On 05/19/2015 01:06 AM, Deucher, Alexander wrote:
>> -----Original Message-----
>> From: Denys Vlasenko [mailto:vda.li...@googlemail.com]
>> Sent: Monday, May 18, 2015 6:50 PM
>> To: Koenig, Christian
>> Cc: Denys Vlasenko; Deucher, Alexander; Linux Kernel Mailing List
>> Subject: Re: [PATCH v2] radeon: Deinline indirect register accessor functions
>>
>> On Mon, May 18, 2015 at 9:09 PM, Christian König
>> <christian.koe...@amd.com> wrote:
>>>> r600_uvd_ctx_rreg: 111 bytes, 4 callsites
>>>> r600_uvd_ctx_wreg: 113 bytes, 5 callsites
>>>> eg_pif_phy0_rreg: 106 bytes, 13 callsites
>>>> eg_pif_phy0_wreg: 108 bytes, 13 callsites
>>>> eg_pif_phy1_rreg: 107 bytes, 13 callsites
>>>> eg_pif_phy1_wreg: 108 bytes, 13 callsites
>>>> rv370_pcie_rreg: 111 bytes, 21 callsites
>>>> rv370_pcie_wreg: 113 bytes, 24 callsites
>>>> r600_rcu_rreg: 111 bytes, 16 callsites
>>>> r600_rcu_wreg: 113 bytes, 25 callsites
>>>> cik_didt_rreg: 106 bytes, 10 callsites
>>>> cik_didt_wreg: 107 bytes, 10 callsites
>>>> tn_smc_rreg: 106 bytes, 126 callsites
>>>> tn_smc_wreg: 107 bytes, 116 callsites
>>>> eg_cg_rreg: 107 bytes, 20 callsites
>>>> eg_cg_wreg: 108 bytes, 52 callsites
>>
>>> Sorry haven't noticed that before:
>>>
>>> radeon_device.c is most likely not the right place for the non-inlined
>>> functions. Please move them into to the appropriate files for each
>>> generation.
>>
>> Will do (probably tomorrow, not today).
> 
> Is this whole exercise really worthwhile?
> This will be the 3rd or 4th time these have been inlined/uninlined.

When code grows by 65000 bytes, there ought to be a good reason to inline.
I don't see it.

Let's take a look what these functions actually do. cik_didt_wreg is():

       spin_lock_irqsave(&rdev->didt_idx_lock, flags);
       WREG32(CIK_DIDT_IND_INDEX, (reg));
       WREG32(CIK_DIDT_IND_DATA, (v));
       spin_unlock_irqrestore(&rdev->didt_idx_lock, flags);

this compiles to (on defconfig + radeon enabled):

       55                      push   %rbp
       48 89 e5                mov    %rsp,%rbp
       48 83 ec 20             sub    $0x20,%rsp
       4c 89 65 e8             mov    %r12,-0x18(%rbp)
       4c 8d a7 cc 01 00 00    lea    0x1cc(%rdi),%r12
       48 89 5d e0             mov    %rbx,-0x20(%rbp)
       48 89 fb                mov    %rdi,%rbx
       4c 89 6d f0             mov    %r13,-0x10(%rbp)
       4c 89 75 f8             mov    %r14,-0x8(%rbp)
       4c 89 e7                mov    %r12,%rdi
       41 89 d6                mov    %edx,%r14d
       41 89 f5                mov    %esi,%r13d
       e8 20 6b 4d 00          callq  <_raw_spin_lock_irqsave> 
//spin_lock_irqsave
       48 8b 93 d0 01 00 00    mov    0x1d0(%rbx),%rdx
       44 89 aa 00 ca 00 00    mov    %r13d,0xca00(%rdx)       //WREG32
       48 8b 93 d0 01 00 00    mov    0x1d0(%rbx),%rdx
       44 89 b2 04 ca 00 00    mov    %r14d,0xca04(%rdx)       //WREG32
       4c 89 e7                mov    %r12,%rdi
       48 89 c6                mov    %rax,%rsi
       e8 b9 69 4d 00          callq  <_raw_spin_unlock_irqrestore> 
//spin_unlock_irqrestore
       48 8b 5d e0             mov    -0x20(%rbp),%rbx
       4c 8b 65 e8             mov    -0x18(%rbp),%r12
       4c 8b 6d f0             mov    -0x10(%rbp),%r13
       4c 8b 75 f8             mov    -0x8(%rbp),%r14
       c9                      leaveq
       c3                      retq

