Added the basic driver for Arasan Nand Flash Controller used in Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit correction.
Signed-off-by: Punnaiah Choudary Kalluri <punn...@xilinx.com> --- drivers/mtd/nand/Kconfig | 7 + drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/arasan_nfc.c | 861 +++++++++++++++++++++++++++++++++++++++++ 3 files changed, 869 insertions(+), 0 deletions(-) create mode 100644 drivers/mtd/nand/arasan_nfc.c diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 5897d8d..64e497c 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -530,4 +530,11 @@ config MTD_NAND_HISI504 help Enables support for NAND controller on Hisilicon SoC Hip04. +config MTD_NAND_ARASAN + tristate "Support for Arasan Nand Flash controller" + depends on MTD_NAND + help + Enables the driver for the Arasan Nand Flash controller on + Zynq UltraScale+ MPSoC. + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 582bbd05..fd863ea 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o +obj-$(CONFIG_MTD_NAND_ARASAN) += arasan_nfc.o nand-objs := nand_base.o nand_bbt.o nand_timings.o diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c new file mode 100644 index 0000000..a4b407b --- /dev/null +++ b/drivers/mtd/nand/arasan_nfc.c @@ -0,0 +1,861 @@ +/* + * Arasan Nand Flash Controller Driver + * + * Copyright (C) 2014 - 2015 Xilinx, Inc. + * + * This program is free software; you can redistribute it and/or modify it under + * the terms of the GNU General Public License version 2 as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + */ + +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/of_mtd.h> +#include <linux/platform_device.h> + +#define DRIVER_NAME "arasan_nfc" +#define EVNT_TIMEOUT 1000 +#define STATUS_TIMEOUT 2000 + +#define PKT_OFST 0x00 +#define MEM_ADDR1_OFST 0x04 +#define MEM_ADDR2_OFST 0x08 +#define CMD_OFST 0x0C +#define PROG_OFST 0x10 +#define INTR_STS_EN_OFST 0x14 +#define INTR_SIG_EN_OFST 0x18 +#define INTR_STS_OFST 0x1C +#define READY_STS_OFST 0x20 +#define DMA_ADDR1_OFST 0x24 +#define FLASH_STS_OFST 0x28 +#define DATA_PORT_OFST 0x30 +#define ECC_OFST 0x34 +#define ECC_ERR_CNT_OFST 0x38 +#define ECC_SPR_CMD_OFST 0x3C +#define ECC_ERR_CNT_1BIT_OFST 0x40 +#define ECC_ERR_CNT_2BIT_OFST 0x44 +#define DMA_ADDR0_OFST 0x50 + +#define PKT_CNT_SHIFT 12 + +#define ECC_ENABLE BIT(31) +#define DMA_EN_MASK GENMASK(27, 26) +#define DMA_ENABLE 0x2 +#define DMA_EN_SHIFT 26 +#define PAGE_SIZE_MASK GENMASK(25, 23) +#define PAGE_SIZE_SHIFT 23 +#define PAGE_SIZE_512 0 +#define PAGE_SIZE_1K 5 +#define PAGE_SIZE_2K 1 +#define PAGE_SIZE_4K 2 +#define PAGE_SIZE_8K 3 +#define PAGE_SIZE_16K 4 +#define CMD2_SHIFT 8 +#define ADDR_CYCLES_SHIFT 28 + +#define XFER_COMPLETE BIT(2) +#define READ_READY BIT(1) +#define WRITE_READY BIT(0) +#define MBIT_ERROR BIT(3) +#define ERR_INTRPT BIT(4) + +#define PROG_PGRD BIT(0) +#define PROG_ERASE BIT(2) +#define PROG_STATUS BIT(3) +#define PROG_PGPROG BIT(4) +#define PROG_RDID BIT(6) +#define PROG_RDPARAM BIT(7) +#define PROG_RST BIT(8) + +#define ONFI_STATUS_FAIL BIT(0) +#define ONFI_STATUS_READY BIT(6) + +#define PG_ADDR_SHIFT 16 +#define BCH_MODE_SHIFT 25 +#define BCH_EN_SHIFT 27 +#define ECC_SIZE_SHIFT 16 + +#define MEM_ADDR_MASK GENMASK(7, 0) +#define BCH_MODE_MASK GENMASK(27, 25) + +#define CS_MASK GENMASK(31, 30) +#define CS_SHIFT 30 + +#define PAGE_ERR_CNT_MASK GENMASK(16, 8) +#define PKT_ERR_CNT_MASK GENMASK(7, 0) + +#define ONFI_ID_LEN 8 +#define TEMP_BUF_SIZE 512 + +/** + * struct anfc_ecc_matrix - Defines ecc information storage format + * @pagesize: Page size in bytes. + * @codeword_size: Code word size information. + * @eccbits: Number of ecc bits. + * @bch: Bch / Hamming mode