0x0f87

/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO         0x8007

/* PLA_MAC_PWR_CTRL3 */
#define PKT_AVAIL_SPDWN_EN      0x0100
#define SUSPEND_SPDWN_EN        0x0004
#define U1U2_SPDWN_EN           0x0002
#define L1_SPDWN_EN             0x0001

/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN        0x1000
#define RXDV_SPDWN_EN           0x0800
#define TX10MIDLE_EN            0x0100
#define TP100_SPDWN_EN          0x0020
#define TP500_SPDWN_EN          0x0010
#define TP1000_SPDWN_EN         0x0008
#define EEE_SPDWN_EN            0x0001

/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK            0x0001
#define SPEED_DOWN_MSK          0x0002
#define SPDWN_RXDV_MSK          0x0004
#define SPDWN_LINKCHG_MSK       0x0008

/* PLA_PHYAR */
#define PHYAR_FLAG              0x80000000

/* PLA_EEE_CR */
#define EEE_RX_EN               0x0001
#define EEE_TX_EN               0x0002

/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE           0x0002

/* USB_USB2PHY */
#define USB2PHY_SUSPEND         0x0001
#define USB2PHY_L1              0x0002

/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask       0x3ffe
#define pwd_dn_scale(x)         ((x) << 1)

/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST           0x0001

/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC             0x0001

/* USB_DEV_STAT */
#define STAT_SPEED_MASK         0x0006
#define STAT_SPEED_HIGH         0x0000
#define STAT_SPEED_FULL         0x0002

/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD    0x03

/* USB_RX_BUF_TH */
#define RX_THR_SUPPER           0x0c350180
#define RX_THR_HIGH             0x7a120180
#define RX_THR_SLOW             0xffff0180

/* USB_TX_DMA */
#define TEST_MODE_DISABLE       0x00000001
#define TX_SIZE_ADJUST1         0x00000100

/* USB_UPS_CTRL */
#define POWER_CUT               0x0100

/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE         0x0001

/* USB_USB_CTRL */
#define RX_AGG_DISABLE          0x0010
#define RX_ZERO_EN              0x0080

/* USB_U2P3_CTRL */
#define U2P3_ENABLE             0x0001

/* USB_POWER_CUT */
#define PWR_EN                  0x0001
#define PHASE2_EN               0x0008

/* USB_MISC_0 */
#define PCUT_STATUS             0x0001

/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER           85000U
#define COALESCE_HIGH           250000U
#define COALESCE_SLOW           524280U

/* USB_WDT11_CTRL */
#define TIMER11_EN              0x0001

/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB          0x30    /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK          0x0c
#define LPM_TIMER_500MS         0x04    /* 500 ms */
#define LPM_TIMER_500US         0x0c    /* 500 us */
#define ROK_EXIT_LPM            0x02

/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK            0xf800
#define SEN_VAL_NORMAL          0xa000
#define SEL_RXIDLE              0x0100

/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE               0x8000
#define ENPDNPS                 0x0200
#define LINKENA                 0x0100
#define DIS_SDSAVE              0x0010

/* OCP_PHY_STATUS */
#define PHY_STAT_MASK           0x0007
#define PHY_STAT_LAN_ON         3
#define PHY_STAT_PWRDN          5

/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN           0x8000
#define EN_ALDPS                0x0004
#define EN_10M_PLLOFF           0x0001

/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP      0x8000
#define RG_MATCLR_EN            0x4000
#define EEE_10_CAP              0x2000
#define EEE_NWAY_EN             0x1000
#define TX_QUIET_EN             0x0200
#define RX_QUIET_EN             0x0100
#define sd_rise_time_mask       0x0070
#define sd_rise_time(x)         (min(x, 7) << 4)        /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP      0x0008
#define SDFALLTIME              0x0007  /* bit 0 ~ 2 */

/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM           0x7000  /* bit 12 ~ 15 */
#define RG_DACQUIET_EN          0x0400
#define RG_LDVQUIET_EN          0x0200
#define RG_CKRSEL               0x0020
#define RG_EEEPRG_EN            0x0010

/* OCP_EEE_CONFIG3 */
#define fast_snr_mask           0xff80
#define fast_snr(x)             (min(x, 0x1ff) << 7)    /* bit 7 ~ 15 */
#define RG_LFS_SEL              0x0060  /* bit 6 ~ 5 */
#define MSK_PH                  0x0006  /* bit 0 ~ 3 */

/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR                0x0000
#define FUN_DATA                0x4000
/* bit[4:0] device addr */

/* OCP_EEE_CFG */
#define CTAP_SHORT_EN           0x0040
#define EEE10_EN                0x0010

/* OCP_DOWN_SPEED */
#define EN_10M_BGOFF            0x0080

/* OCP_PHY_STATE */
#define TXDIS_STATE             0x01
#define ABD_STATE               0x02

/* OCP_ADC_CFG */
#define CKADSEL_L               0x0100
#define ADC_EN                  0x0080
#define EN_EMI_L                0x0040

/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE           0x8000

/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL           0x0008

/* SRAM_10M_AMP2 */
#define AMP_DN                  0x0200

/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK         0x6000

enum rtl_register_content {
        _1000bps        = 0x10,
        _100bps         = 0x08,
        _10bps          = 0x04,
        LINK_STATUS     = 0x02,
        FULL_DUP        = 0x01,
};

#define RTL8152_MAX_TX          4
#define RTL8152_MAX_RX          10
#define INTBUFSIZE              2
#define CRC_SIZE                4
#define TX_ALIGN                4
#define RX_ALIGN                8

#define INTR_LINK               0x0004

#define RTL8152_REQT_READ       0xc0
#define RTL8152_REQT_WRITE      0x40
#define RTL8152_REQ_GET_REGS    0x05
#define RTL8152_REQ_SET_REGS    0x05

#define BYTE_EN_DWORD           0xff
#define BYTE_EN_WORD            0x33
#define BYTE_EN_BYTE            0x11
#define BYTE_EN_SIX_BYTES       0x3f
#define BYTE_EN_START_MASK      0x0f
#define BYTE_EN_END_MASK        0xf0

#define RTL8153_MAX_PACKET      9216 /* 9K */
#define RTL8153_MAX_MTU         (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - VLAN_HLEN)
#define RTL8152_RMS             (VLAN_ETH_FRAME_LEN + VLAN_HLEN)
#define RTL8153_RMS             RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT      (5 * HZ)
#define RTL8152_NAPI_WEIGHT     64

/* rtl8152 flags */
enum rtl8152_flags {
        RTL8152_UNPLUG = 0,
        RTL8152_SET_RX_MODE,
        WORK_ENABLE,
        RTL8152_LINK_CHG,
        SELECTIVE_SUSPEND,
        PHY_RESET,
        SCHEDULE_NAPI,
};

/* Define these values to match your device */
#define VENDOR_ID_REALTEK               0x0bda
#define VENDOR_ID_SAMSUNG               0x04e8
#define VENDOR_ID_LENOVO                0x17ef
#define VENDOR_ID_NVIDIA                0x0955

#define MCU_TYPE_PLA                    0x0100
#define MCU_TYPE_USB                    0x0000

struct tally_counter {
        __le64  tx_packets;
        __le64  rx_packets;
        __le64  tx_errors;
        __le32  rx_errors;
        __le16  rx_missed;
        __le16  align_errors;
        __le32  tx_one_collision;
        __le32  tx_multi_collision;
        __le64  rx_unicast;
        __le64  rx_broadcast;
        __le32  rx_multicast;
        __le16  tx_aborted;
        __le16  tx_underrun;
};

struct rx_desc {
        __le32 opts1;
#define RX_LEN_MASK                     0x7fff

        __le32 opts2;
#define RD_UDP_CS                       BIT(23)
#define RD_TCP_CS                       BIT(22)
#define RD_IPV6_CS                      BIT(20)
#define RD_IPV4_CS                      BIT(19)

        __le32 opts3;
#define IPF                             BIT(23) /* IP checksum fail */
#define UDPF                            BIT(22) /* UDP checksum fail */
#define TCPF                            BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG                     BIT(16)

        __le32 opts4;
        __le32 opts5;
        __le32 opts6;
};

struct tx_desc {
        __le32 opts1;
#define TX_FS                   BIT(31) /* First segment of a packet */
#define TX_LS                   BIT(30) /* Final segment of a packet */
#define GTSENDV4                BIT(28)
#define GTSENDV6                BIT(27)
#define GTTCPHO_SHIFT           18
#define GTTCPHO_MAX             0x7fU
#define TX_LEN_MAX              0x3ffffU

        __le32 opts2;
#define UDP_CS                  BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS                  BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS                 BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS                 BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT               17
#define MSS_MAX                 0x7ffU
#define TCPHO_SHIFT             17
#define TCPHO_MAX               0x7ffU
#define TX_VLAN_TAG             BIT(16)
};

struct r8152;

struct rx_agg {
        struct list_head list;
        struct urb *urb;
        struct r8152 *context;
        dma_addr_t transfer_dma;
        void *buffer;
        void *head;
};

struct tx_agg {
        struct list_head list;
        struct urb *urb;
        struct r8152 *context;
        void *buffer;
        void *head;
        u32 skb_num;
        u32 skb_len;
};

struct r8152 {
        unsigned long flags;
        struct usb_device *udev;
        struct napi_struct napi;
        struct usb_interface *intf;
        struct net_device *netdev;
        struct urb *intr_urb;
        struct tx_agg tx_info[RTL8152_MAX_TX];
        struct rx_agg rx_info[RTL8152_MAX_RX];
        struct list_head rx_done, tx_free;
        struct sk_buff_head tx_queue, rx_queue;
        spinlock_t rx_lock, tx_lock;
        struct delayed_work schedule;
        struct mii_if_info mii;
        struct mutex control;   /* use for hw setting */

        struct rtl_ops {
                void (*init)(struct r8152 *);
                int (*enable)(struct r8152 *);
                void (*disable)(struct r8152 *);
                void (*up)(struct r8152 *);
                void (*down)(struct r8152 *);
                void (*unload)(struct r8152 *);
                int (*eee_get)(struct r8152 *, struct ethtool_eee *);
                int (*eee_set)(struct r8152 *, struct ethtool_eee *);
                bool (*in_nway)(struct r8152 *);
        } rtl_ops;

        int intr_interval;
        u32 saved_wolopts;
        u32 msg_enable;
        u32 tx_qlen;
        u32 coalesce;
        u16 ocp_base;
        u8 *intr_buff;
        u8 version;
};

enum rtl_version {
        RTL_VER_UNKNOWN = 0,
        RTL_VER_01,
        RTL_VER_02,
        RTL_VER_03,
        RTL_VER_04,
        RTL_VER_05,
        RTL_VER_06,
        RTL_VER_MAX
};

enum tx_csum_stat {
        TX_CSUM_SUCCESS = 0,
        TX_CSUM_TSO,
        TX_CSUM_NONE
};

/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
 * The RTL chips use a 64 element hash table based on the Ethernet CRC.
 */
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;

#define RTL_LIMITED_TSO_SIZE    (agg_buf_sz - sizeof(struct tx_desc) - \
                                 VLAN_ETH_HLEN - VLAN_HLEN)

static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
        int ret;
        void *tmp;

        tmp = kmalloc(size, GFP_KERNEL);
        if (!tmp)
                return -ENOMEM;

        ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0),
                              RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
                              value, index, tmp, size, 500);

        memcpy(data, tmp, size);
        kfree(tmp);

        return ret;
}

static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
        int ret;
        void *tmp;

        tmp = kmemdup(data, size, GFP_KERNEL);
        if (!tmp)
                return -ENOMEM;

        ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0),
                              RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
                              value, index, tmp, size, 500);

        kfree(tmp);

        return ret;
}

static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
                            void *data, u16 type)
{
        u16 limit = 64;
        int ret = 0;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        /* both size and indix must be 4 bytes align */
        if ((size & 3) || !size || (index & 3) || !data)
                return -EPERM;

        if ((u32)index + (u32)size > 0xffff)
                return -EPERM;

        while (size) {
                if (size > limit) {
                        ret = get_registers(tp, index, type, limit, data);
                        if (ret < 0)
                                break;

                        index += limit;
                        data += limit;
                        size -= limit;
                } else {
                        ret = get_registers(tp, index, type, size, data);
                        if (ret < 0)
                                break;