<_raw_spin_lock_irqsave>:
       55                      push   %rbp
       48 89 e5                mov    %rsp,%rbp
       9c                      pushfq
       58                      pop    %rax
       fa                      cli
       ba 00 01 00 00          mov    $0x100,%edx
       f0 66 0f c1 17          lock xadd %dx,(%rdi)  // expensive
       0f b6 ce                movzbl %dh,%ecx
       38 d1                   cmp    %dl,%cl
       75 04                   jne    <_raw_spin_lock_irqsave+0x1c>
       5d                      pop    %rbp
       c3                      retq
       f3 90                   pause
       0f b6 17                movzbl (%rdi),%edx
       38 ca                   cmp    %cl,%dl
       75 f7                   jne    <_raw_spin_lock_irqsave+0x1a>
       5d                      pop    %rbp
       c3                      retq

<_raw_spin_unlock_irqrestore>:
       55                      push   %rbp
       48 89 e5                mov    %rsp,%rbp
       80 07 01                addb   $0x1,(%rdi)
       56                      push   %rsi
       9d                      popfq                  //expensive
       5d                      pop    %rbp
       c3                      retq

Now, using attached test program, I measure how long
call+ret pair takes:

# ./timing_test64 callret
400000000 loops in 0.71467s = 1.79 nsec/loop for callret

Unlocked read-modify-write memory operation:

# ./timing_test64 or
400000000 loops in 0.86119s = 2.15 nsec/loop for or

Locked read-modify-write memory operations:

# ./timing_test64 lock_or
100000000 loops in 0.68902s = 6.89 nsec/loop for lock_or
# ./timing_test64 lock_xadd
100000000 loops in 0.68582s = 6.86 nsec/loop for lock_xadd

And POPF:

# ./timing_test64 popf
100000000 loops in 0.68861s = 6.89 nsec/loop for popf

This is on Sandy Bridge CPU with cycle time of about 0.30 ns:

# ./timing_test64 nothing
2000000000 loops in 0.59716s = 0.30 nsec/loop for nothing


So, what do we see?

call+ret takes 5 cycles. This is cheaper that one unlocked
RMW memory operation which is 7 cycles.

Locked RMW is 21 cycles in the ideal case (this is what
spin_lock_irqsave does). POPF is also 21 cycles
(spin_unlock_irqrestore does this). Add to this two mmio
accesses (easily 50s of cycles) and all other necessary operations
visible in the assembly code - 5 memory stores,
7 memory loads, and two call+ret pairs.

I expect overhead of call+ret added by deinlining to be in 1-4%,
if you run a microbenchmark which does nothing but one of these ops.
-- 
vda
// To be unaffected by random cacheline placement, use generous "align":
//
// i686-gcc -O2 -Wall -falign-loops=32 -falign-jumps=32 -falign-labels=32 -static
// x86_64-gcc -O2 -Wall -falign-loops=32 -falign-jumps=32 -falign-labels=32 -static

#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/syscall.h>
#include <stdio.h>