enable/disable. + * @eccsize: Ecc size information. + */ +struct anfc_ecc_matrix { + u32 pagesize; + u32 codeword_size; + u8 eccbits; + u8 bch; + u16 eccsize; +}; + +static const struct anfc_ecc_matrix ecc_matrix[] = { + {512, 512, 1, 0, 0x3}, + {512, 512, 4, 1, 0x7}, + {512, 512, 8, 1, 0xD}, + /* 2K byte page */ + {2048, 512, 1, 0, 0xC}, + {2048, 512, 4, 1, 0x1A}, + {2048, 512, 8, 1, 0x34}, + {2048, 512, 12, 1, 0x4E}, + {2048, 1024, 24, 1, 0x54}, + /* 4K byte page */ + {4096, 512, 1, 0, 0x18}, + {4096, 512, 4, 1, 0x34}, + {4096, 512, 8, 1, 0x68}, + {4096, 512, 12, 1, 0x9C}, + {4096, 1024, 4, 1, 0xA8}, + /* 8K byte page */ + {8192, 512, 1, 0, 0x30}, + {8192, 512, 4, 1, 0x68}, + {8192, 512, 8, 1, 0xD0}, + {8192, 512, 12, 1, 0x138}, + {8192, 1024, 24, 1, 0x150}, + /* 16K byte page */ + {16384, 512, 1, 0, 0x60}, + {16384, 512, 4, 1, 0xD0}, + {16384, 512, 8, 1, 0x1A0}, + {16384, 512, 12, 1, 0x270}, + {16384, 1024, 24, 1, 0x2A0} +}; + +/** + * struct anfc - Defines the Arasan NAND flash driver instance + * @chip: NAND chip information structure. + * @mtd: MTD information structure. + * @parts: Pointer to the mtd_partition structure. + * @dev: Pointer to the device structure. + * @base: Virtual address of the NAND flash device. + * @curr_cmd: Current command issued. + * @dma: Dma enable/disable. + * @bch: Bch / Hamming mode enable/disable. + * @err: Error identifier. + * @iswriteoob: Identifies if oob write operation is required. + * @buf: Buffer used for read/write byte operations. + * @raddr_cycles: Row address cycle information. + * @caddr_cycles: Column address cycle information. + * @irq: irq number + * @page: Page address to be use for write oob operations. + * @pktsize: Packet size for read / write operation. + * @bufshift: Variable used for indexing buffer operation + * @rdintrmask: Interrupt mask value for read operation. + * @bufrdy: Completion event for buffer ready. + * @xfercomp: Completion event for transfer complete. + * @ecclayout: Ecc layout object + */ +struct anfc { + struct nand_chip chip; + struct mtd_info mtd; + struct mtd_partition *parts; + struct device *dev; + + void __iomem *base; + int curr_cmd; + + bool dma; + bool bch; + bool err; + bool iswriteoob; + + u8 buf[TEMP_BUF_SIZE]; + + u16 raddr_cycles; + u16 caddr_cycles; + + u32 irq; + u32 page; + u32 pktsize; + u32 bufshift; + u32 rdintrmask; + + struct completion bufrdy; + struct completion xfercomp; + struct nand_ecclayout ecclayout; +}; + +static u8 anfc_page(u32 pagesize) +{ + switch (pagesize) { + case 512: + return PAGE_SIZE_512; + case 2048: + return PAGE_SIZE_2K; + case 4096: + return PAGE_SIZE_4K; + case 8192: + return PAGE_SIZE_8K; + case 16384: + return PAGE_SIZE_16K; + case 1024: + return PAGE_SIZE_1K; + default: + break; + } + + return 0; +} + +static inline void anfc_enable_intrs(struct anfc *nfc, u32 val) +{ + writel(val, nfc->base + INTR_STS_EN_OFST); + writel(val, nfc->base + INTR_SIG_EN_OFST); +} + +static int anfc_wait_for_event(struct anfc *nfc, u32 event) +{ + struct completion *comp; + int ret; + + if (event == XFER_COMPLETE) + comp = &nfc->xfercomp; + else + comp = &nfc->bufrdy; + + ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT)); + + return ret; +} + +static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize, + u32 pktcount) +{ + writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST); +} + +static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2) +{ + writel(cmd1 | (cmd2 << CMD2_SHIFT) | + (nfc->caddr_cycles << ADDR_CYCLES_SHIFT), + nfc->base + ECC_SPR_CMD_OFST); +} + +static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col) +{ + u32 val; + + writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST); + + val = readl(nfc->base + MEM_ADDR2_OFST); + val = (val & ~MEM_ADDR_MASK) | + ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK); + writel(val, nfc->base + MEM_ADDR2_OFST); +} + +static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2, + u8 dmamode, u32 pagesize, u8 addrcycles) +{ + u32 regval; + + regval = cmd1 | (cmd2 << CMD2_SHIFT); + if (dmamode && nfc->dma) + regval |= DMA_ENABLE << DMA_EN_SHIFT; + if (addrcycles) + regval |= addrcycles << ADDR_CYCLES_SHIFT; + if (pagesize) + regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT; + writel(regval, nfc->base + CMD_OFST); +} + +static int anfc_device_ready(struct mtd_info *mtd, + struct nand_chip *chip) +{ + u8 status; + u32 timeout = STATUS_TIMEOUT; + + while (timeout--) { + chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0); + status = chip->read_byte(mtd); + if (status & ONFI_STATUS_READY) { + if (status & ONFI_STATUS_FAIL) + return NAND_STATUS_FAIL; + return 0; + } + } + + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; +} + +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + if (nfc->dma) + nfc->rdintrmask = XFER_COMPLETE; + else + nfc->rdintrmask = READ_READY; + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + + nfc->iswriteoob = true; + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + nfc->iswriteoob = false; + + return 0; +} + +static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + u32 i, pktcount, buf_rd_cnt = 0, pktsize; + u32 *bufptr = (u32 *)buf; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + dma_addr_t paddr = 0; + + if (nfc->curr_cmd == NAND_CMD_READ0) { + pktsize = nfc->pktsize; + if (mtd->writesize % pktsize) + pktcount = mtd->writesize / pktsize + 1; + else + pktcount = mtd->writesize / pktsize; + } else { + pktsize = len; + pktcount = 1; + } + + anfc_setpktszcnt(nfc, pktsize, pktcount); + + if (nfc->dma) { + paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); + if (dma_mapping_error(nfc->dev, paddr)) { + dev_err(nfc->dev, "Read buffer mapping error"); + return; + } + writel(paddr, nfc->base + DMA_ADDR0_OFST); + writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST); + anfc_enable_intrs(nfc, nfc->rdintrmask); + writel(PROG_PGRD, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE); + return; + } + + anfc_enable_intrs(nfc, nfc->rdintrmask); + writel(PROG_PGRD, nfc->base + PROG_OFST); + + while (buf_rd_cnt < pktcount) { + + anfc_wait_for_event(nfc, READ_READY); + buf_rd_cnt++; + + if (buf_rd_cnt == pktcount) + anfc_enable_intrs(nfc, XFER_COMPLETE); + + for (i = 0; i < pktsize / 4; i++) + bufptr[i] = readl(nfc->base + DATA_PORT_OFST); + + bufptr += (pktsize / 4); + + if (buf_rd_cnt < pktcount) + anfc_enable_intrs(nfc, nfc->rdintrmask); + } + + anfc_wait_for_event(nfc, XFER_COMPLETE); +} + +static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize; + u32 *bufptr = (u32 *)buf; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + dma_addr_t paddr = 0; + + if (nfc->iswriteoob) { + pktsize = len; + pktcount = 1; + } else { + pktsize = nfc->pktsize; + pktcount = mtd->writesize / pktsize; + } + + anfc_setpktszcnt(nfc, pktsize, pktcount); + + if (nfc->dma) { + paddr = dma_map_single(nfc->dev, (void *)buf, len, + DMA_TO_DEVICE); + if (dma_mapping_error(nfc->dev, paddr)) { + dev_err(nfc->dev, "Write buffer mapping error"); + return; + } + writel(paddr, nfc->base + DMA_ADDR0_OFST); + writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST); + anfc_enable_intrs(nfc, XFER_COMPLETE); + writel(PROG_PGPROG, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE); + return; + } + + anfc_enable_intrs(nfc, WRITE_READY); + writel(PROG_PGPROG, nfc->base + PROG_OFST); + + while (buf_wr_cnt < pktcount) { + anfc_wait_for_event(nfc, WRITE_READY); + + buf_wr_cnt++; + if (buf_wr_cnt == pktcount) + anfc_enable_intrs(nfc, XFER_COMPLETE); + + for (i = 0; i < (pktsize / 4); i++) + writel(bufptr[i], nfc->base + DATA_PORT_OFST); + + bufptr += (pktsize / 4); + + if (buf_wr_cnt < pktcount) + anfc_enable_intrs(nfc, WRITE_READY); + } + + anfc_wait_for_event(nfc, XFER_COMPLETE); +} + +static int anfc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + u32 val; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + + anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART); + + val = readl(nfc->base + CMD_OFST); + val = val | ECC_ENABLE; + writel(val, nfc->base + CMD_OFST); + + if (nfc->dma) + nfc->rdintrmask = XFER_COMPLETE; + else + nfc->rdintrmask = READ_READY; + + if (!nfc->bch) + nfc->rdintrmask = MBIT_ERROR; + + chip->read_buf(mtd, buf, mtd->writesize); + + val = readl(nfc->base + ECC_ERR_CNT_OFST); + if (nfc->bch) { + mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK; + } else { + val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST); + mtd->ecc_stats.corrected += val; + val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST); + mtd->ecc_stats.failed += val; + /* Clear ecc error count register 1Bit, 2Bit */ + writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST); + writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST); + } + nfc->err = false; + + if (oob_required) + chip->ecc.read_oob(mtd, chip, page); + + return 0; +} + +static int anfc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required) +{ + u32 val, i; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint32_t *eccpos = chip->ecc.layout->eccpos; + + anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0); + + val = readl(nfc->base + CMD_OFST); + val = val | ECC_ENABLE; + writel(val, nfc->base + CMD_OFST); + + chip->write_buf(mtd, buf, mtd->writesize); + + if (oob_required) { + anfc_device_ready(mtd, chip); + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page); + if (nfc->dma) + nfc->rdintrmask = XFER_COMPLETE; + else + nfc->rdintrmask = READ_READY; + chip->read_buf(mtd, ecc_calc, mtd->oobsize); + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]]; + chip->ecc.write_oob(mtd, chip, nfc->page); + } + + return 0; +} + +static u8 anfc_read_byte(struct mtd_info *mtd) +{ + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + + return nfc->buf[nfc->bufshift++]; +} + +static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size) +{ + u32 i, *bufptr = (u32 *)&nfc->buf[0]; + + anfc_enable_intrs(nfc, READ_READY); + + writel(prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc, READ_READY); + + anfc_enable_intrs(nfc, XFER_COMPLETE); + + for (i = 0; i < size / 4; i++) + bufptr[i] = readl(nfc->base + DATA_PORT_OFST); + + anfc_wait_for_event(nfc, XFER_COMPLETE); +} + +static int anfc_ecc_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + u32 oob_index, i, ecc_addr, regval, bchmode = 0; + struct nand_chip *nand_chip = mtd->priv; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + int found = -1; + + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.read_page = anfc_read_page_hwecc; + nand_chip->ecc.write_page = anfc_write_page_hwecc; + nand_chip->ecc.write_oob = anfc_write_oob; + nand_chip->ecc.read_oob = anfc_read_oob; + + for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix); + i++) { + if ((ecc_matrix[i].pagesize == mtd->writesize) && + (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) { + if (ecc_matrix[i].eccbits >= + nand_chip->ecc_strength_ds) { + found = i; + break; + } + found = i; + } + } + + if (found < 0) { + dev_err(nfc->dev, "ECC scheme not supported"); + return 1; + } + if (ecc_matrix[found].bch) { + switch (ecc_matrix[found].eccbits) { + case 12: + bchmode = 0x1; + break; + case 8: + bchmode = 0x2; + break; + case 4: + bchmode = 0x3; + break; + case 24: + bchmode = 0x4; + break; + default: + bchmode = 0x0; + } + } + + nand_chip->ecc.strength = ecc_matrix[found].eccbits; + nand_chip->ecc.size = ecc_matrix[found].codeword_size; + nand_chip->ecc.steps = ecc_matrix[found].pagesize / + ecc_matrix[found].codeword_size; + nand_chip->ecc.bytes = ecc_matrix[found].eccsize / + nand_chip->ecc.steps; + nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize; + nfc->bch = ecc_matrix[found].bch; + oob_index = nand_chip->onfi_params.spare_bytes_per_page - + nfc->ecclayout.eccbytes; + ecc_addr = mtd->writesize + oob_index; + + for (i = 0; i < nand_chip->ecc.size; i++) + nfc->ecclayout.eccpos[i] = oob_index + i; + + nfc->ecclayout.oobfree->offset = 2; + nfc->ecclayout.oobfree->length = oob_index - + nfc->ecclayout.oobfree->offset; + + nand_chip->ecc.layout = &(nfc->ecclayout); + regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) | + (ecc_matrix[found].bch << BCH_EN_SHIFT); + writel(regval, nfc->base + ECC_OFST); + + regval = readl(nfc->base + MEM_ADDR2_OFST); + regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT); + writel(regval, nfc->base + MEM_ADDR2_OFST); + + if (nand_chip->ecc_step_ds >= 1024) + nfc->pktsize = 1024; + else + nfc->pktsize = 512; + + return 0; +} + +static void anfc_cmd_function(struct mtd_info *mtd, + unsigned int cmd, int column, int page_addr) +{ + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + bool wait = false, read = false; + u32 addrcycles, prog; + u32 *bufptr = (u32 *)&nfc->buf[0]; + + nfc->bufshift = 0; + nfc->curr_cmd = cmd; + + if (page_addr == -1) + page_addr = 0; + if (column == -1) + column = 0; + + switch (cmd) { + case NAND_CMD_RESET: + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0); + prog = PROG_RST; + wait = true; + break; + case NAND_CMD_SEQIN: + addrcycles = nfc->raddr_cycles + nfc->caddr_cycles; + nfc->page = page_addr; + anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1, + mtd->writesize, addrcycles); + anfc_setpagecoladdr(nfc, page_addr, column); + break; + case NAND_CMD_READOOB: + column += mtd->writesize; + case NAND_CMD_READ0: + case NAND_CMD_READ1: + addrcycles = nfc->raddr_cycles + nfc->caddr_cycles; + anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1, + mtd->writesize, addrcycles); + anfc_setpagecoladdr(nfc, page_addr, column); + break; + case NAND_CMD_RNDOUT: + anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1, + mtd->writesize, 2); + anfc_setpagecoladdr(nfc, page_addr, column); + if (nfc->dma) + nfc->rdintrmask = XFER_COMPLETE; + else + nfc->rdintrmask = READ_READY; + break; + case NAND_CMD_PARAM: + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, page_addr, column); + anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1); + anfc_readfifo(nfc, PROG_RDPARAM, + sizeof(struct nand_onfi_params)); + break; + case NAND_CMD_READID: + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, page_addr, column); + anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1); + anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN); + break; + case NAND_CMD_ERASE1: + addrcycles = nfc->raddr_cycles; + prog = PROG_ERASE; + anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles); + column = page_addr & 0xffff; + page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff; + anfc_setpagecoladdr(nfc, page_addr, column); + wait = true; + break; + case NAND_CMD_STATUS: + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0); + anfc_setpktszcnt(nfc, 1, 1); + anfc_setpagecoladdr(nfc, page_addr, column); + prog = PROG_STATUS; + wait = read = true; + break; + default: + return; + } + + if (wait) { + anfc_enable_intrs(nfc, XFER_COMPLETE); + writel(prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc, XFER_COMPLETE); + } + + if (read) + bufptr[0] = readl(nfc->base + FLASH_STS_OFST); +} + +static void anfc_select_chip(struct mtd_info *mtd, int num) +{ + u32 val; + struct anfc *nfc = container_of(mtd, struct anfc, mtd); + + if (num == -1) + return; + + val = readl(nfc->base + MEM_ADDR2_OFST); + val = (val & ~(CS_MASK)) | (num << CS_SHIFT); + writel(val, nfc->base + MEM_ADDR2_OFST); +} + +static irqreturn_t anfc_irq_handler(int irq, void *ptr) +{ + struct anfc *nfc = ptr; + u32 regval = 0, status; + + status = readl(nfc->base + INTR_STS_OFST); + if (status & XFER_COMPLETE) { + complete(&nfc->xfercomp); + regval |= XFER_COMPLETE; + } + + if (status & READ_READY) { + complete(&nfc->bufrdy); + regval |= READ_READY; + } + + if (status & WRITE_READY) { + complete(&nfc->bufrdy); + regval |= WRITE_READY; + } + + if (status & MBIT_ERROR) { + nfc->err = true; + complete(&nfc->bufrdy); + regval |= MBIT_ERROR; + } + + if (regval) { + writel(regval, nfc->base + INTR_STS_OFST); + writel(0, nfc->base + INTR_STS_EN_OFST); + writel(0, nfc->base + INTR_SIG_EN_OFST); + + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int anfc_probe(struct platform_device *pdev) +{ + struct anfc *nfc; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *res; + struct mtd_part_parser_data ppdata; + int err; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nfc->base)) + return PTR_ERR(nfc->base); + + mtd = &nfc->mtd; + nand_chip = &nfc->chip; + nand_chip->priv = nfc; + mtd->priv = nand_chip; + mtd->owner = THIS_MODULE; + mtd->name = DRIVER_NAME; + nfc->dev = &pdev->dev; + + nand_chip->cmdfunc = anfc_cmd_function; + nand_chip->waitfunc = anfc_device_ready; + nand_chip->chip_delay = 30; + nand_chip->read_buf = anfc_read_buf; + nand_chip->write_buf = anfc_write_buf; + nand_chip->read_byte = anfc_read_byte; + nand_chip->bbt_options = NAND_BBT_USE_FLASH; + nand_chip->select_chip = anfc_select_chip; + mtd->size = nand_chip->chipsize; + nfc->dma = of_property_read_bool(pdev->dev.of_node, + "arasan,has-mdma"); + platform_set_drvdata(pdev, nfc); + init_completion(&nfc->bufrdy); + init_completion(&nfc->xfercomp); + nfc->irq = platform_get_irq(pdev, 0); + err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler, + 0, "arasannfc", nfc); + if (err) + return err; + + if (nand_scan_ident(mtd, 1, NULL)) { + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); + return -ENXIO; + } + nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF; + nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF; + + if (anfc_ecc_init(mtd, &nand_chip->ecc)) + return -ENXIO; + + if (nand_scan_tail(mtd)) { + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); + return -ENXIO; + } + + ppdata.of_node = pdev->dev.of_node; + + mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0); + return 0; +} + +static int anfc_remove(struct platform_device *pdev) +{ + struct anfc *nfc = platform_get_drvdata(pdev); + + nand_release(&nfc->mtd); + + return 0; +} + +static const struct of_device_id anfc_ids[] = { + { .compatible = "arasan,nfc-v3p10" }, + { } +}; +MODULE_DEVICE_TABLE(of, anfc_ids); + +static struct platform_driver anfc_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = anfc_ids, + }, + .probe = anfc_probe, + .remove = anfc_remove, +}; +module_platform_driver(anfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Xilinx, Inc"); +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); -- 1.7.4 -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majord...@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/