                        index += size;
                        data += size;
                        size = 0;
                        break;
                }
        }

        if (ret == -ENODEV)
                set_bit(RTL8152_UNPLUG, &tp->flags);

        return ret;
}

static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
                             u16 size, void *data, u16 type)
{
        int ret;
        u16 byteen_start, byteen_end, byen;
        u16 limit = 512;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        /* both size and indix must be 4 bytes align */
        if ((size & 3) || !size || (index & 3) || !data)
                return -EPERM;

        if ((u32)index + (u32)size > 0xffff)
                return -EPERM;

        byteen_start = byteen & BYTE_EN_START_MASK;
        byteen_end = byteen & BYTE_EN_END_MASK;

        byen = byteen_start | (byteen_start << 4);
        ret = set_registers(tp, index, type | byen, 4, data);
        if (ret < 0)
                goto error1;

        index += 4;
        data += 4;
        size -= 4;

        if (size) {
                size -= 4;

                while (size) {
                        if (size > limit) {
                                ret = set_registers(tp, index,
                                                    type | BYTE_EN_DWORD,
                                                    limit, data);
                                if (ret < 0)
                                        goto error1;

                                index += limit;
                                data += limit;
                                size -= limit;
                        } else {
                                ret = set_registers(tp, index,
                                                    type | BYTE_EN_DWORD,
                                                    size, data);
                                if (ret < 0)
                                        goto error1;

                                index += size;
                                data += size;
                                size = 0;
                                break;
                        }
                }

                byen = byteen_end | (byteen_end >> 4);
                ret = set_registers(tp, index, type | byen, 4, data);
                if (ret < 0)
                        goto error1;
        }

error1:
        if (ret == -ENODEV)
                set_bit(RTL8152_UNPLUG, &tp->flags);

        return ret;
}

static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
        return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}

static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
        return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}

static inline
int usb_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
        return generic_ocp_read(tp, index, size, data, MCU_TYPE_USB);
}

static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
        return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}

static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
        __le32 data;

        generic_ocp_read(tp, index, sizeof(data), &data, type);

        return __le32_to_cpu(data);
}

static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
        __le32 tmp = __cpu_to_le32(data);

        generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}

static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
        u32 data;
        __le32 tmp;
        u8 shift = index & 2;

        index &= ~3;

        generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);

        data = __le32_to_cpu(tmp);
        data >>= (shift * 8);
        data &= 0xffff;

        return (u16)data;
}

static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
        u32 mask = 0xffff;
        __le32 tmp;
        u16 byen = BYTE_EN_WORD;
        u8 shift = index & 2;

        data &= mask;

        if (index & 2) {
                byen <<= shift;
                mask <<= (shift * 8);
                data <<= (shift * 8);
                index &= ~3;
        }

        tmp = __cpu_to_le32(data);

        generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}

static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
        u32 data;
        __le32 tmp;
        u8 shift = index & 3;

        index &= ~3;

        generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);

        data = __le32_to_cpu(tmp);
        data >>= (shift * 8);
        data &= 0xff;

        return (u8)data;
}

static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
        u32 mask = 0xff;
        __le32 tmp;
        u16 byen = BYTE_EN_BYTE;
        u8 shift = index & 3;

        data &= mask;

        if (index & 3) {
                byen <<= shift;
                mask <<= (shift * 8);
                data <<= (shift * 8);
                index &= ~3;
        }

        tmp = __cpu_to_le32(data);

        generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}

static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
        u16 ocp_base, ocp_index;

        ocp_base = addr & 0xf000;
        if (ocp_base != tp->ocp_base) {
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
                tp->ocp_base = ocp_base;
        }

        ocp_index = (addr & 0x0fff) | 0xb000;
        return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}

static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
        u16 ocp_base, ocp_index;

        ocp_base = addr & 0xf000;
        if (ocp_base != tp->ocp_base) {
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
                tp->ocp_base = ocp_base;
        }

        ocp_index = (addr & 0x0fff) | 0xb000;
        ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}

static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
        ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}

static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
        return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}

static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
        ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
        ocp_reg_write(tp, OCP_SRAM_DATA, data);
}

static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
        struct r8152 *tp = netdev_priv(netdev);
        int ret;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        if (phy_id != R8152_PHY_ID)
                return -EINVAL;

        ret = r8152_mdio_read(tp, reg);

        return ret;
}

static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
        struct r8152 *tp = netdev_priv(netdev);

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        if (phy_id != R8152_PHY_ID)
                return;

        r8152_mdio_write(tp, reg, val);
}

static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);

static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
        struct r8152 *tp = netdev_priv(netdev);
        struct sockaddr *addr = p;
        int ret = -EADDRNOTAVAIL;

        if (!is_valid_ether_addr(addr->sa_data))
                goto out1;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out1;

        mutex_lock(&tp->control);

        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);

        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
        pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);
out1:
        return ret;
}

static int set_ethernet_addr(struct r8152 *tp)
{
        struct net_device *dev = tp->netdev;
        struct sockaddr sa;
        int ret;

        if (tp->version == RTL_VER_01)
                ret = pla_ocp_read(tp, PLA_IDR, 8, sa.sa_data);
        else
                ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa.sa_data);

        if (ret < 0) {
                netif_err(tp, probe, dev, "Get ether addr fail\n");
        } else if (!is_valid_ether_addr(sa.sa_data)) {
                netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
                          sa.sa_data);
                eth_hw_addr_random(dev);
                ether_addr_copy(sa.sa_data, dev->dev_addr);
                ret = rtl8152_set_mac_address(dev, &sa);
                netif_info(tp, probe, dev, "Random ether addr %pM\n",
                           sa.sa_data);
        } else {
                if (tp->version == RTL_VER_01)
                        ether_addr_copy(dev->dev_addr, sa.sa_data);
                else
                        ret = rtl8152_set_mac_address(dev, &sa);
        }

        return ret;
}

static void read_bulk_callback(struct urb *urb)
{
        struct net_device *netdev;
        int status = urb->status;
        struct rx_agg *agg;
        struct r8152 *tp;

        agg = urb->context;
        if (!agg)
                return;

        tp = agg->context;
        if (!tp)
                return;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        if (!test_bit(WORK_ENABLE, &tp->flags))
                return;

        netdev = tp->netdev;

        /* When link down, the driver would cancel all bulks. */
        /* This avoid the re-submitting bulk */
        if (!netif_carrier_ok(netdev))
                return;

        usb_mark_last_busy(tp->udev);

        switch (status) {
        case 0:
                mb();
                if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) {
                        printk(KERN_INFO "r8152_read_bulk_callback: 
actual_length (%u) too short\n", urb->actual_length);
                        break;
                }

                spin_lock(&tp->rx_lock);
                list_add_tail(&agg->list, &tp->rx_done);
                spin_unlock(&tp->rx_lock);
                napi_schedule(&tp->napi);
                return;
        case -ESHUTDOWN:
                set_bit(RTL8152_UNPLUG, &tp->flags);
                netif_device_detach(tp->netdev);
                return;
        case -ENOENT:
                return; /* the urb is in unlink state */
        case -ETIME:
                if (net_ratelimit())
                        netdev_warn(netdev, "maybe reset is needed?\n");
                break;
        default:
                if (net_ratelimit())
                        netdev_warn(netdev, "Rx status %d\n", status);
                break;
        }

        r8152_submit_rx(tp, agg, GFP_ATOMIC);
}

static void write_bulk_callback(struct urb *urb)
{
        struct net_device_stats *stats;
        struct net_device *netdev;
        struct tx_agg *agg;
        struct r8152 *tp;
        int status = urb->status;

        agg = urb->context;
        if (!agg)
                return;

        tp = agg->context;
        if (!tp)
                return;

        netdev = tp->netdev;
        stats = &netdev->stats;
        if (status) {
                if (net_ratelimit())
                        netdev_warn(netdev, "Tx status %d\n", status);
                stats->tx_errors += agg->skb_num;
        } else {
                stats->tx_packets += agg->skb_num;
                stats->tx_bytes += agg->skb_len;
        }

        spin_lock(&tp->tx_lock);
        list_add_tail(&agg->list, &tp->tx_free);
        spin_unlock(&tp->tx_lock);

        usb_autopm_put_interface_async(tp->intf);

        if (!netif_carrier_ok(netdev))
                return;

        if (!test_bit(WORK_ENABLE, &tp->flags))
                return;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        if (!skb_queue_empty(&tp->tx_queue))
                napi_schedule(&tp->napi);
}

static void intr_callback(struct urb *urb)
{
        struct r8152 *tp;
        __le16 *d;
        int status = urb->status;
        int res;

        tp = urb->context;
        if (!tp)
                return;

        if (!test_bit(WORK_ENABLE, &tp->flags))
                return;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        switch (status) {
        case 0:                 /* success */
                break;
        case -ECONNRESET:       /* unlink */
        case -ESHUTDOWN:
                netif_device_detach(tp->netdev);
        case -ENOENT:
        case -EPROTO:
                netif_info(tp, intr, tp->netdev,
                           "Stop submitting intr, status %d\n", status);
                return;
        case -EOVERFLOW:
                netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
                goto resubmit;
        /* -EPIPE:  should clear the halt */
        default:
                netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
                goto resubmit;
        }

        d = urb->transfer_buffer;
        if (INTR_LINK & __le16_to_cpu(d[0])) {
                if (!netif_carrier_ok(tp->netdev)) {
                        set_bit(RTL8152_LINK_CHG, &tp->flags);
                        schedule_delayed_work(&tp->schedule, 0);
                }
        } else {
                if (netif_carrier_ok(tp->netdev)) {
                        set_bit(RTL8152_LINK_CHG, &tp->flags);
                        schedule_delayed_work(&tp->schedule, 0);
                }
        }

resubmit:
        res = usb_submit_urb(urb, GFP_ATOMIC);
        if (res == -ENODEV) {
                set_bit(RTL8152_UNPLUG, &tp->flags);
                netif_device_detach(tp->netdev);
        } else if (res) {
                netif_err(tp, intr, tp->netdev,
                          "can't resubmit intr, status %d\n", res);
        }
}

static inline void *rx_agg_align(void *data)
{
        return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}

static inline void *tx_agg_align(void *data)
{
        return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}

static void free_all_mem(struct r8152 *tp)
{
        int i;

        for (i = 0; i < RTL8152_MAX_RX; i++) {
                usb_free_urb(tp->rx_info[i].urb);
                tp->rx_info[i].urb = NULL;

                usb_free_coherent(tp->udev, agg_buf_sz, tp->rx_info[i].buffer, 
tp->rx_info[i].transfer_dma);
                tp->rx_info[i].buffer = NULL;
                tp->rx_info[i].head = NULL;
        }

        for (i = 0; i < RTL8152_MAX_TX; i++) {
                usb_free_urb(tp->tx_info[i].urb);
                tp->tx_info[i].urb = NULL;

                kfree(tp->tx_info[i].buffer);
                tp->tx_info[i].buffer = NULL;
                tp->tx_info[i].head = NULL;
        }

        usb_free_urb(tp->intr_urb);
        tp->intr_urb = NULL;

        kfree(tp->intr_buff);
        tp->intr_buff = NULL;
}

static int alloc_all_mem(struct r8152 *tp)
{
        struct net_device *netdev = tp->netdev;
        struct usb_interface *intf = tp->intf;
        struct usb_host_interface *alt = intf->cur_altsetting;
        struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
        struct urb *urb;
        int node, i;
        u8 *buf;

        node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;

        spin_lock_init(&tp->rx_lock);
        spin_lock_init(&tp->tx_lock);
        INIT_LIST_HEAD(&tp->tx_free);
        skb_queue_head_init(&tp->tx_queue);
        skb_queue_head_init(&tp->rx_queue);

        for (i = 0; i < RTL8152_MAX_RX; i++) {
                dma_addr_t transfer_dma = 0;
                buf = usb_alloc_coherent(tp->udev, agg_buf_sz, GFP_KERNEL, 
&transfer_dma);
                if (!buf)
                        goto err1;

                if (buf != rx_agg_align(buf)) {
                        kfree(buf);
                        buf = kmalloc_node(agg_buf_sz + RX_ALIGN, GFP_KERNEL,
                                           node);
                        if (!buf)
                                goto err1;
                }

                urb = usb_alloc_urb(0, GFP_KERNEL);
                if (!urb) {
                        kfree(buf);
                        goto err1;
                }