#if !defined(__i386__)
#define get_sysenter_addr() 0
#else
#include <elf.h>
long sysenter_addr;
long get_sysenter_addr(char **envp)
{
	Elf32_auxv_t *auxv;
	while (*envp++ != NULL)
		continue;
	for (auxv = (void *)envp; auxv->a_type != AT_NULL; auxv++)
		if( auxv->a_type == AT_SYSINFO)
			return (sysenter_addr = auxv->a_un.a_val);
	fprintf(stderr, "AT_SYSINFO not supplied, can't test\n");
	exit(0); /* this is not a failure */
}

void sysenter_getpid(void)
{
	asm volatile(
	"\n"   "	mov	$20,%eax" // GETPID
	"\n"   "	call	*sysenter_addr"
	);
}
#endif

#if defined(__i386__)
#define L_or_Q "l"
#define E_or_R "e"
#else
#define L_or_Q "q"
#define E_or_R "r"
#endif

static int memvar;

asm (
"\n"   "	.text"
"\n"   "ret__:	ret"
);

int main(int argc, char **argv, char **envp)
{
	struct timespec start, end;
	unsigned long long duration;
	size_t loops, i;
	const char *mode;

	if (argc < 2) {
		printf("Usage: timing_test [MILLIONS_OF_ITERATIONS] MODE\n");
		return 1;
	}
	mode = argv[2];
	if (!mode) {
		mode = argv[1];
		loops = 10*1000;
	} else {
		loops = (size_t)atol(argv[1]) * 1000000;
	}

 again:
	if (!strcmp(mode, "nothing")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile ("# nothing");
		}
	} else if (!strcmp(mode, "nop")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile ("nop");
		}
	} else if (!strcmp(mode, "rdtsc")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			unsigned int a, d;
			asm volatile ("rdtsc" : "=a" (a), "=d" (d));
		}
	} else if (!strcmp(mode, "lfence_rdtsc")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			unsigned int a, d;
			asm volatile ("lfence;rdtsc" : "=a" (a), "=d" (d));
		}
	} else if (!strcmp(mode, "lfence_rdtsc_lfence")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			unsigned int a, d;
			asm volatile ("");
			asm volatile ("lfence;rdtsc;lfence" : "=a" (a), "=d" (d));
		}
	} else if (!strcmp(mode, "mfence_rdtsc_mfence")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			unsigned int a, d;
			asm volatile ("mfence;rdtsc;mfence" : "=a" (a), "=d" (d));
		}
	} else if (!strcmp(mode, "rdtscp")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			unsigned int a, c, d;
			asm volatile ("rdtscp" : "=a" (a), "=c" (c), "=d" (d));
		}
	} else if (!strcmp(mode, "gettimeofday")) {
		struct timeval tv;
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--)
			gettimeofday(&tv, 0);
	} else if (!strcmp(mode, "getpid")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--)
			syscall(SYS_getpid);
#if defined(__i386__)
	} else if (!strcmp(mode, "sysenter_getpid")) {
		get_sysenter_addr(envp);
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--)
			sysenter_getpid();
	} else if (!strcmp(mode, "iret")) {
		/* "push cs" is itself a bit expensive, moving it out of loop */
		long saved_cs;
		asm volatile ("mov %%cs,%0" : "=r" (saved_cs));
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	$0"	// flags
			"\n"   "	push	%0"	// cs
			"\n"   "	push	$1f"	// ip
			"\n"   "	iret"
			"\n"   "1:"
			:
			: "r" (saved_cs)
			);
		}
#endif
#if defined(__x86_64__)
	} else if (!strcmp(mode, "iret")) {
		long saved_cs;
		long saved_ss;
		asm volatile ("mov %%cs,%0" : "=r" (saved_cs));
		asm volatile ("mov %%ss,%0" : "=r" (saved_ss));
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	mov	%%rsp,%%rax"
			"\n"   "	push	%0"	// ss
			"\n"   "	push	%%rax"	// sp
			"\n"   "	push	$0"	// flags
			"\n"   "	push	%1"	// cs
			"\n"   "	push	$1f"	// ip
			"\n"   "	iretq"
			"\n"   "1:"
			:
			: "r" (saved_ss), "r" (saved_cs)
			: "ax"
			);
		}
#endif
	} else if (!strcmp(mode, "lret")) {
		/* "push cs" is itself a bit expensive, moving it out of loop */
		long saved_cs;
		asm volatile ("mov %%cs,%0" : "=r" (saved_cs));
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	%0"
			"\n"   "	push	$1f"
			"\n"   "	lret"L_or_Q
			"\n"   "1:"
			:
			: "r" (saved_cs)
			);
		}
	} else if (!strcmp(mode, "callret")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile ("call ret__");
		}
	} else if (!strcmp(mode, "ret")) {
		/* This is useful to measure delays due to
		 * return stack branch prediction not working
		 * (we aren't using paired call/rets here, as CPU expects).
		 * I observed "callret" test above being 4 times faster than this:
		 */
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	$1f"
			"\n"   "	ret"
			"\n"   "1:"
			);
		}
	} else if (!strcmp(mode, "loadss")) {
		long saved_ss;
		asm volatile ("mov %%ss,%0" : "=r" (saved_ss));
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile ("mov %0,%%ss" : : "r" (saved_ss));
		}
	} else if (!strcmp(mode, "readss")) {
		long saved_ss;
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile ("mov %%ss,%0" : "=r" (saved_ss));
		}
	} else if (!strcmp(mode, "leave")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	%"E_or_R"bp"
			"\n"   "	mov	%"E_or_R"sp,%"E_or_R"bp"
			"\n"   "	leave"
			);
		}
	} else if (!strcmp(mode, "noleave")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	%"E_or_R"bp"
			"\n"   "	mov	%"E_or_R"sp,%"E_or_R"bp"
			"\n"   "	mov	%"E_or_R"bp,%"E_or_R"sp"
			"\n"   "	pop	%"E_or_R"bp"
			);
		}
	} else if (!strcmp(mode, "pushf")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	pushf"
			"\n"   "	pop	%%"E_or_R"ax"
			:
			:
			: "ax"
			);
		}
	} else if (!strcmp(mode, "popf")) {
		long flags;
		asm volatile (
		"\n"   "	pushf"
		"\n"   "	pop	%0"
		: "=r" (flags)
		);
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	push	%0"
			"\n"   "	popf"
			:
			: "r" (flags)
			: "ax"
			);
		}
	} else if (!strcmp(mode, "or")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	orl $1,%0"
			:
			: "m" (memvar)
			);
		}
	} else if (!strcmp(mode, "lock_or")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	lock orl $1,%0"
			:
			: "m" (memvar)
			);
		}
	} else if (!strcmp(mode, "lock_xadd")) {
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--) {
			asm volatile (
			"\n"   "	lock xaddl %0,%1"
			:
			: "r" (0), "m" (memvar)
			);
		}
	} else if (!strcmp(mode, "rdpmc")) {
		// Unlikely to work.
		unsigned int eax, edx;
		unsigned int ecx = 0;
		clock_gettime(CLOCK_MONOTONIC, &start);
	        for (i = loops; i != 0; i--)
			asm volatile ("rdpmc" : "=a" (eax), "=d" (edx) : "c" (ecx));
	} else {
		printf("Unknown mode %s\n", mode);
		return 1;
	}

	clock_gettime(CLOCK_MONOTONIC, &end);
	duration = (1000*1000*1000ULL * end.tv_sec + end.tv_nsec)
	         - (1000*1000*1000ULL * start.tv_sec + start.tv_nsec);
	printf("%lu loops in %.5fs = %.2f nsec/loop for %s\n",
		(unsigned long)loops, (double)duration * 1e-9,
		(double)duration / loops,
		mode
	);
	if (!argv[2]) {
		if (duration < 90*1000*1000) {
			loops *= 10;
			goto again;
		}
		if (duration < 490*1000*1000) {
			loops *= 2;
			goto again;
		}
	}
	return 0;
}

Reply via email to