                INIT_LIST_HEAD(&tp->rx_info[i].list);
                tp->rx_info[i].context = tp;
                tp->rx_info[i].urb = urb;
                tp->rx_info[i].transfer_dma = transfer_dma;
                tp->rx_info[i].buffer = buf;
                tp->rx_info[i].head = rx_agg_align(buf);
        }

        for (i = 0; i < RTL8152_MAX_TX; i++) {
                buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
                if (!buf)
                        goto err1;

                if (buf != tx_agg_align(buf)) {
                        kfree(buf);
                        buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
                                           node);
                        if (!buf)
                                goto err1;
                }

                urb = usb_alloc_urb(0, GFP_KERNEL);
                if (!urb) {
                        kfree(buf);
                        goto err1;
                }

                INIT_LIST_HEAD(&tp->tx_info[i].list);
                tp->tx_info[i].context = tp;
                tp->tx_info[i].urb = urb;
                tp->tx_info[i].buffer = buf;
                tp->tx_info[i].head = tx_agg_align(buf);

                list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
        }

        tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
        if (!tp->intr_urb)
                goto err1;

        tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
        if (!tp->intr_buff)
                goto err1;

        tp->intr_interval = (int)ep_intr->desc.bInterval;
        usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3),
                         tp->intr_buff, INTBUFSIZE, intr_callback,
                         tp, tp->intr_interval);

        return 0;

err1:
        free_all_mem(tp);
        return -ENOMEM;
}

static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
        struct tx_agg *agg = NULL;
        unsigned long flags;

        if (list_empty(&tp->tx_free))
                return NULL;

        spin_lock_irqsave(&tp->tx_lock, flags);
        if (!list_empty(&tp->tx_free)) {
                struct list_head *cursor;

                cursor = tp->tx_free.next;
                list_del_init(cursor);
                agg = list_entry(cursor, struct tx_agg, list);
        }
        spin_unlock_irqrestore(&tp->tx_lock, flags);

        return agg;
}

/* r8152_csum_workaround()
 * The hw limites the value the transport offset. When the offset is out of the
 * range, calculate the checksum by sw.
 */
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
                                  struct sk_buff_head *list)
{
        if (skb_shinfo(skb)->gso_size) {
                netdev_features_t features = tp->netdev->features;
                struct sk_buff_head seg_list;
                struct sk_buff *segs, *nskb;

                features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
                segs = skb_gso_segment(skb, features);
                if (IS_ERR(segs) || !segs)
                        goto drop;

                __skb_queue_head_init(&seg_list);

                do {
                        nskb = segs;
                        segs = segs->next;
                        nskb->next = NULL;
                        __skb_queue_tail(&seg_list, nskb);
                } while (segs);

                skb_queue_splice(&seg_list, list);
                dev_kfree_skb(skb);
        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
                if (skb_checksum_help(skb) < 0)
                        goto drop;

                __skb_queue_head(list, skb);
        } else {
                struct net_device_stats *stats;

drop:
                stats = &tp->netdev->stats;
                stats->tx_dropped++;
                dev_kfree_skb(skb);
        }
}

/* msdn_giant_send_check()
 * According to the document of microsoft, the TCP Pseudo Header excludes the
 * packet length for IPv6 TCP large packets.
 */
static int msdn_giant_send_check(struct sk_buff *skb)
{
        const struct ipv6hdr *ipv6h;
        struct tcphdr *th;
        int ret;

        ret = skb_cow_head(skb, 0);
        if (ret)
                return ret;

        ipv6h = ipv6_hdr(skb);
        th = tcp_hdr(skb);

        th->check = 0;
        th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0);

        return ret;
}

static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
        if (skb_vlan_tag_present(skb)) {
                u32 opts2;

                opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
                desc->opts2 |= cpu_to_le32(opts2);
        }
}

static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
        u32 opts2 = le32_to_cpu(desc->opts2);

        if (opts2 & RX_VLAN_TAG)
                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
                                       swab16(opts2 & 0xffff));
}

static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
                         struct sk_buff *skb, u32 len, u32 transport_offset)
{
        u32 mss = skb_shinfo(skb)->gso_size;
        u32 opts1, opts2 = 0;
        int ret = TX_CSUM_SUCCESS;

        WARN_ON_ONCE(len > TX_LEN_MAX);

        opts1 = len | TX_FS | TX_LS;

        if (mss) {
                if (transport_offset > GTTCPHO_MAX) {
                        netif_warn(tp, tx_err, tp->netdev,
                                   "Invalid transport offset 0x%x for TSO\n",
                                   transport_offset);
                        ret = TX_CSUM_TSO;
                        goto unavailable;
                }

                switch (vlan_get_protocol(skb)) {
                case htons(ETH_P_IP):
                        opts1 |= GTSENDV4;
                        break;

                case htons(ETH_P_IPV6):
                        if (msdn_giant_send_check(skb)) {
                                ret = TX_CSUM_TSO;
                                goto unavailable;
                        }
                        opts1 |= GTSENDV6;
                        break;

                default:
                        WARN_ON_ONCE(1);
                        break;
                }

                opts1 |= transport_offset << GTTCPHO_SHIFT;
                opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
                u8 ip_protocol;

                if (transport_offset > TCPHO_MAX) {
                        netif_warn(tp, tx_err, tp->netdev,
                                   "Invalid transport offset 0x%x\n",
                                   transport_offset);
                        ret = TX_CSUM_NONE;
                        goto unavailable;
                }

                switch (vlan_get_protocol(skb)) {
                case htons(ETH_P_IP):
                        opts2 |= IPV4_CS;
                        ip_protocol = ip_hdr(skb)->protocol;
                        break;

                case htons(ETH_P_IPV6):
                        opts2 |= IPV6_CS;
                        ip_protocol = ipv6_hdr(skb)->nexthdr;
                        break;

                default:
                        ip_protocol = IPPROTO_RAW;
                        break;
                }

                if (ip_protocol == IPPROTO_TCP)
                        opts2 |= TCP_CS;
                else if (ip_protocol == IPPROTO_UDP)
                        opts2 |= UDP_CS;
                else
                        WARN_ON_ONCE(1);

                opts2 |= transport_offset << TCPHO_SHIFT;
        }

        desc->opts2 = cpu_to_le32(opts2);
        desc->opts1 = cpu_to_le32(opts1);

unavailable:
        return ret;
}

static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
        struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
        int remain, ret;
        u8 *tx_data;

        __skb_queue_head_init(&skb_head);
        spin_lock(&tx_queue->lock);
        skb_queue_splice_init(tx_queue, &skb_head);
        spin_unlock(&tx_queue->lock);

        tx_data = agg->head;
        agg->skb_num = 0;
        agg->skb_len = 0;
        remain = agg_buf_sz;

        while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
                struct tx_desc *tx_desc;
                struct sk_buff *skb;
                unsigned int len;
                u32 offset;

                skb = __skb_dequeue(&skb_head);
                if (!skb)
                        break;

                len = skb->len + sizeof(*tx_desc);

                if (len > remain) {
                        __skb_queue_head(&skb_head, skb);
                        break;
                }

                tx_data = tx_agg_align(tx_data);
                tx_desc = (struct tx_desc *)tx_data;

                offset = (u32)skb_transport_offset(skb);

                if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
                        r8152_csum_workaround(tp, skb, &skb_head);
                        continue;
                }

                rtl_tx_vlan_tag(tx_desc, skb);

                tx_data += sizeof(*tx_desc);

                len = skb->len;
                if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
                        struct net_device_stats *stats = &tp->netdev->stats;

                        stats->tx_dropped++;
                        dev_kfree_skb_any(skb);
                        tx_data -= sizeof(*tx_desc);
                        continue;
                }

                tx_data += len;
                agg->skb_len += len;
                agg->skb_num++;

                dev_kfree_skb_any(skb);

                remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
        }

        if (!skb_queue_empty(&skb_head)) {
                spin_lock(&tx_queue->lock);
                skb_queue_splice(&skb_head, tx_queue);
                spin_unlock(&tx_queue->lock);
        }

        netif_tx_lock(tp->netdev);

        if (netif_queue_stopped(tp->netdev) &&
            skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
                netif_wake_queue(tp->netdev);

        netif_tx_unlock(tp->netdev);

        ret = usb_autopm_get_interface_async(tp->intf);
        if (ret < 0)
                goto out_tx_fill;

        usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2),
                          agg->head, (int)(tx_data - (u8 *)agg->head),
                          (usb_complete_t)write_bulk_callback, agg);

        ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
        if (ret < 0)
                usb_autopm_put_interface_async(tp->intf);

out_tx_fill:
        return ret;
}

static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
        u8 checksum = CHECKSUM_NONE;
        u32 opts2, opts3;

        if (tp->version == RTL_VER_01)
                goto return_result;

        opts2 = le32_to_cpu(rx_desc->opts2);
        opts3 = le32_to_cpu(rx_desc->opts3);

        if (opts2 & RD_IPV4_CS) {
                if (opts3 & IPF)
                        checksum = CHECKSUM_NONE;
                else if ((opts2 & RD_UDP_CS) && (opts3 & UDPF))
                        checksum = CHECKSUM_NONE;
                else if ((opts2 & RD_TCP_CS) && (opts3 & TCPF))
                        checksum = CHECKSUM_NONE;
                else
                        checksum = CHECKSUM_UNNECESSARY;
        } else if (opts2 & RD_IPV6_CS) {
                if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
                        checksum = CHECKSUM_UNNECESSARY;
                else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
                        checksum = CHECKSUM_UNNECESSARY;
        }

return_result:
        return checksum;
}

static void r8152_dump_rx_desc(struct rx_desc *rx_desc)
{
        int rx_len = (le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK);

        printk(KERN_INFO "%s: %08x %08x %08x %08x %08x %08x rx_len=%d\n",
                __func__,
                le32_to_cpu(rx_desc->opts1),
                le32_to_cpu(rx_desc->opts2),
                le32_to_cpu(rx_desc->opts3),
                le32_to_cpu(rx_desc->opts4),
                le32_to_cpu(rx_desc->opts5),
                le32_to_cpu(rx_desc->opts6),
                rx_len);
}

static int r8152_check_rx_desc(struct r8152 *tp, struct rx_desc *rx_desc)
{
        u32 opts1, opts2, opts3, opts4, opts5, opts6;
        int pkt_len;

        if (tp->version == RTL_VER_01)
                return 0;  /* rx_desc looks okay */

        opts1 = le32_to_cpu(rx_desc->opts1);
        opts2 = le32_to_cpu(rx_desc->opts2);
        opts3 = le32_to_cpu(rx_desc->opts3);
        opts4 = le32_to_cpu(rx_desc->opts4);
        opts5 = le32_to_cpu(rx_desc->opts5);
        opts6 = le32_to_cpu(rx_desc->opts6);
        pkt_len = (opts1 & RX_LEN_MASK) - CRC_SIZE;

        if ( !opts1
         || ((opts1 & 0x0ff3f000) != 0x04400000 && (opts1 & 0xffff0000) != 
0x00040000 && (opts1 & 0xffff0000) != 0x00080000)
         ||  (opts2 & ~(BIT(30)|RD_UDP_CS|RD_TCP_CS|RD_IPV6_CS|RD_IPV4_CS))
         || ((opts2 & RD_IPV6_CS) && (opts2 & RD_IPV4_CS))
         || ((opts3 & 0xffff0000) & ~(IPF|UDPF|TCPF|RX_VLAN_TAG))  // 0xff170000
         ||  (opts4 & 0x060cfff8) != 0x06000000
         ||  (opts5 | opts6)
         || pkt_len > (tp->netdev->mtu + 42)
        ){
                printk(KERN_WARNING "%s: rx_desc looks bad.\n", __func__);
                return -EIO;  /* rx_desc looks bad */
        }
        return 0;  /* rx_desc looks okay */
}

static int rx_bottom(struct r8152 *tp, int budget)
{
        unsigned long flags;
        struct list_head *cursor, *next, rx_queue;
        int ret = 0, work_done = 0;

        if (!skb_queue_empty(&tp->rx_queue)) {
                while (work_done < budget) {
                        struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
                        struct net_device *netdev = tp->netdev;
                        struct net_device_stats *stats = &netdev->stats;
                        unsigned int pkt_len;

                        if (!skb)
                                break;

                        pkt_len = skb->len;
                        napi_gro_receive(&tp->napi, skb);
                        work_done++;
                        stats->rx_packets++;
                        stats->rx_bytes += pkt_len;
                }
        }

        if (list_empty(&tp->rx_done))
                goto out1;

        INIT_LIST_HEAD(&rx_queue);
        spin_lock_irqsave(&tp->rx_lock, flags);
        list_splice_init(&tp->rx_done, &rx_queue);
        spin_unlock_irqrestore(&tp->rx_lock, flags);

        list_for_each_safe(cursor, next, &rx_queue) {
                struct rx_desc *rx_desc;
                struct rx_agg *agg;
                int len_used = 0;
                struct urb *urb;
                u8 *rx_data;

                list_del_init(cursor);

                agg = list_entry(cursor, struct rx_agg, list);
                urb = agg->urb;
                if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) {
                        printk(KERN_WARNING "r8152_rx_bottom: URB too small: 
actual_length=%u\n", urb->actual_length);
                        goto submit;
                }

                rx_desc = agg->head;
                rx_data = agg->head;

                mb();
                while (urb->actual_length > len_used) {
                        struct net_device *netdev = tp->netdev;
                        struct net_device_stats *stats = &netdev->stats;
                        unsigned int pkt_len;
                        struct sk_buff *skb;

                        if ((len_used + sizeof(struct rx_desc)) > 
urb->actual_length) {
                                printk(KERN_WARNING "r8152_rx_bottom: 
offset=%u/%u too small for rx_desc\n",
                                        len_used, urb->actual_length);
                                break;
                        }
                        len_used += sizeof(struct rx_desc);

                        if (r8152_check_rx_desc(tp, rx_desc)) {
                                printk(KERN_WARNING "r8152_rx_bottom: 
offset=%u/%u bad rx_desc\n",
                                        len_used - sizeof(struct rx_desc), 
urb->actual_length);
                                r8152_dump_rx_desc(rx_desc);
                        }

                        pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
                        if (pkt_len < ETH_ZLEN) {
                                printk(KERN_WARNING "r8152_rx_bottom: 
offset=%u/%u pkt_len(%u) < ETH_ZLEN\n",
                                        len_used, urb->actual_length, pkt_len);
                                r8152_dump_rx_desc(rx_desc);
                                break;
                        }

                        len_used += pkt_len;
                        if (urb->actual_length < len_used) {
                                printk(KERN_WARNING "r8152_rx_bottom: 
offset=%u/%u pkt_len(%u) exceeds buffer\n",
                                        len_used - pkt_len, urb->actual_length, 
pkt_len);
                                r8152_dump_rx_desc(rx_desc);
                                break;
                        }

                        pkt_len -= CRC_SIZE;
                        rx_data += sizeof(struct rx_desc);

                        skb = netdev_alloc_skb_ip_align(netdev, pkt_len);
                        if (!skb) {
                                printk(KERN_WARNING "r8152_rx_bottom: 
netdev_alloc_skb_ip_align(%u) failed\n", pkt_len);
                                stats->rx_dropped++;
                                goto find_next_rx;
                        }

                        skb->ip_summed = r8152_rx_csum(tp, rx_desc);
                        memcpy(skb->data, rx_data, pkt_len);
                        skb_put(skb, pkt_len);
                        skb->protocol = eth_type_trans(skb, netdev);
                        rtl_rx_vlan_tag(rx_desc, skb);
                        if (work_done < budget) {
                                napi_gro_receive(&tp->napi, skb);
                                work_done++;
                                stats->rx_packets++;
                                stats->rx_bytes += pkt_len;
                        } else {
                                __skb_queue_tail(&tp->rx_queue, skb);
                        }

find_next_rx:
                        rx_data = rx_agg_align(rx_data + pkt_len + CRC_SIZE);
                        rx_desc = (struct rx_desc *)rx_data;
                        len_used = (int)(rx_data - (u8 *)agg->head);
                }

submit:
                if (!ret) {
                        ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
                } else {
                        urb->actual_length = 0;
                        list_add_tail(&agg->list, next);
                }
        }

        if (!list_empty(&rx_queue)) {
                spin_lock_irqsave(&tp->rx_lock, flags);
                list_splice_tail(&rx_queue, &tp->rx_done);
                spin_unlock_irqrestore(&tp->rx_lock, flags);
        }

out1:
        return work_done;
}

static void tx_bottom(struct r8152 *tp)
{
        int res;

        do {
                struct tx_agg *agg;

                if (skb_queue_empty(&tp->tx_queue))
                        break;

                agg = r8152_get_tx_agg(tp);
                if (!agg)
                        break;

                res = r8152_tx_agg_fill(tp, agg);
                if (res) {
                        struct net_device *netdev = tp->netdev;

                        if (res == -ENODEV) {
                                set_bit(RTL8152_UNPLUG, &tp->flags);
                                netif_device_detach(netdev);
                        } else {
                                struct net_device_stats *stats = &netdev->stats;
                                unsigned long flags;

                                netif_warn(tp, tx_err, netdev,
                                           "failed tx_urb %d\n", res);
                                stats->tx_dropped += agg->skb_num;

                                spin_lock_irqsave(&tp->tx_lock, flags);
                                list_add_tail(&agg->list, &tp->tx_free);
                                spin_unlock_irqrestore(&tp->tx_lock, flags);
                        }
                }
        } while (res == 0);
}

static void bottom_half(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        if (!test_bit(WORK_ENABLE, &tp->flags))
                return;

        /* When link down, the driver would cancel all bulks. */
        /* This avoid the re-submitting bulk */
        if (!netif_carrier_ok(tp->netdev))
                return;

        clear_bit(SCHEDULE_NAPI, &tp->flags);

        tx_bottom(tp);
}

static int r8152_poll(struct napi_struct *napi, int budget)
{
        struct r8152 *tp = container_of(napi, struct r8152, napi);
        int work_done;

        work_done = rx_bottom(tp, budget);
        bottom_half(tp);

        if (work_done < budget) {
                napi_complete(napi);
                if (!list_empty(&tp->rx_done))
                        napi_schedule(napi);
        }

        return work_done;
}

static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
        int ret;

        /* The rx would be stopped, so skip submitting */
        if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
            !test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
                return 0;  /* FIXME: memory leak? */

        usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1),
                          agg->head, agg_buf_sz,
                          (usb_complete_t)read_bulk_callback, agg);

        agg->urb->transfer_dma  = agg->transfer_dma;
        agg->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
        mb();
        ret = usb_submit_urb(agg->urb, mem_flags);
        if (ret == -ENODEV) {
                set_bit(RTL8152_UNPLUG, &tp->flags);
                netif_device_detach(tp->netdev);
        } else if (ret) {
                struct urb *urb = agg->urb;
                unsigned long flags;

                urb->actual_length = 0;
                spin_lock_irqsave(&tp->rx_lock, flags);
                list_add_tail(&agg->list, &tp->rx_done);
                spin_unlock_irqrestore(&tp->rx_lock, flags);

                netif_err(tp, rx_err, tp->netdev,
                          "Couldn't submit rx[%p], ret = %d\n", agg, ret);

                napi_schedule(&tp->napi);
        }

        return ret;
}

static void rtl_drop_queued_tx(struct r8152 *tp)
{
        struct net_device_stats *stats = &tp->netdev->stats;
        struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
        struct sk_buff *skb;

        if (skb_queue_empty(tx_queue))
                return;

        __skb_queue_head_init(&skb_head);
        spin_lock_bh(&tx_queue->lock);
        skb_queue_splice_init(tx_queue, &skb_head);
        spin_unlock_bh(&tx_queue->lock);

        while ((skb = __skb_dequeue(&skb_head))) {
                dev_kfree_skb(skb);
                stats->tx_dropped++;
        }
}

static void rtl8152_tx_timeout(struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);

        netif_warn(tp, tx_err, netdev, "Tx timeout\n");

        usb_queue_reset_device(tp->intf);
}

static void rtl8152_set_rx_mode(struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);

        if (netif_carrier_ok(netdev)) {
                set_bit(RTL8152_SET_RX_MODE, &tp->flags);
                schedule_delayed_work(&tp->schedule, 0);
        }
}

static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);
        u32 mc_filter[2];       /* Multicast hash filter */
        __le32 tmp[2];
        u32 ocp_data;

        clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
        netif_stop_queue(netdev);
        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data &= ~RCR_ACPT_ALL;
        ocp_data |= RCR_AB | RCR_APM;

        if (netdev->flags & IFF_PROMISC) {
                /* Unconditionally log net taps. */
                netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
                ocp_data |= RCR_AM | RCR_AAP;
                mc_filter[1] = 0xffffffff;
                mc_filter[0] = 0xffffffff;
        } else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
                   (netdev->flags & IFF_ALLMULTI)) {
                /* Too many to filter perfectly -- accept all multicasts. */
                ocp_data |= RCR_AM;
                mc_filter[1] = 0xffffffff;
                mc_filter[0] = 0xffffffff;
        } else {
                struct netdev_hw_addr *ha;

                mc_filter[1] = 0;
                mc_filter[0] = 0;
                netdev_for_each_mc_addr(ha, netdev) {
                        int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;

                        mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
                        ocp_data |= RCR_AM;
                }
        }

        tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
        tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));

        pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
        netif_wake_queue(netdev);
}

static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
                       netdev_features_t features)
{
        u32 mss = skb_shinfo(skb)->gso_size;
        int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
        int offset = skb_transport_offset(skb);

        if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
                features &= ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK);
        else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
                features &= ~NETIF_F_GSO_MASK;

        return features;
}

static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
                                      struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);

        skb_tx_timestamp(skb);

        skb_queue_tail(&tp->tx_queue, skb);

        if (!list_empty(&tp->tx_free)) {
                if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
                        set_bit(SCHEDULE_NAPI, &tp->flags);
                        schedule_delayed_work(&tp->schedule, 0);
                } else {
                        usb_mark_last_busy(tp->udev);
                        napi_schedule(&tp->napi);
                }
        } else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
                netif_stop_queue(netdev);
        }

        return NETDEV_TX_OK;
}

static void r8152b_reset_packet_filter(struct r8152 *tp)
{
        u32     ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
        ocp_data &= ~FMC_FCR_MCU_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
        ocp_data |= FMC_FCR_MCU_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}

static void rtl8152_nic_reset(struct r8152 *tp)
{
        int     i;

        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);

        for (i = 0; i < 1000; i++) {
                if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
                        break;
                usleep_range(100, 400);
        }
}

static void set_tx_qlen(struct r8152 *tp)
{
        struct net_device *netdev = tp->netdev;

        tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + VLAN_HLEN +
                                    sizeof(struct tx_desc));
}

static inline u8 rtl8152_get_speed(struct r8152 *tp)
{
        return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}

static void rtl_set_eee_plus(struct r8152 *tp)
{
        u32 ocp_data;
        u8 speed;

        speed = rtl8152_get_speed(tp);
        if (speed & _10bps) {
                ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
                ocp_data |= EEEP_CR_EEEP_TX;
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
        } else {
                ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
                ocp_data &= ~EEEP_CR_EEEP_TX;
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
        }
}

static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
        if (enable)
                ocp_data |= RXDY_GATED_EN;
        else
                ocp_data &= ~RXDY_GATED_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}

static int rtl_start_rx(struct r8152 *tp)
{
        int i, ret = 0;

        INIT_LIST_HEAD(&tp->rx_done);
        for (i = 0; i < RTL8152_MAX_RX; i++) {
                INIT_LIST_HEAD(&tp->rx_info[i].list);
                ret = r8152_submit_rx(tp, &tp->rx_info[i], GFP_KERNEL);
                if (ret)
                        break;
        }

        if (ret && ++i < RTL8152_MAX_RX) {
                struct list_head rx_queue;
                unsigned long flags;

                INIT_LIST_HEAD(&rx_queue);

                do {
                        struct rx_agg *agg = &tp->rx_info[i++];
                        struct urb *urb = agg->urb;

                        urb->actual_length = 0;
                        list_add_tail(&agg->list, &rx_queue);
                } while (i < RTL8152_MAX_RX);

                spin_lock_irqsave(&tp->rx_lock, flags);
                list_splice_tail(&rx_queue, &tp->rx_done);
                spin_unlock_irqrestore(&tp->rx_lock, flags);
        }

        return ret;
}

static int rtl_stop_rx(struct r8152 *tp)
{
        int i;

        for (i = 0; i < RTL8152_MAX_RX; i++)
                usb_kill_urb(tp->rx_info[i].urb);

        while (!skb_queue_empty(&tp->rx_queue))
                dev_kfree_skb(__skb_dequeue(&tp->rx_queue));

        return 0;
}

static int rtl_enable(struct r8152 *tp)
{
        u32 ocp_data;

        r8152b_reset_packet_filter(tp);

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
        ocp_data |= CR_RE | CR_TE;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);

        rxdy_gated_en(tp, false);

        return 0;
}

static int rtl8152_enable(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        set_tx_qlen(tp);
        rtl_set_eee_plus(tp);

        return rtl_enable(tp);
}

static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
        u32 ocp_data = tp->coalesce / 8;

        ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, ocp_data);
}

static void r8153_set_rx_early_size(struct r8152 *tp)
{
        u32 mtu = tp->netdev->mtu;
        u32 ocp_data = (agg_buf_sz - mtu - VLAN_ETH_HLEN - VLAN_HLEN) / 4;

        ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data);
}

static int rtl8153_enable(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        usb_disable_lpm(tp->udev);
        set_tx_qlen(tp);
        rtl_set_eee_plus(tp);
        r8153_set_rx_early_timeout(tp);
        r8153_set_rx_early_size(tp);

        return rtl_enable(tp);
}

static void rtl_disable(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
                rtl_drop_queued_tx(tp);
                return;
        }

        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data &= ~RCR_ACPT_ALL;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

        rtl_drop_queued_tx(tp);

        for (i = 0; i < RTL8152_MAX_TX; i++)
                usb_kill_urb(tp->tx_info[i].urb);

        rxdy_gated_en(tp, true);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
                        break;
                usleep_range(1000, 2000);
        }

        for (i = 0; i < 1000; i++) {
                if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
                        break;
                usleep_range(1000, 2000);
        }

        rtl_stop_rx(tp);

        rtl8152_nic_reset(tp);
}

static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
        if (enable)
                ocp_data |= POWER_CUT;
        else
                ocp_data &= ~POWER_CUT;
        ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
        ocp_data &= ~RESUME_INDICATE;
        ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}

static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
        if (enable)
                ocp_data |= CPCR_RX_VLAN;
        else
                ocp_data &= ~CPCR_RX_VLAN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
}

static int rtl8152_set_features(struct net_device *dev,
                                netdev_features_t features)
{
        netdev_features_t changed = features ^ dev->features;
        struct r8152 *tp = netdev_priv(dev);
        int ret;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
                if (features & NETIF_F_HW_VLAN_CTAG_RX)
                        rtl_rx_vlan_en(tp, true);
                else
                        rtl_rx_vlan_en(tp, false);
        }

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)

static u32 __rtl_get_wol(struct r8152 *tp)
{
        u32 ocp_data;
        u32 wolopts = 0;

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG5);
        if (!(ocp_data & LAN_WAKE_EN))
                return 0;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
        if (ocp_data & LINK_ON_WAKE_EN)
                wolopts |= WAKE_PHY;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
        if (ocp_data & UWF_EN)
                wolopts |= WAKE_UCAST;
        if (ocp_data & BWF_EN)
                wolopts |= WAKE_BCAST;
        if (ocp_data & MWF_EN)
                wolopts |= WAKE_MCAST;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
        if (ocp_data & MAGIC_EN)
                wolopts |= WAKE_MAGIC;

        return wolopts;
}

static void __rtl_set_wol(struct r8152 *tp, u32 wolopts)
{
        u32 ocp_data;

        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
        ocp_data &= ~LINK_ON_WAKE_EN;
        if (wolopts & WAKE_PHY)
                ocp_data |= LINK_ON_WAKE_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
        ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN | LAN_WAKE_EN);
        if (wolopts & WAKE_UCAST)
                ocp_data |= UWF_EN;
        if (wolopts & WAKE_BCAST)
                ocp_data |= BWF_EN;
        if (wolopts & WAKE_MCAST)
                ocp_data |= MWF_EN;
        if (wolopts & WAKE_ANY)
                ocp_data |= LAN_WAKE_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data);

        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
        ocp_data &= ~MAGIC_EN;
        if (wolopts & WAKE_MAGIC)
                ocp_data |= MAGIC_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data);

        if (wolopts & WAKE_ANY)
                device_set_wakeup_enable(&tp->udev->dev, true);
        else
                device_set_wakeup_enable(&tp->udev->dev, false);
}

static void r8153_u1u2en(struct r8152 *tp, bool enable)
{
        u8 u1u2[8];

        if (enable)
                memset(u1u2, 0xff, sizeof(u1u2));
        else
                memset(u1u2, 0x00, sizeof(u1u2));

        usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2);
}

static void r8153_u2p3en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL);
        if (enable && tp->version != RTL_VER_03 && tp->version != RTL_VER_04)
                ocp_data |= U2P3_ENABLE;
        else
                ocp_data &= ~U2P3_ENABLE;
        ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data);
}

static void r8153_power_cut_en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
        if (enable)
                ocp_data |= PWR_EN | PHASE2_EN;
        else
                ocp_data &= ~(PWR_EN | PHASE2_EN);
        ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
        ocp_data &= ~PCUT_STATUS;
        ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}

static bool rtl_can_wakeup(struct r8152 *tp)
{
        struct usb_device *udev = tp->udev;

        return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP);
}

static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable)
{
        if (enable) {
                u32 ocp_data;

                r8153_u1u2en(tp, false);
                r8153_u2p3en(tp, false);

                __rtl_set_wol(tp, WAKE_ANY);

                ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);

                ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
                ocp_data |= LINK_OFF_WAKE_EN;
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);

                ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
        } else {
                __rtl_set_wol(tp, tp->saved_wolopts);
                r8153_u2p3en(tp, true);
                r8153_u1u2en(tp, true);
        }
}

static void rtl_phy_reset(struct r8152 *tp)
{
        u16 data;
        int i;

        clear_bit(PHY_RESET, &tp->flags);

        data = r8152_mdio_read(tp, MII_BMCR);

        /* don't reset again before the previous one complete */
        if (data & BMCR_RESET)
                return;

        data |= BMCR_RESET;
        r8152_mdio_write(tp, MII_BMCR, data);

        for (i = 0; i < 50; i++) {
                msleep(20);
                if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
                        break;
        }
}

static void r8153_teredo_off(struct r8152 *tp)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
        ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK | OOB_TEREDO_EN);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0);
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}

static void r8152b_disable_aldps(struct r8152 *tp)
{
        ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE);
        msleep(20);
}

static inline void r8152b_enable_aldps(struct r8152 *tp)
{
        ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
                                            LINKENA | DIS_SDSAVE);
}

static void rtl8152_disable(struct r8152 *tp)
{
        r8152b_disable_aldps(tp);
        rtl_disable(tp);
        r8152b_enable_aldps(tp);
}

static void r8152b_hw_phy_cfg(struct r8152 *tp)
{
        u16 data;

        data = r8152_mdio_read(tp, MII_BMCR);
        if (data & BMCR_PDOWN) {
                data &= ~BMCR_PDOWN;
                r8152_mdio_write(tp, MII_BMCR, data);
        }

        set_bit(PHY_RESET, &tp->flags);
}

static void r8152b_exit_oob(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data &= ~RCR_ACPT_ALL;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

        rxdy_gated_en(tp, true);
        r8153_teredo_off(tp);
        r8152b_hw_phy_cfg(tp);

        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00);

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data &= ~NOW_IS_OOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data &= ~MCU_BORW_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data |= RE_INIT_LL;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        rtl8152_nic_reset(tp);

        /* rx share fifo credit full threshold */
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);

        if (tp->udev->speed == USB_SPEED_FULL ||
            tp->udev->speed == USB_SPEED_LOW) {
                /* rx share fifo credit near full threshold */
                ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
                                RXFIFO_THR2_FULL);
                ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
                                RXFIFO_THR3_FULL);
        } else {
                /* rx share fifo credit near full threshold */
                ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
                                RXFIFO_THR2_HIGH);
                ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
                                RXFIFO_THR3_HIGH);
        }

        /* TX share fifo free credit full threshold */
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL);

        ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD);
        ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH);
        ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA,
                        TEST_MODE_DISABLE | TX_SIZE_ADJUST1);

        rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
        ocp_data |= TCR0_AUTO_FIFO;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
}

static void r8152b_enter_oob(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data &= ~NOW_IS_OOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB);
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB);
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB);

        rtl_disable(tp);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data |= RE_INIT_LL;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);

        rtl_rx_vlan_en(tp, true);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
        ocp_data |= ALDPS_PROXY_MODE;
        ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        rxdy_gated_en(tp, false);

        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data |= RCR_APM | RCR_AM | RCR_AB;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}

static void r8153_hw_phy_cfg(struct r8152 *tp)
{
        u32 ocp_data;
        u16 data;

        if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 ||
            tp->version == RTL_VER_05)
                ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L);

        data = r8152_mdio_read(tp, MII_BMCR);
        if (data & BMCR_PDOWN) {
                data &= ~BMCR_PDOWN;
                r8152_mdio_write(tp, MII_BMCR, data);
        }

        if (tp->version == RTL_VER_03) {
                data = ocp_reg_read(tp, OCP_EEE_CFG);
                data &= ~CTAP_SHORT_EN;
                ocp_reg_write(tp, OCP_EEE_CFG, data);
        }

        data = ocp_reg_read(tp, OCP_POWER_CFG);
        data |= EEE_CLKDIV_EN;
        ocp_reg_write(tp, OCP_POWER_CFG, data);

        data = ocp_reg_read(tp, OCP_DOWN_SPEED);
        data |= EN_10M_BGOFF;
        ocp_reg_write(tp, OCP_DOWN_SPEED, data);
        data = ocp_reg_read(tp, OCP_POWER_CFG);
        data |= EN_10M_PLLOFF;
        ocp_reg_write(tp, OCP_POWER_CFG, data);
        sram_write(tp, SRAM_IMPEDANCE, 0x0b13);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
        ocp_data |= PFM_PWM_SWITCH;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);

        /* Enable LPF corner auto tune */
        sram_write(tp, SRAM_LPF_CFG, 0xf70f);

        /* Adjust 10M Amplitude */
        sram_write(tp, SRAM_10M_AMP1, 0x00af);
        sram_write(tp, SRAM_10M_AMP2, 0x0208);

        set_bit(PHY_RESET, &tp->flags);
}

static void r8153_first_init(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        rxdy_gated_en(tp, true);
        r8153_teredo_off(tp);

        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data &= ~RCR_ACPT_ALL;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

        r8153_hw_phy_cfg(tp);

        rtl8152_nic_reset(tp);

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data &= ~NOW_IS_OOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data &= ~MCU_BORW_EN;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data |= RE_INIT_LL;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS);
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
        ocp_data |= TCR0_AUTO_FIFO;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);

        rtl8152_nic_reset(tp);

        /* rx share fifo credit full threshold */
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL);
        /* TX share fifo free credit full threshold */
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2);

        /* rx aggregation */
        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
        ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
        ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}

static void r8153_enter_oob(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data &= ~NOW_IS_OOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        rtl_disable(tp);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
        ocp_data |= RE_INIT_LL;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

        for (i = 0; i < 1000; i++) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (ocp_data & LINK_LIST_READY)
                        break;
                usleep_range(1000, 2000);
        }

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
        ocp_data &= ~TEREDO_WAKE_MASK;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);

        rtl_rx_vlan_en(tp, true);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
        ocp_data |= ALDPS_PROXY_MODE;
        ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);

        ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
        ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
        ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

        rxdy_gated_en(tp, false);

        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
        ocp_data |= RCR_APM | RCR_AM | RCR_AB;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}

static void r8153_disable_aldps(struct r8152 *tp)
{
        u16 data;

        data = ocp_reg_read(tp, OCP_POWER_CFG);
        data &= ~EN_ALDPS;
        ocp_reg_write(tp, OCP_POWER_CFG, data);
        msleep(20);
}

static void r8153_enable_aldps(struct r8152 *tp)
{
        u16 data;

        data = ocp_reg_read(tp, OCP_POWER_CFG);
        data |= EN_ALDPS;
        ocp_reg_write(tp, OCP_POWER_CFG, data);
}

static void rtl8153_disable(struct r8152 *tp)
{
        r8153_disable_aldps(tp);
        rtl_disable(tp);
        r8153_enable_aldps(tp);
        usb_enable_lpm(tp->udev);
}

static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex)
{
        u16 bmcr, anar, gbcr;
        int ret = 0;

        cancel_delayed_work_sync(&tp->schedule);
        anar = r8152_mdio_read(tp, MII_ADVERTISE);
        anar &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
                  ADVERTISE_100HALF | ADVERTISE_100FULL);
        if (tp->mii.supports_gmii) {
                gbcr = r8152_mdio_read(tp, MII_CTRL1000);
                gbcr &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
        } else {
                gbcr = 0;
        }

        if (autoneg == AUTONEG_DISABLE) {
                if (speed == SPEED_10) {
                        bmcr = 0;
                        anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
                } else if (speed == SPEED_100) {
                        bmcr = BMCR_SPEED100;
                        anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
                } else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
                        bmcr = BMCR_SPEED1000;
                        gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
                } else {
                        ret = -EINVAL;
                        goto out;
                }

                if (duplex == DUPLEX_FULL)
                        bmcr |= BMCR_FULLDPLX;
        } else {
                if (speed == SPEED_10) {
                        if (duplex == DUPLEX_FULL)
                                anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
                        else
                                anar |= ADVERTISE_10HALF;
                } else if (speed == SPEED_100) {
                        if (duplex == DUPLEX_FULL) {
                                anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
                                anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
                        } else {
                                anar |= ADVERTISE_10HALF;
                                anar |= ADVERTISE_100HALF;
                        }
                } else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
                        if (duplex == DUPLEX_FULL) {
                                anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
                                anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
                                gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
                        } else {
                                anar |= ADVERTISE_10HALF;
                                anar |= ADVERTISE_100HALF;
                                gbcr |= ADVERTISE_1000HALF;
                        }
                } else {
                        ret = -EINVAL;
                        goto out;
                }

                bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
        }

        if (test_bit(PHY_RESET, &tp->flags))
                bmcr |= BMCR_RESET;

        if (tp->mii.supports_gmii)
                r8152_mdio_write(tp, MII_CTRL1000, gbcr);

        r8152_mdio_write(tp, MII_ADVERTISE, anar);
        r8152_mdio_write(tp, MII_BMCR, bmcr);

        if (test_bit(PHY_RESET, &tp->flags)) {
                int i;

                clear_bit(PHY_RESET, &tp->flags);
                for (i = 0; i < 50; i++) {
                        msleep(20);
                        if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
                                break;
                }
        }

out:

        return ret;
}

static void rtl8152_up(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        r8152b_disable_aldps(tp);
        r8152b_exit_oob(tp);
        r8152b_enable_aldps(tp);
}

static void rtl8152_down(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
                rtl_drop_queued_tx(tp);
                return;
        }

        r8152_power_cut_en(tp, false);
        r8152b_disable_aldps(tp);
        r8152b_enter_oob(tp);
        r8152b_enable_aldps(tp);
}

static void rtl8153_up(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        r8153_u1u2en(tp, false);
        r8153_disable_aldps(tp);
        r8153_first_init(tp);
        r8153_enable_aldps(tp);
        r8153_u2p3en(tp, true);
        r8153_u1u2en(tp, true);
        usb_enable_lpm(tp->udev);
}

static void rtl8153_down(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
                rtl_drop_queued_tx(tp);
                return;
        }

        r8153_u1u2en(tp, false);
        r8153_u2p3en(tp, false);
        r8153_power_cut_en(tp, false);
        r8153_disable_aldps(tp);
        r8153_enter_oob(tp);
        r8153_enable_aldps(tp);
}

static bool rtl8152_in_nway(struct r8152 *tp)
{
        u16 nway_state;

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000);
        tp->ocp_base = 0x2000;
        ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c);         /* phy state */
        nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a);

        /* bit 15: TXDIS_STATE, bit 14: ABD_STATE */
        if (nway_state & 0xc000)
                return false;
        else
                return true;
}

static bool rtl8153_in_nway(struct r8152 *tp)
{
        u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff;

        if (phy_state == TXDIS_STATE || phy_state == ABD_STATE)
                return false;
        else
                return true;
}

static void set_carrier(struct r8152 *tp)
{
        struct net_device *netdev = tp->netdev;
        u8 speed;

        clear_bit(RTL8152_LINK_CHG, &tp->flags);
        speed = rtl8152_get_speed(tp);

        if (speed & LINK_STATUS) {
                if (!netif_carrier_ok(netdev)) {
                        tp->rtl_ops.enable(tp);
                        set_bit(RTL8152_SET_RX_MODE, &tp->flags);
                        napi_disable(&tp->napi);
                        netif_carrier_on(netdev);
                        rtl_start_rx(tp);
                        napi_enable(&tp->napi);
                }
        } else {
                if (netif_carrier_ok(netdev)) {
                        netif_carrier_off(netdev);
                        napi_disable(&tp->napi);
                        tp->rtl_ops.disable(tp);
                        napi_enable(&tp->napi);
                }
        }
}

static void rtl_work_func_t(struct work_struct *work)
{
        struct r8152 *tp = container_of(work, struct r8152, schedule.work);

        /* If the device is unplugged or !netif_running(), the workqueue
         * doesn't need to wake the device, and could return directly.
         */
        if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev))
                return;

        if (usb_autopm_get_interface(tp->intf) < 0)
                return;

        if (!test_bit(WORK_ENABLE, &tp->flags))
                goto out1;

        if (!mutex_trylock(&tp->control)) {
                schedule_delayed_work(&tp->schedule, 0);
                goto out1;
        }

        if (test_bit(RTL8152_LINK_CHG, &tp->flags))
                set_carrier(tp);

        if (test_bit(RTL8152_SET_RX_MODE, &tp->flags))
                _rtl8152_set_rx_mode(tp->netdev);

        /* don't schedule napi before linking */
        if (test_bit(SCHEDULE_NAPI, &tp->flags) &&
            netif_carrier_ok(tp->netdev)) {
                clear_bit(SCHEDULE_NAPI, &tp->flags);
                napi_schedule(&tp->napi);
        }

        if (test_bit(PHY_RESET, &tp->flags))
                rtl_phy_reset(tp);

        mutex_unlock(&tp->control);

out1:
        usb_autopm_put_interface(tp->intf);
}

static int rtl8152_open(struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);
        int res = 0;

        res = alloc_all_mem(tp);
        if (res)
                goto out;

        netif_carrier_off(netdev);

        res = usb_autopm_get_interface(tp->intf);
        if (res < 0) {
                free_all_mem(tp);
                goto out;
        }

        mutex_lock(&tp->control);

        tp->rtl_ops.up(tp);

        rtl8152_set_speed(tp, AUTONEG_ENABLE,
                          tp->mii.supports_gmii ? SPEED_1000 : SPEED_100,
                          DUPLEX_FULL);
        netif_carrier_off(netdev);
        netif_start_queue(netdev);
        set_bit(WORK_ENABLE, &tp->flags);

        res = usb_submit_urb(tp->intr_urb, GFP_KERNEL);
        if (res) {
                if (res == -ENODEV)
                        netif_device_detach(tp->netdev);
                netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n",
                           res);
                free_all_mem(tp);
        } else {
                napi_enable(&tp->napi);
        }

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return res;
}

static int rtl8152_close(struct net_device *netdev)
{
        struct r8152 *tp = netdev_priv(netdev);
        int res = 0;

        napi_disable(&tp->napi);
        clear_bit(WORK_ENABLE, &tp->flags);
        usb_kill_urb(tp->intr_urb);
        cancel_delayed_work_sync(&tp->schedule);
        netif_stop_queue(netdev);

        res = usb_autopm_get_interface(tp->intf);
        if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) {
                rtl_drop_queued_tx(tp);
                rtl_stop_rx(tp);
        } else {
                mutex_lock(&tp->control);

                tp->rtl_ops.down(tp);

                mutex_unlock(&tp->control);

                usb_autopm_put_interface(tp->intf);
        }

        free_all_mem(tp);

        return res;
}

static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg)
{
        ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev);
        ocp_reg_write(tp, OCP_EEE_DATA, reg);
        ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev);
}

static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg)
{
        u16 data;

        r8152_mmd_indirect(tp, dev, reg);
        data = ocp_reg_read(tp, OCP_EEE_DATA);
        ocp_reg_write(tp, OCP_EEE_AR, 0x0000);

        return data;
}

static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data)
{
        r8152_mmd_indirect(tp, dev, reg);
        ocp_reg_write(tp, OCP_EEE_DATA, data);
        ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
}

static void r8152_eee_en(struct r8152 *tp, bool enable)
{
        u16 config1, config2, config3;
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
        config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask;
        config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2);
        config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask;

        if (enable) {
                ocp_data |= EEE_RX_EN | EEE_TX_EN;
                config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN;
                config1 |= sd_rise_time(1);
                config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN;
                config3 |= fast_snr(42);
        } else {
                ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
                config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN |
                             RX_QUIET_EN);
                config1 |= sd_rise_time(7);
                config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN);
                config3 |= fast_snr(511);
        }

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
        ocp_reg_write(tp, OCP_EEE_CONFIG1, config1);
        ocp_reg_write(tp, OCP_EEE_CONFIG2, config2);
        ocp_reg_write(tp, OCP_EEE_CONFIG3, config3);
}

static void r8152b_enable_eee(struct r8152 *tp)
{
        r8152_eee_en(tp, true);
        r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, MDIO_EEE_100TX);
}

static void r8153_eee_en(struct r8152 *tp, bool enable)
{
        u32 ocp_data;
        u16 config;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
        config = ocp_reg_read(tp, OCP_EEE_CFG);

        if (enable) {
                ocp_data |= EEE_RX_EN | EEE_TX_EN;
                config |= EEE10_EN;
        } else {
                ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
                config &= ~EEE10_EN;
        }

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
        ocp_reg_write(tp, OCP_EEE_CFG, config);
}

static void r8153_enable_eee(struct r8152 *tp)
{
        r8153_eee_en(tp, true);
        ocp_reg_write(tp, OCP_EEE_ADV, MDIO_EEE_1000T | MDIO_EEE_100TX);
}

static void r8152b_enable_fc(struct r8152 *tp)
{
        u16 anar;

        anar = r8152_mdio_read(tp, MII_ADVERTISE);
        anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
        r8152_mdio_write(tp, MII_ADVERTISE, anar);
}

static void rtl_tally_reset(struct r8152 *tp)
{
        u32 ocp_data;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY);
        ocp_data |= TALLY_RESET;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data);
}

static void r8152b_init(struct r8152 *tp)
{
        u32 ocp_data;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        r8152b_disable_aldps(tp);

        if (tp->version == RTL_VER_01) {
                ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
                ocp_data &= ~LED_MODE_MASK;
                ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
        }

        r8152_power_cut_en(tp, false);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
        ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
        ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL);
        ocp_data &= ~MCU_CLK_RATIO_MASK;
        ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN;
        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data);
        ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK |
                   SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);

        r8152b_enable_eee(tp);
        r8152b_enable_aldps(tp);
        r8152b_enable_fc(tp);
        rtl_tally_reset(tp);

        /* enable rx aggregation */
        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
        ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
        ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}

static void r8153_init(struct r8152 *tp)
{
        u32 ocp_data;
        int i;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        r8153_disable_aldps(tp);
        r8153_u1u2en(tp, false);

        for (i = 0; i < 500; i++) {
                if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
                    AUTOLOAD_DONE)
                        break;
                msleep(20);
        }

        for (i = 0; i < 500; i++) {
                ocp_data = ocp_reg_read(tp, OCP_PHY_STATUS) & PHY_STAT_MASK;
                if (ocp_data == PHY_STAT_LAN_ON || ocp_data == PHY_STAT_PWRDN)
                        break;
                msleep(20);
        }

        usb_disable_lpm(tp->udev);
        r8153_u2p3en(tp, false);

        if (tp->version == RTL_VER_04) {
                ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2);
                ocp_data &= ~pwd_dn_scale_mask;
                ocp_data |= pwd_dn_scale(96);
                ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data);

                ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
                ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
                ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
        } else if (tp->version == RTL_VER_05) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0);
                ocp_data &= ~ECM_ALDPS;
                ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data);

                ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
                if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
                        ocp_data &= ~DYNAMIC_BURST;
                else
                        ocp_data |= DYNAMIC_BURST;
                ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
        } else if (tp->version == RTL_VER_06) {
                ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
                if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
                        ocp_data &= ~DYNAMIC_BURST;
                else
                        ocp_data |= DYNAMIC_BURST;
                ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
        }

        ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2);
        ocp_data |= EP4_FULL_FC;
        ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL);
        ocp_data &= ~TIMER11_EN;
        ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
        ocp_data &= ~LED_MODE_MASK;
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);

        ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM;
        if (tp->version == RTL_VER_04 && tp->udev->speed != USB_SPEED_SUPER)
                ocp_data |= LPM_TIMER_500MS;
        else
                ocp_data |= LPM_TIMER_500US;
        ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data);

        ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2);
        ocp_data &= ~SEN_VAL_MASK;
        ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE;
        ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data);

        ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001);

        r8153_power_cut_en(tp, false);
        r8153_u1u2en(tp, true);

        ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ALDPS_SPDWN_RATIO);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, EEE_SPDWN_RATIO);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3,
                       PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN |
                       U1U2_SPDWN_EN | L1_SPDWN_EN);
        ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4,
                       PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN |
                       TP100_SPDWN_EN | TP500_SPDWN_EN | TP1000_SPDWN_EN |
                       EEE_SPDWN_EN);

        r8153_enable_eee(tp);
        r8153_enable_aldps(tp);
        r8152b_enable_fc(tp);
        rtl_tally_reset(tp);
        r8153_u2p3en(tp, true);
}

static int rtl8152_pre_reset(struct usb_interface *intf)
{
        struct r8152 *tp = usb_get_intfdata(intf);
        struct net_device *netdev;

        if (!tp)
                return 0;

        netdev = tp->netdev;
        if (!netif_running(netdev))
                return 0;

        napi_disable(&tp->napi);
        clear_bit(WORK_ENABLE, &tp->flags);
        usb_kill_urb(tp->intr_urb);
        cancel_delayed_work_sync(&tp->schedule);
        if (netif_carrier_ok(netdev)) {
                netif_stop_queue(netdev);
                mutex_lock(&tp->control);
                tp->rtl_ops.disable(tp);
                mutex_unlock(&tp->control);
        }

        return 0;
}

static int rtl8152_post_reset(struct usb_interface *intf)
{
        struct r8152 *tp = usb_get_intfdata(intf);
        struct net_device *netdev;

        if (!tp)
                return 0;

        netdev = tp->netdev;
        if (!netif_running(netdev))
                return 0;

        set_bit(WORK_ENABLE, &tp->flags);
        if (netif_carrier_ok(netdev)) {
                mutex_lock(&tp->control);
                tp->rtl_ops.enable(tp);
                rtl8152_set_rx_mode(netdev);
                mutex_unlock(&tp->control);
                netif_wake_queue(netdev);
        }

        napi_enable(&tp->napi);

        return 0;
}

static bool delay_autosuspend(struct r8152 *tp)
{
        bool sw_linking = !!netif_carrier_ok(tp->netdev);
        bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS);

        /* This means a linking change occurs and the driver doesn't detect it,
         * yet. If the driver has disabled tx/rx and hw is linking on, the
         * device wouldn't wake up by receiving any packet.
         */
        if (work_busy(&tp->schedule.work) || sw_linking != hw_linking)
                return true;

        /* If the linking down is occurred by nway, the device may miss the
         * linking change event. And it wouldn't wake when linking on.
         */
        if (!sw_linking && tp->rtl_ops.in_nway(tp))
                return true;
        else
                return false;
}

static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message)
{
        struct r8152 *tp = usb_get_intfdata(intf);
        struct net_device *netdev = tp->netdev;
        int ret = 0;
        u32 rcr = 0;

        mutex_lock(&tp->control);

        if (PMSG_IS_AUTO(message)) {
                u32 ocp_data;

                if (netif_running(netdev) && delay_autosuspend(tp)) {
                        ret = -EBUSY;
                        goto out1;
                }

                rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
                ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr & ~RCR_ACPT_ALL);
                rxdy_gated_en(tp, true);
                ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
                if (!(ocp_data & RXFIFO_EMPTY)) {
                        rxdy_gated_en(tp, false);
                        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
                        ret = -EBUSY;
                        goto out1;
                }

                set_bit(SELECTIVE_SUSPEND, &tp->flags);
        } else {
                netif_device_detach(netdev);
        }

        if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
                clear_bit(WORK_ENABLE, &tp->flags);
                usb_kill_urb(tp->intr_urb);
                napi_disable(&tp->napi);
                if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
                        rtl_stop_rx(tp);
                        rtl_runtime_suspend_enable(tp, true);
                        rxdy_gated_en(tp, false);
                        ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
                } else {
                        cancel_delayed_work_sync(&tp->schedule);
                        tp->rtl_ops.down(tp);
                }
                napi_enable(&tp->napi);
        }
out1:
        mutex_unlock(&tp->control);

        return ret;
}

static int rtl8152_resume(struct usb_interface *intf)
{
        struct r8152 *tp = usb_get_intfdata(intf);

        mutex_lock(&tp->control);

        if (!test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
                tp->rtl_ops.init(tp);
                netif_device_attach(tp->netdev);
        }

        if (netif_running(tp->netdev) && tp->netdev->flags & IFF_UP) {
                if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
                        rtl_runtime_suspend_enable(tp, false);
                        clear_bit(SELECTIVE_SUSPEND, &tp->flags);
                        napi_disable(&tp->napi);
                        set_bit(WORK_ENABLE, &tp->flags);
                        if (netif_carrier_ok(tp->netdev))
                                rtl_start_rx(tp);
                        napi_enable(&tp->napi);
                } else {
                        tp->rtl_ops.up(tp);
                        rtl8152_set_speed(tp, AUTONEG_ENABLE,
                                          tp->mii.supports_gmii ?
                                          SPEED_1000 : SPEED_100,
                                          DUPLEX_FULL);
                        netif_carrier_off(tp->netdev);
                        set_bit(WORK_ENABLE, &tp->flags);
                }
                usb_submit_urb(tp->intr_urb, GFP_KERNEL);
        } else if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
                if (tp->netdev->flags & IFF_UP)
                        rtl_runtime_suspend_enable(tp, false);
                clear_bit(SELECTIVE_SUSPEND, &tp->flags);
        }

        mutex_unlock(&tp->control);

        return 0;
}

static int rtl8152_reset_resume(struct usb_interface *intf)
{
        struct r8152 *tp = usb_get_intfdata(intf);

        clear_bit(SELECTIVE_SUSPEND, &tp->flags);
        return rtl8152_resume(intf);
}

static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
        struct r8152 *tp = netdev_priv(dev);

        if (usb_autopm_get_interface(tp->intf) < 0)
                return;

        if (!rtl_can_wakeup(tp)) {
                wol->supported = 0;
                wol->wolopts = 0;
        } else {
                mutex_lock(&tp->control);
                wol->supported = WAKE_ANY;
                wol->wolopts = __rtl_get_wol(tp);
                mutex_unlock(&tp->control);
        }

        usb_autopm_put_interface(tp->intf);
}

static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
        struct r8152 *tp = netdev_priv(dev);
        int ret;

        if (!rtl_can_wakeup(tp))
                return -EOPNOTSUPP;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out_set_wol;

        mutex_lock(&tp->control);

        __rtl_set_wol(tp, wol->wolopts);
        tp->saved_wolopts = wol->wolopts & WAKE_ANY;

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out_set_wol:
        return ret;
}

static u32 rtl8152_get_msglevel(struct net_device *dev)
{
        struct r8152 *tp = netdev_priv(dev);

        return tp->msg_enable;
}

static void rtl8152_set_msglevel(struct net_device *dev, u32 value)
{
        struct r8152 *tp = netdev_priv(dev);

        tp->msg_enable = value;
}

static void rtl8152_get_drvinfo(struct net_device *netdev,
                                struct ethtool_drvinfo *info)
{
        struct r8152 *tp = netdev_priv(netdev);

        strlcpy(info->driver, MODULENAME, sizeof(info->driver));
        strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
        usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info));
}

static
int rtl8152_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
        struct r8152 *tp = netdev_priv(netdev);
        int ret;

        if (!tp->mii.mdio_read)
                return -EOPNOTSUPP;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        ret = mii_ethtool_gset(&tp->mii, cmd);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

static int rtl8152_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
        struct r8152 *tp = netdev_priv(dev);
        int ret;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        ret = rtl8152_set_speed(tp, cmd->autoneg, cmd->speed, cmd->duplex);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = {
        "tx_packets",
        "rx_packets",
        "tx_errors",
        "rx_errors",
        "rx_missed",
        "align_errors",
        "tx_single_collisions",
        "tx_multi_collisions",
        "rx_unicast",
        "rx_broadcast",
        "rx_multicast",
        "tx_aborted",
        "tx_underrun",
};

static int rtl8152_get_sset_count(struct net_device *dev, int sset)
{
        switch (sset) {
        case ETH_SS_STATS:
                return ARRAY_SIZE(rtl8152_gstrings);
        default:
                return -EOPNOTSUPP;
        }
}

static void rtl8152_get_ethtool_stats(struct net_device *dev,
                                      struct ethtool_stats *stats, u64 *data)
{
        struct r8152 *tp = netdev_priv(dev);
        struct tally_counter tally;

        if (usb_autopm_get_interface(tp->intf) < 0)
                return;

        generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA);

        usb_autopm_put_interface(tp->intf);

        data[0] = le64_to_cpu(tally.tx_packets);
        data[1] = le64_to_cpu(tally.rx_packets);
        data[2] = le64_to_cpu(tally.tx_errors);
        data[3] = le32_to_cpu(tally.rx_errors);
        data[4] = le16_to_cpu(tally.rx_missed);
        data[5] = le16_to_cpu(tally.align_errors);
        data[6] = le32_to_cpu(tally.tx_one_collision);
        data[7] = le32_to_cpu(tally.tx_multi_collision);
        data[8] = le64_to_cpu(tally.rx_unicast);
        data[9] = le64_to_cpu(tally.rx_broadcast);
        data[10] = le32_to_cpu(tally.rx_multicast);
        data[11] = le16_to_cpu(tally.tx_aborted);
        data[12] = le16_to_cpu(tally.tx_underrun);
}

static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
        switch (stringset) {
        case ETH_SS_STATS:
                memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings));
                break;
        }
}

static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
        u32 ocp_data, lp, adv, supported = 0;
        u16 val;

        val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
        supported = mmd_eee_cap_to_ethtool_sup_t(val);

        val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
        adv = mmd_eee_adv_to_ethtool_adv_t(val);

        val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
        lp = mmd_eee_adv_to_ethtool_adv_t(val);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
        ocp_data &= EEE_RX_EN | EEE_TX_EN;

        eee->eee_enabled = !!ocp_data;
        eee->eee_active = !!(supported & adv & lp);
        eee->supported = supported;
        eee->advertised = adv;
        eee->lp_advertised = lp;

        return 0;
}

static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
        u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);

        r8152_eee_en(tp, eee->eee_enabled);

        if (!eee->eee_enabled)
                val = 0;

        r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);

        return 0;
}

static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
        u32 ocp_data, lp, adv, supported = 0;
        u16 val;

        val = ocp_reg_read(tp, OCP_EEE_ABLE);
        supported = mmd_eee_cap_to_ethtool_sup_t(val);

        val = ocp_reg_read(tp, OCP_EEE_ADV);
        adv = mmd_eee_adv_to_ethtool_adv_t(val);

        val = ocp_reg_read(tp, OCP_EEE_LPABLE);
        lp = mmd_eee_adv_to_ethtool_adv_t(val);

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
        ocp_data &= EEE_RX_EN | EEE_TX_EN;

        eee->eee_enabled = !!ocp_data;
        eee->eee_active = !!(supported & adv & lp);
        eee->supported = supported;
        eee->advertised = adv;
        eee->lp_advertised = lp;

        return 0;
}

static int r8153_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
        u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);

        r8153_eee_en(tp, eee->eee_enabled);

        if (!eee->eee_enabled)
                val = 0;

        ocp_reg_write(tp, OCP_EEE_ADV, val);

        return 0;
}

static int
rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
        struct r8152 *tp = netdev_priv(net);
        int ret;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        ret = tp->rtl_ops.eee_get(tp, edata);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

static int
rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
        struct r8152 *tp = netdev_priv(net);
        int ret;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        ret = tp->rtl_ops.eee_set(tp, edata);
        if (!ret)
                ret = mii_nway_restart(&tp->mii);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

static int rtl8152_nway_reset(struct net_device *dev)
{
        struct r8152 *tp = netdev_priv(dev);
        int ret;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                goto out;

        mutex_lock(&tp->control);

        ret = mii_nway_restart(&tp->mii);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

out:
        return ret;
}

static int rtl8152_get_coalesce(struct net_device *netdev,
                                struct ethtool_coalesce *coalesce)
{
        struct r8152 *tp = netdev_priv(netdev);

        switch (tp->version) {
        case RTL_VER_01:
        case RTL_VER_02:
                return -EOPNOTSUPP;
        default:
                break;
        }

        coalesce->rx_coalesce_usecs = tp->coalesce;

        return 0;
}

static int rtl8152_set_coalesce(struct net_device *netdev,
                                struct ethtool_coalesce *coalesce)
{
        struct r8152 *tp = netdev_priv(netdev);
        int ret;

        switch (tp->version) {
        case RTL_VER_01:
        case RTL_VER_02:
                return -EOPNOTSUPP;
        default:
                break;
        }

        if (coalesce->rx_coalesce_usecs > COALESCE_SLOW)
                return -EINVAL;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                return ret;

        mutex_lock(&tp->control);

        if (tp->coalesce != coalesce->rx_coalesce_usecs) {
                tp->coalesce = coalesce->rx_coalesce_usecs;

                if (netif_running(tp->netdev) && netif_carrier_ok(netdev))
                        r8153_set_rx_early_timeout(tp);
        }

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

        return ret;
}

static struct ethtool_ops ops = {
        .get_drvinfo = rtl8152_get_drvinfo,
        .get_settings = rtl8152_get_settings,
        .set_settings = rtl8152_set_settings,
        .get_link = ethtool_op_get_link,
        .nway_reset = rtl8152_nway_reset,
        .get_msglevel = rtl8152_get_msglevel,
        .set_msglevel = rtl8152_set_msglevel,
        .get_wol = rtl8152_get_wol,
        .set_wol = rtl8152_set_wol,
        .get_strings = rtl8152_get_strings,
        .get_sset_count = rtl8152_get_sset_count,
        .get_ethtool_stats = rtl8152_get_ethtool_stats,
        .get_coalesce = rtl8152_get_coalesce,
        .set_coalesce = rtl8152_set_coalesce,
        .get_eee = rtl_ethtool_get_eee,
        .set_eee = rtl_ethtool_set_eee,
};

static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
        struct r8152 *tp = netdev_priv(netdev);
        struct mii_ioctl_data *data = if_mii(rq);
        int res;

        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return -ENODEV;

        res = usb_autopm_get_interface(tp->intf);
        if (res < 0)
                goto out;

        switch (cmd) {
        case SIOCGMIIPHY:
                data->phy_id = R8152_PHY_ID; /* Internal PHY */
                break;

        case SIOCGMIIREG:
                mutex_lock(&tp->control);
                data->val_out = r8152_mdio_read(tp, data->reg_num);
                mutex_unlock(&tp->control);
                break;

        case SIOCSMIIREG:
                if (!capable(CAP_NET_ADMIN)) {
                        res = -EPERM;
                        break;
                }
                mutex_lock(&tp->control);
                r8152_mdio_write(tp, data->reg_num, data->val_in);
                mutex_unlock(&tp->control);
                break;

        default:
                res = -EOPNOTSUPP;
        }

        usb_autopm_put_interface(tp->intf);

out:
        return res;
}

static int rtl8152_change_mtu(struct net_device *dev, int new_mtu)
{
        struct r8152 *tp = netdev_priv(dev);
        int ret;

        switch (tp->version) {
        case RTL_VER_01:
        case RTL_VER_02:
                return eth_change_mtu(dev, new_mtu);
        default:
                break;
        }

        if (new_mtu < 68 || new_mtu > RTL8153_MAX_MTU)
                return -EINVAL;

        ret = usb_autopm_get_interface(tp->intf);
        if (ret < 0)
                return ret;

        mutex_lock(&tp->control);

        dev->mtu = new_mtu;

        if (netif_running(dev) && netif_carrier_ok(dev))
                r8153_set_rx_early_size(tp);

        mutex_unlock(&tp->control);

        usb_autopm_put_interface(tp->intf);

        return ret;
}

static const struct net_device_ops rtl8152_netdev_ops = {
        .ndo_open               = rtl8152_open,
        .ndo_stop               = rtl8152_close,
        .ndo_do_ioctl           = rtl8152_ioctl,
        .ndo_start_xmit         = rtl8152_start_xmit,
        .ndo_tx_timeout         = rtl8152_tx_timeout,
        .ndo_set_features       = rtl8152_set_features,
        .ndo_set_rx_mode        = rtl8152_set_rx_mode,
        .ndo_set_mac_address    = rtl8152_set_mac_address,
        .ndo_change_mtu         = rtl8152_change_mtu,
        .ndo_validate_addr      = eth_validate_addr,
        .ndo_features_check     = rtl8152_features_check,
};

static void r8152b_get_version(struct r8152 *tp)
{
        u32     ocp_data;
        u16     version;

        ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR1);
        version = (u16)(ocp_data & VERSION_MASK);

        switch (version) {
        case 0x4c00:
                tp->version = RTL_VER_01;
                break;
        case 0x4c10:
                tp->version = RTL_VER_02;
                break;
        case 0x5c00:
                tp->version = RTL_VER_03;
                tp->mii.supports_gmii = 1;
                break;
        case 0x5c10:
                tp->version = RTL_VER_04;
                tp->mii.supports_gmii = 1;
                break;
        case 0x5c20:
                tp->version = RTL_VER_05;
                tp->mii.supports_gmii = 1;
                break;
        case 0x5c30:
                tp->version = RTL_VER_06;
                tp->mii.supports_gmii = 1;
                break;
        default:
                netif_info(tp, probe, tp->netdev,
                           "Unknown version 0x%04x\n", version);
                break;
        }
}

static void rtl8152_unload(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        if (tp->version != RTL_VER_01)
                r8152_power_cut_en(tp, true);
}

static void rtl8153_unload(struct r8152 *tp)
{
        if (test_bit(RTL8152_UNPLUG, &tp->flags))
                return;

        r8153_power_cut_en(tp, false);
}

static int rtl_ops_init(struct r8152 *tp)
{
        struct rtl_ops *ops = &tp->rtl_ops;
        int ret = 0;

        switch (tp->version) {
        case RTL_VER_01:
        case RTL_VER_02:
                ops->init               = r8152b_init;
                ops->enable             = rtl8152_enable;
                ops->disable            = rtl8152_disable;
                ops->up                 = rtl8152_up;
                ops->down               = rtl8152_down;
                ops->unload             = rtl8152_unload;
                ops->eee_get            = r8152_get_eee;
                ops->eee_set            = r8152_set_eee;
                ops->in_nway            = rtl8152_in_nway;
                break;

        case RTL_VER_03:
        case RTL_VER_04:
        case RTL_VER_05:
        case RTL_VER_06:
                ops->init               = r8153_init;
                ops->enable             = rtl8153_enable;
                ops->disable            = rtl8153_disable;
                ops->up                 = rtl8153_up;
                ops->down               = rtl8153_down;
                ops->unload             = rtl8153_unload;
                ops->eee_get            = r8153_get_eee;
                ops->eee_set            = r8153_set_eee;
                ops->in_nway            = rtl8153_in_nway;
                break;

        default:
                ret = -ENODEV;
                netif_err(tp, probe, tp->netdev, "Unknown Device\n");
                break;
        }

        return ret;
}

static int rtl8152_probe(struct usb_interface *intf,
                         const struct usb_device_id *id)
{
        struct usb_device *udev = interface_to_usbdev(intf);
        struct r8152 *tp;
        struct net_device *netdev;
        int ret;

        if (udev->actconfig->desc.bConfigurationValue != 1) {
                usb_driver_set_configuration(udev, 1);
                return -ENODEV;
        }

        usb_reset_device(udev);
        netdev = alloc_etherdev(sizeof(struct r8152));
        if (!netdev) {
                dev_err(&intf->dev, "Out of memory\n");
                return -ENOMEM;
        }

        SET_NETDEV_DEV(netdev, &intf->dev);
        tp = netdev_priv(netdev);
        tp->msg_enable = 0x7FFF;

        tp->udev = udev;
        tp->netdev = netdev;
        tp->intf = intf;

        r8152b_get_version(tp);
        ret = rtl_ops_init(tp);
        if (ret)
                goto out;

        mutex_init(&tp->control);
        INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t);

        netdev->netdev_ops = &rtl8152_netdev_ops;
        netdev->watchdog_timeo = RTL8152_TX_TIMEOUT;

        netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
                            NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM |
                            NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX |
                            NETIF_F_HW_VLAN_CTAG_TX;
        netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
                              NETIF_F_TSO | NETIF_F_FRAGLIST |
                              NETIF_F_IPV6_CSUM | NETIF_F_TSO6 |
                              NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
        netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
                                NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
                                NETIF_F_IPV6_CSUM | NETIF_F_TSO6;

        netdev->ethtool_ops = &ops;
        netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE);

        tp->mii.dev = netdev;
        tp->mii.mdio_read = read_mii_word;
        tp->mii.mdio_write = write_mii_word;
        tp->mii.phy_id_mask = 0x3f;
        tp->mii.reg_num_mask = 0x1f;
        tp->mii.phy_id = R8152_PHY_ID;

        switch (udev->speed) {
        case USB_SPEED_SUPER:
                tp->coalesce = COALESCE_SUPER;
                break;
        case USB_SPEED_HIGH:
                tp->coalesce = COALESCE_HIGH;
                break;
        default:
                tp->coalesce = COALESCE_SLOW;
                break;
        }

        intf->needs_remote_wakeup = 1;

        tp->rtl_ops.init(tp);
        set_ethernet_addr(tp);

        usb_set_intfdata(intf, tp);
        netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT);

        ret = register_netdev(netdev);
        if (ret != 0) {
                netif_err(tp, probe, netdev, "couldn't register the device\n");
                goto out1;
        }

        if (!rtl_can_wakeup(tp))
                __rtl_set_wol(tp, 0);

        tp->saved_wolopts = __rtl_get_wol(tp);
        if (tp->saved_wolopts)
                device_set_wakeup_enable(&udev->dev, true);
        else
                device_set_wakeup_enable(&udev->dev, false);

        netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION);

        return 0;

out1:
        netif_napi_del(&tp->napi);
        usb_set_intfdata(intf, NULL);
out:
        free_netdev(netdev);
        return ret;
}

static void rtl8152_disconnect(struct usb_interface *intf)
{
        struct r8152 *tp = usb_get_intfdata(intf);

        usb_set_intfdata(intf, NULL);
        if (tp) {
                struct usb_device *udev = tp->udev;

                if (udev->state == USB_STATE_NOTATTACHED)
                        set_bit(RTL8152_UNPLUG, &tp->flags);

                netif_napi_del(&tp->napi);
                unregister_netdev(tp->netdev);
                tp->rtl_ops.unload(tp);
                free_netdev(tp->netdev);
        }
}

#define REALTEK_USB_DEVICE(vend, prod)  \
        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
                       USB_DEVICE_ID_MATCH_INT_CLASS, \
        .idVendor = (vend), \
        .idProduct = (prod), \
        .bInterfaceClass = USB_CLASS_VENDOR_SPEC \
}, \
{ \
        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \
                       USB_DEVICE_ID_MATCH_DEVICE, \
        .idVendor = (vend), \
        .idProduct = (prod), \
        .bInterfaceClass = USB_CLASS_COMM, \
        .bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \
        .bInterfaceProtocol = USB_CDC_PROTO_NONE

/* table of devices that work with this driver */
static struct usb_device_id rtl8152_table[] = {
        {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)},
        {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)},
        {REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)},
        {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO,  0x7205)},
        {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO,  0x304f)},
        {REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA,  0x09ff)},
        {}
};

MODULE_DEVICE_TABLE(usb, rtl8152_table);

static struct usb_driver rtl8152_driver = {
        .name =         MODULENAME,
        .id_table =     rtl8152_table,
        .probe =        rtl8152_probe,
        .disconnect =   rtl8152_disconnect,
        .suspend =      rtl8152_suspend,
        .resume =       rtl8152_resume,
        .reset_resume = rtl8152_reset_resume,
        .pre_reset =    rtl8152_pre_reset,
        .post_reset =   rtl8152_post_reset,
        .supports_autosuspend = 1,
        .disable_hub_initiated_lpm = 1,
};

module_usb_driver(rtl8152_driver);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");

Reply via email to